Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales—from variation within populations to divergence among populations—to form a comprehensive view of adaptation in herbivorous insects.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agrawal AA, Conner JK, Rasmann S. 2010. Tradeoffs and negative correlations in evolutionary ecology. Evolution since Darwin: The First 150 years MA Bell, DJ Futuyma, WF Eanes, JS Levinton 243–68 Sunderland, MA: Sinauer [Google Scholar]
  2. Ali JG, Agrawal AA. 2012. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302 [Google Scholar]
  3. Antwi JB, Sword GA, Medina RF. 2015. Host–associated differentiation in a highly polyphagous, sexually reproducing insect herbivore. Ecol. Evol. 5:2533–43 [Google Scholar]
  4. Barrett RD, Hoekstra HE. 2011. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12:767–80 [Google Scholar]
  5. Barton NH. 1983. Multilocus clines. Evolution 37:454–71 [Google Scholar]
  6. Bengtsson BO. 1985. The flow of genes through a genetic barrier. Evolution: Essays in Honour of John Maynard Smith PJ Greenwood, PH Harvey, M Slatkin 31–42 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  7. Berenbaum MR, Zangerl AR. 1998. Chemical phenotype matching between a plant and its insect herbivore. PNAS 95:13743–48 [Google Scholar]
  8. Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond the controversy. Annu. Rev. Entomol. 47:773–815 [Google Scholar]
  9. Bernays E, Graham M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–92 [Google Scholar]
  10. Bloom JS, Ehrenreich IM, Loo WT, Lite TLV, Kruglyak L. 2013. Finding the sources of missing heritability in a yeast cross. Nature 494:234–37 [Google Scholar]
  11. Brachi B, Morris GP, Borevitz JO. 2011. Genome-wide association studies in plants: The missing heritability is in the field. Genome Biol 12:1–8 [Google Scholar]
  12. Bush GL. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evolution 23:237–51 [Google Scholar]
  13. Chakraborty M, Fry JD. 2015. Evidence that environmental heterogeneity maintains a detoxifying enzyme polymorphism in Drosophila melanogaster. Curr. Biol. 26:219–23 [Google Scholar]
  14. Charlesworth B. 2015. Causes of natural variation in fitness: evidence from studies of Drosophila. PNAS 112:1662–69 [Google Scholar]
  15. Charlesworth B, Nordborg M, Charlesworth D. 1997. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70:155–74 [Google Scholar]
  16. Charlesworth D. 2006. Balancing selection and its effects on sequences in nearby genome regions. PLOS Genet 2:e64 [Google Scholar]
  17. Christiansen FB. 1974. Sufficient conditions for protected polymorphism in a subdivided population. Am. Nat. 108:157–66 [Google Scholar]
  18. Colautti RI, Lee C, Mitchell-Olds T. 2012. Origin, fate, and architecture of ecologically relevant genetic variation. Curr. Opin. Plant Biol. 15:199–204 [Google Scholar]
  19. Comeault AA, Ferreira C, Dennis S, Soria-Carrasco V, Nosil P. 2015a. Evolution of color phenotypes in two distantly related species of stick insect: different ecological regimes acting on similar genetic architectures. bioRxivIn press 10.1101/023481 [Google Scholar]
  20. Comeault AA, Flaxman SM, Riesch R, Curran E, Soria-Carrasco V. et al. 2015b. Selection on a genetic polymorphism counteracts ecological speciation in a stick insect. Curr. Biol. 25:1975–81 [Google Scholar]
  21. Comeault AA, Soria-Carrasco V, Gompert Z, Farkas TE, Buerkle CA. et al. 2014. Genome-wide association mapping of phenotypic traits subject to a range of intensities of natural selection in Timema cristinae. Am. Nat. 183:711–27 [Google Scholar]
  22. Da Cunha AB, Burla H, Dobzhansky T. 1950. Adaptive chromosomal polymorphism in Drosophila willistoni. Evolution 4:212–35 [Google Scholar]
  23. Delph LF, Kelly JK. 2014. On the importance of balancing selection in plants. New Phytol 201:45–56 [Google Scholar]
  24. Dempster ER. 1955. Maintenance of genetic heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 20:25–32 [Google Scholar]
  25. Dobzhansky T. 1951. Genetics and the Origin of Species New York: Columbia University Press [Google Scholar]
  26. Drès M, Mallet J. 2002. Host races in plant-feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. B 357:471–92 [Google Scholar]
  27. Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glockner G. et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:8362–66 [Google Scholar]
  28. Edmunds GF Jr, Alstad DN. 1978. Coevolution in insect herbivores and conifers. Science 199:941–45 [Google Scholar]
  29. Egan SP, Ragland GJ, Assour L, Powell TH, Hood GR. et al. 2015. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol. Lett. 18:817–25 [Google Scholar]
  30. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608 [Google Scholar]
  31. Elzinga DA, Jander G. 2013. The role of protein effectors in plant-aphid interactions. Curr. Opin. Plant Biol. 16:451–56 [Google Scholar]
  32. Etges WJ, De Oliveira CC, Noor MA, Ritchie MG. 2010. Genetics of incipient speciation in Drosophila mojavensis. III. Life-history divergence in allopatry and reproductive isolation. Evolution 64:3549–69 [Google Scholar]
  33. Etges WJ, Trotter MV, Oliveira CC, Rajpurohit S, Gibbs AG, Tuljapurkar S. 2015. Deciphering life history transcriptomes in different environments. Mol. Ecol. 24:151–79 [Google Scholar]
  34. Farkas TE, Mononen T, Comeault AA, Hanski I, Nosil P. 2013. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23:1835–43 [Google Scholar]
  35. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ. et al. 2003. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. PNAS 100:10314–19 [Google Scholar]
  36. Feder JL, Flaxman SM, Egan SP, Comeault AA, Nosil P. 2013. Geographic mode of speciation and genomic divergence. Annu. Rev. Ecol. Evol. Syst. 44:73–97 [Google Scholar]
  37. Feder JL, Gejji R, Powell TH, Nosil P. 2011. Adaptive chromosomal divergence driven by mixed geographic mode of evolution. Evolution 65:2157–70 [Google Scholar]
  38. Feder JL, Nosil P, Wacholder AC, Egan SP, Berlocher SH, Flaxman SM. 2014. Genome-wide congealing and rapid transitions across the speciation continuum during speciation with gene flow. J. Hered. 105:Suppl 1810–20 [Google Scholar]
  39. Feeny P. 1976. Plant apparency and chemical defense. Biochemical Interaction Between Plants and Insects 10 JW Wallace, RL Mansell 1–40 New York: Springer [Google Scholar]
  40. Felsenstein J. 1976. The theoretical population genetics of variable selection and migration. Annu. Rev. Genet. 10:253–80 [Google Scholar]
  41. Flaxman SM, Wacholder AC, Feder JL, Nosil P. 2014. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Mol. Ecol. 23:4074–88 [Google Scholar]
  42. Flint J, Mackay TF. 2009. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res 19:723–33 [Google Scholar]
  43. Flor H. 1956. The complementary genic systems in flax and flax rust. Adv. Genet. 8:29–54 [Google Scholar]
  44. Forbes AA, Feder JL. 2006. Divergent preferences of Rhagoletis pomonella host races for olfactory and visual fruit cues. Entomol. Exp. Appl. 119:121–27 [Google Scholar]
  45. Forister M, Dyer L, Singer M, Stireman J III, Lill J. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:981–91 [Google Scholar]
  46. Fraenkel GS. 1959. The raison d'etre of secondary plant substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129:1466–70 [Google Scholar]
  47. Franssen SU, Nolte V, Tobler R, Schlötterer C. 2015. Patterns of linkage disequilibrium and long range hitchhiking in evolving experimental Drosophila melanogaster populations. Mol. Biol. Evol. 32:495–509 [Google Scholar]
  48. Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33 [Google Scholar]
  49. Garrido E, Andraca-Gómez G, Fornoni J. 2012. Local adaptation: simultaneously considering herbivores and their host plants. New Phytol 193:445–53 [Google Scholar]
  50. Gilman RT, Nuismer SL, Jhwueng D. 2012. Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature 483:328–30 [Google Scholar]
  51. Gloss AD, Nelson Dittrich AC, Goldman-Huertas B, Whiteman NK. 2013. Maintenance of genetic diversity through plant–herbivore interactions. Curr. Opin. Plant Biol. 16:443–50 [Google Scholar]
  52. Gompert Z, Comeault AA, Farkas TE, Feder JL, Parchman TL. et al. 2014. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17:369–79 [Google Scholar]
  53. Gompert Z, Jahner JP, Scholl CF, Wilson JS, Lucas LK. et al. 2015. The evolution of novel host use is unlikely to be constrained by trade–offs or a lack of genetic variation. Mol. Ecol. 24:2777–93 [Google Scholar]
  54. Greischar MA, Koskella B. 2007. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10:418–34 [Google Scholar]
  55. Groen SC, Whiteman NK. 2016. Using Drosophila to study the evolution of herbivory and diet specialization. Curr. Opin. Insect Sci. 14:66–72 [Google Scholar]
  56. Hansen AK, Moran NA. 2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23:1473–96 [Google Scholar]
  57. Hawthorne DJ, Via S. 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–7 [Google Scholar]
  58. Hedrick PW. 2006. Genetic polymorphism in heterogeneous environments: the age of genomics. Annu. Rev. Ecol. Evol. Syst. 37:67–93 [Google Scholar]
  59. Consortium Heliconius Genome 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98 [Google Scholar]
  60. Hoang K, Matzkin LM, Bono JM. 2015. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations. Mol. Ecol. 24:5186–99 [Google Scholar]
  61. Houle D. 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45:630–48 [Google Scholar]
  62. Hsieh P, Veeramah KR, Lachance J, Tishkoff SA, Wall JD. et al. 2016. Whole-genome sequence analyses of Western Central African Pygmy hunter-gatherers reveal a complex demographic history and identify candidate genes under positive natural selection. Genome Res 26:279–90 [Google Scholar]
  63. Hunter MD, Ohgushi T, Price PW. 2012. Effects of Resource Distribution on Animal Plant Interactions San Diego: Academic [Google Scholar]
  64. Consortium International Aphid Genomics 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLOS Biol 8:e1000313 [Google Scholar]
  65. Janz N. 2011. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42:71–89 [Google Scholar]
  66. Janz N, Nylin S. 2008. The oscillation hypothesis of host-plant range and speciation. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects KJ Tilmon 203–15 Los Angeles: University of California Press [Google Scholar]
  67. Jaquiery J, Stoeckel S, Nouhaud P, Mieuzet L, Maheo F. et al. 2012. Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex. Mol. Ecol. 21:5251–64 [Google Scholar]
  68. Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF. et al. 2011. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477:203–6 [Google Scholar]
  69. Kaltz O, Shykoff JA. 1998. Local adaptation in host–parasite systems. Heredity 81:361–70 [Google Scholar]
  70. Karasov TL, Kniskern JM, Gao L, DeYoung BJ, Ding J. et al. 2014. The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 512:436–40 [Google Scholar]
  71. Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:1225–41 [Google Scholar]
  72. Kelly JK. 2006. Geographical variation in selection, from phenotypes to molecules. Am. Nat. 167:481–95 [Google Scholar]
  73. Kirkpatrick M, Barton N. 2006. Chromosomal inversions, local adaptation and speciation. Genetics 173:419–34 [Google Scholar]
  74. Kofler R, Schlötterer C. 2014. A practical guide for the design of evolve and resequencing studies. Mol. Biol. Evol. 31:474–83 [Google Scholar]
  75. Kunte K, Zhang W, Tenger-Trolander A, Palmer D, Martin A. et al. 2014. Doublesex is a mimicry supergene. Nature 507:229–32 [Google Scholar]
  76. Labandeira CC, Sepkoski JJ. 1993. Insect diversity in the fossil record. Science 261:310–15 [Google Scholar]
  77. Lande R. 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26:221–35 [Google Scholar]
  78. Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Amer. Nat. 87:331–33 [Google Scholar]
  79. Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G. 2015. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519:181–86 [Google Scholar]
  80. Li X, Fan D, Zhang W, Liu G, Zhang L. et al. 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6:8212 [Google Scholar]
  81. Lohse K, Clarke M, Ritchie MG, Etges WJ. 2015. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution 69:1178–90 [Google Scholar]
  82. Mackay TFC. 2001. Quantitative trait loci in Drosophila. Nat. Rev. Gen. 2:11–20 [Google Scholar]
  83. Mayhew PJ. 2007. Why are there so many insect species? Perspectives from fossils and phylogenies. Biol. Rev. Camb. Philos. Soc. 82:425–54 [Google Scholar]
  84. Michel AP, Sim S, Powell THQ, Taylor MS, Nosil P, Feder JL. 2010. Widespread genomic divergence during sympatric speciation. PNAS 107:9724–29 [Google Scholar]
  85. Mitter C, Farrell B, Wiegmann B. 1988. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification. Am. Nat. 132:107–28 [Google Scholar]
  86. Mopper S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11:235–38 [Google Scholar]
  87. Nosil P, Gompert Z, Farkas TE, Comeault AA, Feder JL. et al. 2012. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B 279:5058–65 [Google Scholar]
  88. Ohshima I, Watanabe K, Kawamura T. 2015. Distinct parasitoid communities associated with host races of the leaf-mining moth Acrocercops transecta on distantly related host plants (Juglandaceae and Ericaceae). J. Nat. Hist. 49:815–28 [Google Scholar]
  89. Pauchet Y, Heckel DG. 2013. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc. R. Soc. B 280:20131021 [Google Scholar]
  90. Peccoud J, Ollivier A, Plantegenest M, Simon JC. 2009a. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106:7495–500 [Google Scholar]
  91. Peccoud J, Simon J, McLaughlin HJ, Moran NA. 2009b. Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. PNAS 106:16315–20 [Google Scholar]
  92. Petschenka G, Agrawal AA. 2016. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14:17–24 [Google Scholar]
  93. Powell TH, Forbes AA, Hood GR, Feder JL. 2014. Ecological adaptation and reproductive isolation in sympatry: genetic and phenotypic evidence for native host races of Rhagoletis pomonella. Mol. Ecol. 23:688–704 [Google Scholar]
  94. Price PW. 1980. Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press [Google Scholar]
  95. Prout T, Savolainen O. 1996. Genotype-by-environment interaction is not sufficient to maintain variation: Levene and the leafhopper. Am. Nat. 148:930–36 [Google Scholar]
  96. Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA. 2011. Developmental trajectories of gene expression reveal regulatory candidates for diapause termination, a key life history transition in the apple maggot fly. Rhagoletis pomonella. J. Exp. Biol. 214:3948–60 [Google Scholar]
  97. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. 2015. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24:4348–70 [Google Scholar]
  98. Rockman M. 2012. The QTN program and the alleles that matter for evolution: All that's gold does not glitter. Evolution 66:1–17 [Google Scholar]
  99. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG. 2007. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 39:1461–68 [Google Scholar]
  100. Savolainen O, Lascoux M, Merilä J. 2013. Ecological genomics of local adaptation. Nat. Rev. Genet. 14:807–20 [Google Scholar]
  101. Scheirs J, Jordaens K, De Bruyn L. 2005. Have genetic trade-offs in host use been overlooked in arthropods. Evol. Ecol. 19:551–61 [Google Scholar]
  102. Schlötterer C, Kofler R, Versace E, Tobler R, Franssen SU. 2015. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114:431–40 [Google Scholar]
  103. Schuman MC, Baldwin IT. 2016. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 61:373–94 [Google Scholar]
  104. Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW. et al. 2014. Genomics and the origin of species. Nat. Rev. Genet. 15:176–92 [Google Scholar]
  105. Singer MS, Lichter-Marck IH, Farkas TE, Aaron E, Whitney KD, Mooney KA. 2014. Herbivore diet breadth mediates the cascading effects of carnivores in food webs. PNAS 111:9521–26 [Google Scholar]
  106. Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL. et al. 2014. Stick insect genomes reveal natural selection's role in parallel speciation. Science 344:738–42 [Google Scholar]
  107. Sousa V, Hey J. 2013. Understanding the origin of species with genome-scale data: modeling gene flow. Nat. Rev. Genet. 14:404–14 [Google Scholar]
  108. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–71 [Google Scholar]
  109. Terhorst J, Schlötterer C, Song YS. 2015. Multi-locus analysis of genomic time series data from experimental evolution. PLOS Genet 11:e1005069 [Google Scholar]
  110. Thaler JS, Humphrey PT, Whiteman NK. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–70 [Google Scholar]
  111. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press [Google Scholar]
  112. Turner TL. 2014. Fine-mapping natural alleles: quantitative complementation to the rescue. Mol. Ecol. 23:2337–82 [Google Scholar]
  113. Via S. 2012. Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philos. Trans. R. Soc. B 367:451–60 [Google Scholar]
  114. Via S, Conte G, Mason-Foley C, Mills K. 2012. Localizing FST outliers on a QTL map reveals evidence for large genomic regions of reduced gene exchange during speciation-with-gene-flow. Mol. Ecol. 21:5546–60 [Google Scholar]
  115. Wang IJ, Bradburd GS. 2014. Isolation by environment. Mol. Ecol. 23:5649–62 [Google Scholar]
  116. Whiteman NK, Gloss AD, Sackton TB, Groen SC, Humphrey PT. et al. 2012. Genes involved in the evolution of herbivory by a leaf-mining, drosophilid fly. Genome Biol. Evol. 4:900–16 [Google Scholar]
  117. Wiens JJ, Lapoint RT, Whiteman NK. 2015. Herbivory increases diversification across insect clades. Nat. Commun. 6:8370 [Google Scholar]
  118. Yassin A, Debat V, Bastide H, Gidaszewski N, David JR, Pool JE. 2016. Recurrent specialization on a toxic fruit in an island Drosophila population. PNAS 113:4771–76 [Google Scholar]
  119. Yeaman S. 2013. Genomic rearrangements and the evolution of clusters of locally adaptive loci. PNAS 110:1743–51 [Google Scholar]
  120. Yeaman S. 2015. Local adaptation by alleles of small effect. Am. Nat. 186:S74–89 [Google Scholar]
  121. Yeaman S, Otto SP. 2011. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65:2123–29 [Google Scholar]
  122. Yeaman S, Whitlock MC. 2011. The genetic architecture of adaptation under migration–selection balance. Evolution 65:1897–911 [Google Scholar]
  123. You M, Yue Z, He W, Yang X, Yang G. et al. 2013. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 45:220–25 [Google Scholar]
  124. Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF. et al. 2014. The genetics of monarch butterfly migration and warning colouration. Nature 514:317–21 [Google Scholar]
  125. Zhao C, Escalante LN, Chen H, Benatti TR, Qu J. et al. 2015. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25:613–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error