Cancer biology can be better understood by drawing upon methods and concepts from evolutionary genetics. Cancer progression proceeds through somatic evolution, being driven by selection on clonal lineages via the differential survival and proliferation of cell lines. This within-patient evolution can be modeled and analyzed using population genetic and phylogenetic tools to identify mutations and genotypes that are under directional selection during tumor growth, spatial differentiation, and metastasis. Evolutionary genetics can also explain the persistence of cancer within populations. A minority of cancers are associated with inherited risk alleles, which are maintained in populations through genetic drift or antagonistic pleiotropy. Finally, cancer biology can be understood from a macroevolutionary perspective as a case study of evolutionary cooperation and conflict between different levels of biological organization.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R. et al. 2015. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 314:171850–60 [Google Scholar]
  2. Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC. 2015. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. B 370:20140219 [Google Scholar]
  3. Anderson DE. 1992. Familial versus sporadic breast cancer. Cancer 70:6 Suppl1740–46 [Google Scholar]
  4. Armitage P, Doll R. 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8:11–12 [Google Scholar]
  5. Arnaldez FI, Helman LJ. 2012. Targeting the insulin growth factor receptor 1. Hematol. Oncol. Clin. North Am. 26:3527–42, vii–viii [Google Scholar]
  6. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K. et al. 2011. The genomic complexity of primary human prostate cancer. Nature 470:7333214–20 [Google Scholar]
  7. Bignold L. 2007. Aneuploidy as a counter to Muller's ratchet in cancer cells. Cancer Genet. Cytogenet. 178:2173–74 [Google Scholar]
  8. Boveri T. 1914. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121:Suppl1–84 [Google Scholar]
  9. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D. et al. 2010. Accumulation of driver and passenger mutations during tumor progression. PNAS 107:4318545–50 [Google Scholar]
  10. Breivik J. 2004. The evolutionary origin of genetic instability in cancer development. Semin. Cancer Biol. 15:51–60 [Google Scholar]
  11. Brock A, Chang H, Huang S. 2009. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10:5336–42 [Google Scholar]
  12. Bunz F. 2008. Principles of Cancer Genetics. New York: Springer
  13. Burrell RA, McGranahan N, Bartek J, Swanton C. 2013. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:7467338–45 [Google Scholar]
  14. Burrell RA, Swanton C. 2014. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8:61095–111 [Google Scholar]
  15. Burt A, Trivers R. 2006. Genes in Conflict Cambridge, MA: Harvard Univ. Press [Google Scholar]
  16. Buss L. 1988. The Evolution of Individuality Princeton, NJ: Princeton Univ. Press [Google Scholar]
  17. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. 1999. Genetic instability and darwinian selection in tumours. Cell 15:12M57–60 [Google Scholar]
  18. Cairns J. 1975. Mutation, selection, and the natural history of cancer. Nature 255:197–200 [Google Scholar]
  19. Cairns J. 2002. Somatic stem cells and the kinetics of mutagenesis and carcinogeneis. PNAS 99:10567–70 [Google Scholar]
  20. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. 1992. Mendelian inheritance of familial prostate cancer. PNAS 89:83367–71 [Google Scholar]
  21. Caulin AF, Maley CC. 2011. Peto's paradox: evolution's prescription for cancer prevention. Trends Ecol. Evol. 26:4175–82 [Google Scholar]
  22. Chen H, Xing K, He X. 2015. The dJ/dS ratio test reveals hundreds of novel putative cancer drivers. Mol. Biol. Evol. 32:82181–85 [Google Scholar]
  23. Cheng F, Jia P, Wang Q, Lin C-C, Li W-H, Zhao Z. 2014. Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome. Mol. Biol. Evol. 31:82156–69 [Google Scholar]
  24. Constancia M. 2000. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26:2230–36 [Google Scholar]
  25. Cowperthwaite MC, Bull JJ, Ancel Meyers L. 2006. From bad to good: fitness reversals and the ascent of deleterious mutations. PLOS Comput. Bio. 2:e141 [Google Scholar]
  26. Crespi B, Summers K. 2005. Evolutionary biology of cancer. Trends Ecol. Evol. 20:10545–52 [Google Scholar]
  27. Croce CM. 2008. Oncogenes and cancer. N. Engl. J. Med. 358:5502–11 [Google Scholar]
  28. Danielsen HE, Pradhan M, Novelli M. 2015. Revisiting tumour aneuploidy—the place of ploidy assessment in the molecular era. Nat. Rev. Clin. Oncol. 13:291–304 [Google Scholar]
  29. Dawkins R. 1989. The evolution of evolvability. Artificial Life Langton C 201–20 New York: Addison Wesley [Google Scholar]
  30. Durrett R. 2008. Probability Models for DNA Sequence Evolution New York: Springer [Google Scholar]
  31. Durrett R. 2013. Population genetics of neutral mutations in exponentially growing cancer cell populations. Ann. Appl. Probab. 23:1230–50 [Google Scholar]
  32. Eigen M. 1971. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:10465–523 [Google Scholar]
  33. Eigen M, Schuster P. 1979. The Hypercycle. Berlin: Springer-Verlag
  34. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ. et al. 2012. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:7403353–60 [Google Scholar]
  35. Ezawa K, Landan G, Graur D. 2013. Detecting negative selection on recurrent mutations using gene genealogy. BMC Genet 14:137 [Google Scholar]
  36. Fay JC, Wu CI. 2001. The neutral theory in the genomic era. Curr. Opin. Genet. Dev. 11:6642–46 [Google Scholar]
  37. Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:2737–56 [Google Scholar]
  38. Felsenstein J. 1980. Phylogenies and the comparative method. Am. Nat. 125:1–15 [Google Scholar]
  39. Fidler IJ, Kripke ML. 1977. Metastasis results from preexisting variant cells within a malignant tumor. Science 197:4306893–95 [Google Scholar]
  40. Foo J, Liu LL, Leder K, Riester M, Iwasa Y, Lengauer C, Michor F. 2015. An evolutionary approach for identifying driver mutations in colorectal cancer. PLOS Comput. Biol. 11:9e1004350 [Google Scholar]
  41. Fox EJ, Loeb LA. 2010. Lethal mutagenesis: targeting the mutator phenotype in cancer. Sem. Cancer Biol. 20:353–59 [Google Scholar]
  42. Frank SA. 1995. George Price's contributions to evolutionary genetics. J. Theor. Biol. 175:3373–88 [Google Scholar]
  43. Frank SA. 2004. A multistage theory of age-specific acceleration in human mortality. BMC Biol 2:16 [Google Scholar]
  44. Frank SA. 2007. Dynamics of Cancer Princeton, NJ: Princeton Univ. Press [Google Scholar]
  45. French JD, Dunn J, Smart CE, Manning N, Brown MA. 2006. Disruption of BRCA1 function results in telomere lengthening and increased anaphase bridge formation in immortalized cell lines. Genes Chromosomes Cancer 45:3277–89 [Google Scholar]
  46. Gajewski TF, Schreiber H, Fu Y-X. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14:101014–22 [Google Scholar]
  47. Gardner A. 2015. The genetical theory of multilevel selection. J. Evol. Biol. 28:2305–19 [Google Scholar]
  48. Gazdar A, Robinson L, Oliver D, Xing C, Travis WD. et al. 2014. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J. Thorac. Oncol. 9:4456–63 [Google Scholar]
  49. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D. et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:833–92 [Google Scholar]
  50. Greaves M. 2000. Cancer: The Evolutionary Legacy Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  51. Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V. 2011. Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol 12:8785–94 [Google Scholar]
  52. Greer KA, Hughes LM, Masternak MM. 2011. Connecting serum IGF-1, body size, and age in the domestic dog. Age 33:3475–83 [Google Scholar]
  53. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC. et al. 2015. The evolutionary history of lethal metastatic prostate cancer. Nature 520:7547353–57 [Google Scholar]
  54. Hamilton WD. 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12:112–45 [Google Scholar]
  55. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:157–70 [Google Scholar]
  56. Hanahan D, Weinberg RA. 2011. The hallmarks of cancer: The next generation. Cell 144:646–74 [Google Scholar]
  57. Harley CB. 2002. Telomerase is not an oncogene. Oncogene 21:4494–502 [Google Scholar]
  58. Harris AL. 1985. DNA repair and resistance to chemotherapy. Cancer Surv 4:3601–24 [Google Scholar]
  59. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N. et al. 2005. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352:10997–1003 [Google Scholar]
  60. Hong MKH, Macintyre G, Wedge DC, Van Loo P, Patel K. et al. 2015. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6:6605 [Google Scholar]
  61. Hong WS, Shpak M, Townsend JP. 2015. Inferring the origin of metastases from cancer phylogenies. Cancer Res 75:194021–25 [Google Scholar]
  62. Hornsby PJ. 2007. Telomerase and the aging process. Exp. Gerontol. 42:7575–81 [Google Scholar]
  63. Jamal-Hanjani M, Hackshaw A, Yenting N, Shaw J, Dive C, Quezada S. et al. 2014. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLOS Biol 12:e1001906 [Google Scholar]
  64. Jenkins NC, Jung J, Liu T, Wilde M, Holmen SL, Grossman D. 2013. Familial melanoma-associated mutations in p16 uncouple its tumor-suppressor functions. J. Invest. Dermatol. 133:41043–51 [Google Scholar]
  65. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY. et al. 2014. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:6167189–93 [Google Scholar]
  66. Keefe DL, Liu L. 2009. Telomeres and reproductive aging. Reprod. Fertil. Dev. 21:110–14 [Google Scholar]
  67. Kimura M. 1964. Diffusion models in population genetics. J. Appl. Probab. 1:2177–232 [Google Scholar]
  68. Kimura M, Crow JF. 1978. Effect of overall phenotypic selection on genetic change at individual loci. PNAS 75:126168–71 [Google Scholar]
  69. Kimura M, Ohta T. 1969. The average number of generations until extinction of an individual mutant gene in a finite population. Genetics 63:701–9 [Google Scholar]
  70. Knudson AGJ. 1971. Mutation and cancer: statistical study of retinoblastoma. PNAS 68:4820–23 [Google Scholar]
  71. Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R. 2013. Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform 14:1289 [Google Scholar]
  72. Kryazhimskiy S, Plotkin JB. 2008. The population genetics of dN/dS. PLOS Genet 4:12e1000304 [Google Scholar]
  73. Kwiatkowski F, Arbre M, Bidet Y, Laquet C, Uhrhammer N, Bignon Y-J. 2015. BRCA mutations increase fertility in families at hereditary breast/ovarian cancer risk. PLOS ONE 10:6e0127363 [Google Scholar]
  74. Langley RR, Fidler IJ. 2011. The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 128:112527–35 [Google Scholar]
  75. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:7457214–18 [Google Scholar]
  76. Leigh EGJ. 1973. The evolution of mutation rates. Genetics 73:Suppl 731–18 [Google Scholar]
  77. Levy-Lahad E, Catane R, Eisenberg S, Kaufman B, Hornreich G. et al. 1997. Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families. Am. J. Hum. Genet. 60:51059–67 [Google Scholar]
  78. Ling S, Hu Z, Yang Z, Yang F, Li Y. et al. 2015. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. PNAS 112:47E6496–505 [Google Scholar]
  79. Litton JK, Ready K, Chen H, Gutierrez-Barrera A, Etzel CJ. et al. 2012. Earlier age of onset of BRCA mutation-related cancers in subsequent generations. Cancer 118:2321–25 [Google Scholar]
  80. Luqmani YA. 2005. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract 14Suppl 135–48 [Google Scholar]
  81. Lynch M. 1984. The selective value of alleles underlying polygenic traits. Genetics 108:41021–33 [Google Scholar]
  82. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X. et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38:468–73 [Google Scholar]
  83. Malumbres M, Barbacid M. 2003. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3:6459–65 [Google Scholar]
  84. Mandegar MA, Otto SP. 2007. Mitotic recombination counteracts the benefits of genetic segregation. Proc. Biol. Sci. 274:16151301–7 [Google Scholar]
  85. Margraf RL, Crockett DK, Krautscheid PMF, Seamons R, Calderon FRO. et al. 2009. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum. Mutat. 30:4548–56 [Google Scholar]
  86. Martin TA, Ye L, Sanders A. et al. 2000. Cancer Invasion and Metastasis: Molecular and Cellular Perspective Austin, Tex.: Landes Bioscience [Google Scholar]
  87. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P. et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:6237880–86 [Google Scholar]
  88. Maynard Smith J, Haigh J. 1974. The hitchhiking effect of a favourable gene. Genet. Res. 23:23–35 [Google Scholar]
  89. Maynard Smith J, Szathmary E. 1995. The Major Transitions in Evolution Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  90. Mayr E. 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance Cambridge, MA: Belknap Press of Harvard Univ. Press [Google Scholar]
  91. Medawar P. 1952. An Unsolved Problem of Biology London: H.K. Lewis [Google Scholar]
  92. Melin B, Dahlin AM, Andersson U, Wang Z, Henriksson R. et al. 2013. Known glioma risk loci are associated with glioma with a family history of brain tumours—a case-control gene association study. Int. J. Cancer 132:102464–68 [Google Scholar]
  93. Melton C, Reuter JA, Spacek DV, Snyder M. 2015. Recurrent somatic mutation in regulatory regions of human cancer genomes. Nat. Genet. 47:6710–16 [Google Scholar]
  94. Merlo LMF, Pepper JW, Reid BJ, Maley CC. 2006. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6:12924–35 [Google Scholar]
  95. Metzger MJ, Reinisch C, Sherry J, Goff SP. 2015. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161:255–63 [Google Scholar]
  96. Muller HJ. 1964. The relation of recombination to mutational advance. Mutat. Res. 106:2–9 [Google Scholar]
  97. Murchison EP. 2009. Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27:S2S19–30 [Google Scholar]
  98. Mwenifumbo JC, Marra MA. 2013. Cancer genome-sequencing study design. Nat. Rev. Genet. 14:5321–32 [Google Scholar]
  99. Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3:5418–26 [Google Scholar]
  100. Nielsen R. 2001. Statistical tests of selective neutrality in the age of genomics. Heredity 86:Pt 6641–47 [Google Scholar]
  101. Nielsen R, Yang Z. 2003. Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol. Biol. Evol. 20:81231–39 [Google Scholar]
  102. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. 2006. Angiogenesis in cancer. Vasc. Health Risk Manag. 2:3213–19 [Google Scholar]
  103. Nowak MA. 2006. Evolutionary Dynamics Cambridge, MA: Harvard Univ. Press [Google Scholar]
  104. Nowak MA, Michor F, Komarova NL, Iwasa Y. 2004. Evolutionary dynamics of tumor suppressor gene inactivation. PNAS 101:2910635–38 [Google Scholar]
  105. Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:23–28 [Google Scholar]
  106. O'Neill A, Shah N, Zitomersky N, Ladanyi M, Shukla N. et al. 2013. Insulin-like growth factor 1 receptor as a therapeutic target in Ewing sarcoma: lack of consistent upregulation or recurrent mutation and a review of the clinical trial literature. Sarcoma 2013:450478 [Google Scholar]
  107. Ostrow SL, Barshir R, DeGregori J, Yeger-Lotem E, Hershberg R. 2014. Cancer evolution is associated with pervasive positive selection on globally expressed genes. PLOS Genet 10:3e1004239 [Google Scholar]
  108. Paget S. 1889. The distribution of secondary growths in cancer of the breast. Lancet 133:3421571–73 [Google Scholar]
  109. Pepper JW, Scott Findlay C, Kassen R, Spencer SL, Maley CC. 2009. Cancer research meets evolutionary biology. Evol. Appl. 2:162–70 [Google Scholar]
  110. Persidis A. 1999. Cancer multidrug resistance. Nat. Biotechnol. 17:94–95 [Google Scholar]
  111. Peto R. 1977. Epidemiology, multistage models, and short-term mutagenicity tests. Cold Springs Harbor Conf. Cell Prolif. Cold Spring Harb. Lab. [Google Scholar]
  112. Petrucelli N, Daly MB, Feldman G. 1998. BRCA1 and BRCA2 hereditary breast and ovarian cancer. GeneReviews RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya et al. Seattle: Univ. Washington [Google Scholar]
  113. Polakis P. 2012. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 1:a008052 [Google Scholar]
  114. Price GR. 1970. Selection and covariance. Nature 227:5257520–21 [Google Scholar]
  115. Radtke I, Mullighan CG, Ishii M, Su X, Cheng J. et al. 2009. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. PNAS 106:3112944–49 [Google Scholar]
  116. Schwarz RF, Ng CKY, Cooke SL, Newman S, Temple J. et al. 2015. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLOS Med 12:2e1001789 [Google Scholar]
  117. Seliger B. 2005. Strategies of tumor immune evasion. BioDrugs 19:6347–54 [Google Scholar]
  118. Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M. et al. 2009. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. PNAS 106:4619352–57 [Google Scholar]
  119. Sen S. 2000. Aneuploidy and cancer. Curr. Opin. Oncol. 12:182–88 [Google Scholar]
  120. Shah SP, Roth A, Goya R, Oloumi A, Ha G. et al. 2012. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:7403395–99 [Google Scholar]
  121. Sherr CJ. 2004. Principles of tumor suppression. Cell 116:2235–46 [Google Scholar]
  122. Shpak M, Goldberg MM, Cowperthwaite MC. 2015. Rapid and convergent evolution in the glioblastoma multiforme genome. Genomics 105:3159–67 [Google Scholar]
  123. Smith KR, Hanson HA, Hollingshaus MS. 2013. BRCA1 and BRCA2 mutations and female fertility. Curr. Opin. Obstet. Gynecol. 25:3207–13 [Google Scholar]
  124. Smith KS, Yadav VK, Peders BS, Shaknovich R, Geraci MW. et al. 2015. Signatures of accelerated somatic evolution in gene promoters in multiple cancer types. Nucleic Acids Res 43:105307–17 [Google Scholar]
  125. Spielman SJ, Wilke CO. 2015. The relationship between dN/dS and scaled selection coefficients. Mol. Biol. Evol. 32:41097–1108 [Google Scholar]
  126. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:3585–95 [Google Scholar]
  127. Tamuri AU, dos Reis M, Goldstein RA. 2012. Estimating the distribution of selection coefficients from phylogenetic data using mutation-selection models. Genetics 190:1101–15 [Google Scholar]
  128. The Cancer Genome Atlas (TCGA) 2012a. Comprehensive molecular portraits of human breast tumours. Nature 490:741861–70 [Google Scholar]
  129. The Cancer Genome Atlas (TCGA) 2012b. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:7417519–25 [Google Scholar]
  130. The Cancer Genome Atlas (TCGA) 2012c. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:7407330–37 [Google Scholar]
  131. Thomas F, Fisher D, Fort P, Marie J-P, Daoust S. et al. 2013. Applying ecological and evolutionary theory to cancer: a long and winding road. Evol. Appl. 6:11–10 [Google Scholar]
  132. Tomasetti C, Vogelstein B. 2015. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:621778–81 [Google Scholar]
  133. Torres-Jasso JH, Marin ME, Santiago-Luna E, Leoner JC, Torres J. et al. 2015. EGFR gene polymorphisms -216G>T and -191C>A are risk markers for gastric cancer in Mexican population. Genet. Mol. Res. 14:11802–7 [Google Scholar]
  134. Tsao J-L, Yatabe Y, Salovaara R, Jarvinen HJ, Mecklin J-P, Alltonen LA. et al. 2000. Genetic reconstruction of individual colorectal tumor histories. PNAS 97:31236–41 [Google Scholar]
  135. Turajlic S, Swanton C. 2016. Metastasis as an evolutionary process. Science 352:169–75 [Google Scholar]
  136. Vinagre J, Almeida A, Populo H, Batista R, Lyra J. et al. 2013. Frequency of TERT promoter mutations in human cancers. Nat. Commun. 4:2185 [Google Scholar]
  137. Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. 2015. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525:7568261–64 [Google Scholar]
  138. Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the evolution of evolvability. Evolution 50:3967–76 [Google Scholar]
  139. Wang X, Zhang H, Wang D, Li X. 2015. Association of genetic polymorphisms of EGFR with glioma in a Chinese population. Genet. Test. Mol. Biomark. 19:159–62 [Google Scholar]
  140. Weis SM, Cheresh DA. 2011. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17:111359–70 [Google Scholar]
  141. Weissman A. 1893. The Germ-Plasm: A Theory of Heredity New York: Scribner [Google Scholar]
  142. Welsh JS. 2011. Contagious cancer. Oncologist 16:11–4 [Google Scholar]
  143. Williams GC. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411 [Google Scholar]
  144. Wrensch M, Jenkins RB, Chang JS, Yeh R-F, Xiao Y. et al. 2009. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat. Genet. 41:8905–8 [Google Scholar]
  145. Yachida S, Jones S, Bozic I, Antal T, Leary R. et al. 2010. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:73191114–17 [Google Scholar]
  146. Zhang Y, Italia MJ, Auger KR, Halsey WS, Van Horn SF. et al. 2010. Molecular evolutionary analysis of cancer cell lines. Mol. Cancer Ther. 9:2279–91 [Google Scholar]
  147. Zhao ZM, Zhao B, Bai Y, Iamarino A, Gaffney SG. et al. 2016. Early and multiple origins of a metastatic lineage with primary tumors. PNAS 113:82140–45 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error