1932

Abstract

Biogeographic origins of plant lineages are often reflected in species functional traits, with consequences for community assembly, diversity, and ecosystem function. The climatic and environmental conditions in which species evolved have lasting influence (legacy effects) through phylogenetic conservatism of traits that underlie community assembly and drive ecosystem processes. Legacy effects that influence community assembly may have direct consequences for ecosystem function or may be linked, owing to lineage history, to traits that impact ecosystems. Evolutionary priority effects, driven by the order of colonization and lineage diversification, as well as migration barriers and historical environmental changes, have shaped the diversity and composition of regional floras and their ecosystem functions. We examine the likely consequences of biogeographic history for plant responses to global change and consider how understanding linkages between biogeographic origins, functional traits, and ecosystem consequences can aid the management and restoration of ecosystems globally in the face of rapid environmental change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032229
2016-11-01
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/47/1/annurev-ecolsys-121415-032229.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032229&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly DD. 2003. Community assembly, niche conservatism and adaptive evolution in changing environments. Int. J. Plant Sci. 164:S165–84 [Google Scholar]
  2. Ackerly DD. 2009. Evolution, origin and age of lineages in the Californian and Mediterranean floras. J. Biogeogr. 36:1221–33 [Google Scholar]
  3. Agrawal AA. 2007. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22:103–9 [Google Scholar]
  4. Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U. et al. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. PNAS 108:8379–84 [Google Scholar]
  5. Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 90:444–66 [Google Scholar]
  6. Axelrod D, Arroyo MTK, Raven PH. 1991. Historical development of temperate vegetation in the Americas. Rev. Chil. Hist. Nat. 64:413–46 [Google Scholar]
  7. Barak R, Hipp A, Cavender-Bares J, Pearse W, Hotchkiss S. et al. 2016. Taking the long view: integrating recorded, archeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 177:90–102 [Google Scholar]
  8. Becerra JX. 2005. Timing the origin and expansion of the Mexican tropical dry forest. PNAS 102:10919–23 [Google Scholar]
  9. Bond WJ, Scott AC. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol 188:1137–50 [Google Scholar]
  10. Bouchenak-Khelladi Y, Muasya AM, Linder HP. 2014. A revised evolutionary history of Poales: origins and diversification. Bot. J. Linn. Soc. 175:4–16 [Google Scholar]
  11. Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. Lond. B 276:1771–76 [Google Scholar]
  12. Braun EL. 1967. Deciduous Forests of Eastern North America New York: Hafner [Google Scholar]
  13. Broadhurst L, Lowe A, Coates D, Cunningham S, McDonald M. et al. 2008. Seed supply for broadscale restoration: maximizing evolutionary potential. Evol. Appl. 1:587–97 [Google Scholar]
  14. Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13:175–83 [Google Scholar]
  15. Cadotte MW, Dinnage R, Tilman D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93:S223–33 [Google Scholar]
  16. Cairney J. 2000. Evolution of mycorrhiza systems. Naturwissenschaften 87:467–75 [Google Scholar]
  17. Carlquist S. 1985. Vasicentric tracheids as a drought survival mechanism in the woody floria of southern California and similar regions. Aliso 11:37–68 [Google Scholar]
  18. Cavender-Bares J. 2005. Impacts of freezing on long-distance transport in woody plants. Vascular Transport in Plants NM Holbrook, M Zwieniecki 401–24 Burlington, MA: Elsevier [Google Scholar]
  19. Cavender-Bares J. 2016. Diversity, distribution and ecosystem services of the North American oaks. Int. Oaks. 27:37–48 [Google Scholar]
  20. Cavender-Bares J, Cavender N. 2011. Phylogenetic structure of plant communities provides guidelines for restoration. Restoration Ecology S Greipsson 119–29 Sudbury, MA: Jones & Bartlett Learning [Google Scholar]
  21. Cavender-Bares J, Gonzalez-Rodriguez A, Eaton DAR, Hipp AAL, Beulke A, Manos PS. 2015. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Mol. Ecol 24:3668–87 [Google Scholar]
  22. Cavender-Bares J, Kitajima K, Bazzaz FA. 2004. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol. Monogr. 74:635–62 [Google Scholar]
  23. Cavender-Bares J, Reich PB. 2012. Shocks to the system: community assembly of the oak savanna in a 40-year fire frequency experiment. Ecology 93:S52–69 [Google Scholar]
  24. Cavender-Bares J, Sack L, Savage J. 2007. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol 27:611–20 [Google Scholar]
  25. Chapin FS III. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–60 [Google Scholar]
  26. Chapin FS III, Oechel WC. 1983. Photosynthesis, respiration, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients. Ecology 64:743–51 [Google Scholar]
  27. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S. et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:752–55 [Google Scholar]
  28. Coley PD. 1983. Effects of plant growth rate and leaf lifetime on the amount and type of antiherbivore defense. Science 230:895–99 [Google Scholar]
  29. Collatz GJ, Berry JA, Clark JS. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–54 [Google Scholar]
  30. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T. et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  31. Cornelissen JHC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611–19 [Google Scholar]
  32. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT. et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11:1065–71 [Google Scholar]
  33. Cornwell WK, Westoby M, Falster DS, FitzJohn RG, O'Meara BC. et al. 2014. Functional distinctiveness of major plant lineages. J. Ecol. 102:345–56 [Google Scholar]
  34. Crepet WL. 1989. History and implications of the early North American fossil record of Fagaceae. Evolution, Systematics, and Fossil History of the Hamamelidae PR Crane, S Blackmore 45–66 Oxford, UK: Clarendon Press [Google Scholar]
  35. Crepet WL, Nixon KC. 1989. Earliest megafossil evidence of Fagaceae: phylogenetic and biogeographic implications. Am. J. Bot. 76:842–55 [Google Scholar]
  36. Crepet WL, Nixon KC, Gandolfo MA. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am. J. Bot. 91:1666–82 [Google Scholar]
  37. Crisp M, Arroyo M, Cook L, Gandolfo M, Jordan G. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754–56 [Google Scholar]
  38. Dani KGS, Jamie IM, Prentice IC, Atwell BJ. 2014. Evolution of isoprene emission capacity in plants. Trends Plant Sci 19:439–46 [Google Scholar]
  39. D'Antonio CM, Vitousek PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23:63–87 [Google Scholar]
  40. Davies TJ, Wolkovich EM, Kraft NJB, Salamin N, Allen JM. et al. 2013. Phylogenetic conservatism in plant phenology. J. Ecol. 101:1520–30 [Google Scholar]
  41. De-Nova JA, Medina R, Montero JC, Weeks A, Rosell JA. et al. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytol 193:276–87 [Google Scholar]
  42. Dick CW, Bermingham E, Lemes MR, Gribel R. 2007. Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Mol. Ecol. 16:3039–49 [Google Scholar]
  43. Dick CW, Lewis SL, Maslin M, Bermingham E. 2013. Neogene origins and implied warmth tolerance of Amazon tree species. Ecol. Evol. 3:162–69 [Google Scholar]
  44. Diekmann M, Falkengren-Grerup U. 2002. Prediction of species response to atmospheric nitrogen deposition by means of ecological measures and life history traits. J. Ecol. 90:108–20 [Google Scholar]
  45. Dijkstra FA, Wrage K, Hobbie SE, Reich PB. 2006. Tree patches show greater N losses but maintain higher soil N availability than grassland patches in a frequently burned oak savanna. Ecosystems 9:441–52 [Google Scholar]
  46. Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45:547–72 [Google Scholar]
  47. Edwards EJ, Ogburn RM. 2012. Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int. J. Plant Sci. 173:724–33 [Google Scholar]
  48. Edwards EJ, Osborne CP, Strömberg CAE, Smith SA. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  49. Ehleringer JR, Cerling TE, Helliker BR. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–99 [Google Scholar]
  50. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608 [Google Scholar]
  51. Epstein H, Lauenroth W, Burke I, Coffin D. 1997. Productivity patterns of C3 and C4 functional types in the US Great Plains. Ecology 78:722–31 [Google Scholar]
  52. Faith DP. 2015. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. B 370:2014011 [Google Scholar]
  53. Fargione J, Tilman D. 2005. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143:598–606 [Google Scholar]
  54. Fine PVA. 2015. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46:369–92 [Google Scholar]
  55. Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM. et al. 2006. The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–62 [Google Scholar]
  56. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. et al. 2011. Solutions for a cultivated planet. Nature 478:337–42 [Google Scholar]
  57. Forest F, Crandall KA, Chase MW, Faith DP. 2015. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. B 370:20140002 [Google Scholar]
  58. Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343–47 [Google Scholar]
  59. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW. et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226 [Google Scholar]
  60. Gerhart LM, Ward JK. 2010. Plant responses to low [CO2] of the past. New Phytol 188:674–95 [Google Scholar]
  61. Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C. 2011. A simple type of wood in two Early Devonian plants. Science 333:837 [Google Scholar]
  62. Ghannoum O. 2009. C4 photosynthesis and water stress. Ann. Bot. 103:4635–44 [Google Scholar]
  63. Godfrey RK. 1988. Trees, Shrubs, and Woody Vines of Northern Florida and Adjacent Georgia and Alabama Athens: Univ. Ga. Press [Google Scholar]
  64. Gould SJ. 1989. Wonderful Life: The Burgess Shale and the Nature of History New York: Norton [Google Scholar]
  65. Gould SJ, Vrba E. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15 [Google Scholar]
  66. Graham A. 1999. Late Cretaceous and Cenozoic History of North American Vegetation North of Mexico New York: Oxford Univ. Press [Google Scholar]
  67. Graham A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Am. J. Bot. 98:336–51 [Google Scholar]
  68. Harrison S, Damschen EI, Grace JB. 2010. Ecological contingency in the effects of climatic warming on forest herb communities. PNAS 107:19362–67 [Google Scholar]
  69. Hawkins BA, Rueda M, Rangel TF, Field R, Diniz-Filho J. 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41:23–38 [Google Scholar]
  70. Hedin LO, Brookshire ENJ, Menge DNL, Barron AR. 2009. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40:613–35 [Google Scholar]
  71. Helsen K, Ceulemans T, Stevens CJ, Honnay O. 2014. Increasing soil nutrient loads of European semi-natural grasslands strongly alter plant functional diversity independently of species loss. Ecosystems 17:169–81 [Google Scholar]
  72. Hernández-Hernández T, Brown JW, Schlumpberger BO, Eguiarte LE, Magallón S. 2014. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World succulent biome. New Phytol 202:1382–97 [Google Scholar]
  73. Higgs E, Falk DA, Guerrini A, Hall M, Harris J. et al. 2014. The changing role of history in restoration ecology. Front. Ecol. Environ. 12:499–506 [Google Scholar]
  74. Hipp AL, Eaton DAR, Cavender-Bares J, Fitzek E, Nipper R, Manos PS. 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. PLOS ONE 9:e93975 [Google Scholar]
  75. Hipp AL, Larkin DJ, Barak RS, Bowles ML, Cadotte MW. et al. 2015. Phylogeny in the service of ecological restoration. Am. J. Bot. 102:647–48 [Google Scholar]
  76. Hobbie SE. 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30:357–63 [Google Scholar]
  77. Hobbie SE, Reich P, Oleksyn J, Ogdahl M, Zytkowiak R. et al. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–97 [Google Scholar]
  78. Holbrook NM, Whitbeck JL, Mooney HA. 1995. Drought responses of neotropical dry forest trees. Seasonally Dry Tropical Forests SH Bullock, HA Mooney, E Medina 243–76 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  79. Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P. 2013. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol. Lett. 16:454–60 [Google Scholar]
  80. Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ. 2013. Terrestrial water fluxes dominated by transpiration. Nature 496:347–50 [Google Scholar]
  81. Javeline D, Hellmann J, McLachlan J, Sax D, Schwartz M, Cornejo RC. 2015. Expert opinion on extinction risk and climate change adaptation for biodiversity. Elem. Sci. Anth. 3:000057. doi: [Crossref] [Google Scholar]
  82. Jetz W, Cavender-Bares J, Pavlick R, Schimel D, Davis FW. et al. 2016. Monitoring plant functional diversity from space. Nat. Plants 2:16024. doi: [Crossref] [Google Scholar]
  83. Keeley JE, Rundel PW. 2003. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J. Plant Sci. 164:S55–77 [Google Scholar]
  84. Kent DV, Muttoni G. 2013. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt. Clim. Past 9:525–46 [Google Scholar]
  85. Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ. 2006. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168:E103–22 [Google Scholar]
  86. Kissing L, Powers J. 2010. Coarse woody debris stocks as a function of forest type and stand age in Costa Rican tropical dry forest: long-lasting legacies of previous land use. J. Trop. Ecol. 26:467–71 [Google Scholar]
  87. Kitayama K, Mueller-Dombois D. 1995. Biological invasion on an oceanic island mountain: Do alien plant species have wider ecological ranges than native species. J. Veg. Sci. 6:667–74 [Google Scholar]
  88. Klemens JA, Deacon NJ, Cavender-Bares J. 2011. Pasture recolonization by a tropical oak and the regeneration ecology of seasonally dry tropical forests. Seasonally Dry Tropical Forests R Dirzo, HS Young, HA Mooney, G Ceballos 221–37 Washington, DC: Island Press/Center for Resource Economics [Google Scholar]
  89. Lambers H, Raven JA, Shaver GR, Smith SE. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23:95–103 [Google Scholar]
  90. Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67:325–33 [Google Scholar]
  91. Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16:545–56 [Google Scholar]
  92. Lechowicz MJ. 1984. Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. Am. Nat. 124:821–42 [Google Scholar]
  93. Linder HP, Hardy CR. 2004. Evolution of the species-rich Cape flora. Philos. Trans. R. Soc. B 359:1623–32 [Google Scholar]
  94. Mack MC, D'Antonio CM, Ley RE. 2001. Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of C4 grasses in Hawaii. Ecol. Appl. 11:1323–35 [Google Scholar]
  95. Mack RN. 2003. Phylogenetic constraint, absent life forms and pre-adapted alien plants: a prescription for biological invasions. Int. J. Plant Sci. 164:S185–96 [Google Scholar]
  96. Madeira MAV, Andreaux F, Portal JM. 1989. Changes in soil organic matter characteristics due to reforestation with Eucalyptus globulus, in Portugal. Sci. Total Environ. 81:481–88 [Google Scholar]
  97. Maherali H, Pockman WT, Jackson RB. 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–99 [Google Scholar]
  98. Mann CC. 2005. 1491: New Revelations of the Americas Before Columbus New York: Knopf [Google Scholar]
  99. Manos PS, Meireles JE. 2015. Biogeographic analysis of the woody plants of the Southern Appalachians: implications for the origins of a regional flora. Am. J. Bot. 102:780–804 [Google Scholar]
  100. McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–401 [Google Scholar]
  101. McInerney FA, Wing SL. 2011. The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516 [Google Scholar]
  102. Mithöfer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63:431–50 [Google Scholar]
  103. Morueta-Holme N, Enquist BJ, McGill BJ, Boyle B, Jørgensen PM. et al. 2013. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol. Lett. 16:1446–54 [Google Scholar]
  104. Muzika R, Gladden J, Haddock J. 1987. Structural and functional aspects of succession in southeastern floodplain forests following a major disturbance. Am. Midl. Nat.1–9 [Google Scholar]
  105. Neumann G, Martinoia E. 2002. Cluster roots—an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–67 [Google Scholar]
  106. Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C. 2011. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B. 278:3644–53 [Google Scholar]
  107. Norris MD, Avis PG, Reich PB, Hobbie SE. 2013. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367:347–61 [Google Scholar]
  108. Ordonez A, Svenning JC. 2015. Geographic patterns in functional diversity deficits are linked to glacial-interglacial climate stability and accessibility. Glob. Ecol. Biogeogr. 24:826–37 [Google Scholar]
  109. Ostertag R, Warman L, Cordell S, Vitousek PM. 2015. Using plant functional traits to restore Hawaiian rainforest. J. Appl. Ecol. 52:805–9 [Google Scholar]
  110. Pau S, Edwards EJ, Still CJ. 2013. Improving our understanding of environmental controls on the distribution of C3 and C4 grasses. Glob. Change Biol. 19:184–96 [Google Scholar]
  111. Pau S, Wolkovich EM, Cook BI, Davies TJ, Kraft NJB. et al. 2011. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17:3633–43 [Google Scholar]
  112. Pennington RT, Lavin M, Oliveira-Filho A. 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40:437–57 [Google Scholar]
  113. Philippe M, Gomez B, Girard V, Coiffard C, Daviero-Gomez V. et al. 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld 17:142–52 [Google Scholar]
  114. Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51 [Google Scholar]
  115. Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH. 2005. Torus-Margo pits help conifers compete with angiosperms. Science 310:1924 [Google Scholar]
  116. Pittermann J, Stuart SA, Dawson TE, Moreau A. 2012. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. PNAS 109:9647–52 [Google Scholar]
  117. Polgar CA, Primack RB. 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–41 [Google Scholar]
  118. Prothero DR. 2009. Tertiary history. Earth System: History and Natural Variability II V Cilek Oxford, UK: Encyclopedia of Life Support Systems (EOLSS) Publications [Google Scholar]
  119. Raven P, Axelrod D. 1978. Origin and Relationships of the California Flora Berkeley: Univ. Calif. Pub. Bot. [Google Scholar]
  120. Read DJ. 1991. Mycorrhizas in ecosystems. Experientia 47:376–91 [Google Scholar]
  121. Reich PB, Hobbie SE, Lee TD. 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7:920–24 [Google Scholar]
  122. Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001–6 [Google Scholar]
  123. Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW. et al. 2009. Multidimensional evaluation of managed relocation. PNAS 106:9721–24 [Google Scholar]
  124. Ricklefs RE, Latham RE, Qian H. 1999. Global patterns of tree species richness in moist forests: distinguishing ecological influences and historical contingency. Oikos 86:369–73 [Google Scholar]
  125. Sack L, Holbrook NM. 2006. Leaf hydraulics. Annu. Rev. Plant Biol. 57:361–81 [Google Scholar]
  126. Sage RF. 2002. Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J. Exp. Bot. 53:609–20 [Google Scholar]
  127. Sage RF, Christin P-A, Edwards EJ. 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62:3155–69 [Google Scholar]
  128. Sakai A. 1970. Freezing resistance in willows from different climates. Ecology 51:485–91 [Google Scholar]
  129. Salvo G, Ho SYW, Rosenbaum G, Ree R, Conti E. 2010. Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Syst. Biol 59:705–22 [Google Scholar]
  130. Samish RM. 1954. Dormancy in woody plants. Annu. Rev. Plant Physiol. 5:183–204 [Google Scholar]
  131. Savage JA, Cavender-Bares J. 2013. Phenological cues drive an apparent trade-off between freezing tolerance and growth in the family Salicaceae. Ecology 94:1708–17 [Google Scholar]
  132. Sedio BE, Paul JR, Taylor CM, Dick CW. 2013. Fine-scale niche structure of Neotropical forests reflects a legacy of the Great American Biotic Interchange. Nat. Commun. 4:2317 [Google Scholar]
  133. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H. 2006. Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–99 [Google Scholar]
  134. Sharkey TD, Wiberley AE, Donohue AR. 2008. Isoprene emission from plants: why and how. Ann. Bot. 101:5–18 [Google Scholar]
  135. Skene KR. 2000. Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann. Bot. 85:901–8 [Google Scholar]
  136. Smith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. PNAS 107:5897–902 [Google Scholar]
  137. Stevens CJ, Lind EM, Hautier Y, Harpole WS, Borer ET. et al. 2015. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96:1459–65 [Google Scholar]
  138. Still CJ, Pau S, Edwards EJ. 2014. Land surface skin temperature captures thermal environments of C3 and C4 grasses. Glob. Ecol. Biogeogr. 23:286–96 [Google Scholar]
  139. Stock WD, Verboom GA. 2012. Phylogenetic ecology of foliar N and P concentrations and N:P ratios across Mediterranean-type ecosystems. Glob. Ecol. Biogeogr. 21:1147–56 [Google Scholar]
  140. Stromberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA. 2013. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat. Commun. 4:1478 [Google Scholar]
  141. Tiffney B, Manchester S. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162:SupplS3–17 [Google Scholar]
  142. Van Stan JT, Stubbins A, Bittar T, Reichard JS, Wright KA, Jenkins RB. 2015. Tillandsia usneoides (L.) L.(Spanish moss) water storage and leachate characteristics from two maritime oak forest settings. Ecohydrology 8:988–1004 [Google Scholar]
  143. Verboom GA, Linder HP, Forest F, Hoffmann V, Bergh NG, Cowling RM. 2014. Cenozoic assembly of the Greater Cape flora. Ecology and Evolution of Fynbos: Understanding Megadiversity N Allsopp, JF Colville, GA Verboom Oxford, UK: Oxford Univ. Press [Google Scholar]
  144. Vitousek PM, Menge DN, Reed SC, Cleveland CC. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B 368:20130119 [Google Scholar]
  145. Wang B, Qiu Y-L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363 [Google Scholar]
  146. Wang D, Heckathorn SA, Wang X, Philpott SM. 2011. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13 [Google Scholar]
  147. Ward JK, Harris JM, Cerling TE, Wiedenhoeft A, Lott MJ. et al. 2005. Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. PNAS 102:690–94 [Google Scholar]
  148. Wedin DA, Pastor J. 1993. Nitrogen mineralization dynamics in grass monocultures. Oecologia 96:186–92 [Google Scholar]
  149. Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET. 2014. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5:4087 [Google Scholar]
  150. Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:639–44 [Google Scholar]
  151. Williams J, Woinarski J. 1997. Eucalypt Ecology: Individuals to Ecosystems Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  152. Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC. 2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. PNAS 105:17029–33 [Google Scholar]
  153. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z. et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–27 [Google Scholar]
  154. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93 [Google Scholar]
  155. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA. et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032229
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032229
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error