The surface of plant leaves, or the phyllosphere, harbors hyperdiverse microbial communities. These communities mediate foliar functional traits, influence plant fitness, and contribute to several ecosystem functions, including nutrient and water cycling. In this review, we briefly recall the history of phyllosphere research and present the features of this microbial habitat. Adopting a recent framework for evolutionary community ecology, we then review evidence for each of the four major processes shaping phyllosphere microbial communities: dispersal, evolutionary diversification, selection, and drift. We show how these processes are influenced by the host plant, the surrounding atmospheric conditions, and microbial interactions. Rapidly growing evidence indicates that phyllosphere microbial communities are altered by global change, with potential cascading effects on plant performance, plant evolution, and ecosystem functioning. We propose future avenues for phyllosphere research aimed at improving plant adaptation and ecosystem resilience to environmental changes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W. 2006. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57:154025–32 [Google Scholar]
  2. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T. et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol. 14:e1002352 [Google Scholar]
  3. Álvarez-Loayza P, White JF, Torres MS, Balslev H, Kristiansen T. et al. 2011. Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLOS ONE 6:1e16386 [Google Scholar]
  4. Bailey BN, Stoll R, Pardyjak ER, Mahaffee WF. 2014. Effect of vegetative canopy architecture on vertical transport of massless particles. Atmos. Environ. 95:480–89 [Google Scholar]
  5. Bálint M, Bartha L, O'Hara RB, Olson MS, Otte J. et al. 2015. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol. Ecol. 24:1235–48 [Google Scholar]
  6. Bálint M, Tiffin P, Hallström B, O'Hara RB, Olson MS. et al. 2013. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLOS ONE 8:1e53987 [Google Scholar]
  7. Balint-Kurti P, Simmons SJ, Blum JE, Ballaré CL, Stapleton AE. 2010. Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. Mol. Plant-Microbe Interact. 23:4473–84 [Google Scholar]
  8. Bärlocher F. 2016. Aquatic hyphomycetes in a changing environment. Fungal Ecol 19:14–26 [Google Scholar]
  9. Barret M, Briand M, Bonneau S, Préveaux A, Valière S. et al. 2015. Emergence shapes the structure of the seed-microbiota. Appl. Environ. Microbiol. 81:41257–66 [Google Scholar]
  10. Bernard F, Sache I, Suffert F, Chelle M. 2013. The development of a foliar fungal pathogen does react to leaf temperature. ! New Phytol 198:232–40 [Google Scholar]
  11. Bertelsen JR, De Neergaard E, Smedegaard-Petersen V. 2001. Fungicidal effects of azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat. Plant Pathol. 50:190–205 [Google Scholar]
  12. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLOS Genet. 10:4e1004283 [Google Scholar]
  13. Bodenhausen N, Horton MW, Bergelson J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLOS ONE 8:2e56329 [Google Scholar]
  14. Brighigna L, Gori A, Gonnelli S, Favilli F. 2000. The influence of air pollution on the phyllosphere microflora composition of Tillandsia leaves (Bromeliaceae). Rev. Biol. Trop. 48:511–17 [Google Scholar]
  15. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–38 [Google Scholar]
  16. Burch AY, Zeisler V, Yokota K, Schreiber L, Lindow SE. 2014. The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ. Microbiol. 16:72086–98 [Google Scholar]
  17. Burkhardt J, Hunsche M. 2013. “Breath figures” on leaf surfaces-formation and effects of microscopic leaf wetness. Front. Plant Sci. 4:422 [Google Scholar]
  18. Chauvet E, Cornut J, Sridhar KR, Selosse M-A, Bärlocher F. 2016. Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol. 19:112–27 [Google Scholar]
  19. Chelle M. 2005. Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?. New Phytol. 166:781–90 [Google Scholar]
  20. Coince A, Cordier T, Lengellé J, Defossez E, Vacher C. et al. 2014. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLOS ONE 9:6e100668 [Google Scholar]
  21. Compant S, van der Heijden MGA, Sessitsch A. 2010. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73:2197–214 [Google Scholar]
  22. Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. 2015. Seasonal community succession of the phyllosphere microbiome. Mol. Plant-Microbe Interact. 28:3274–85 [Google Scholar]
  23. Copolovici L, Väärtnõu F, Estrada MP, Niinemets Ü. 2015. Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Tree Physiol. 34:121399–410 [Google Scholar]
  24. Cordier T, Robin C, Capdevielle X, Desprez-Loustau M-L, Vacher C. 2012a. Spatial variability of phyllosphere fungal assemblages: Genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol. 5:509–20 [Google Scholar]
  25. Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau M-L, Vacher C. 2012b. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol. 196:2510–19 [Google Scholar]
  26. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B. et al. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. PNAS 106:3816428–33 [Google Scholar]
  27. Des Marais DL, Hernandez KM, Juenger TE. 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu. Rev. Ecol. Evol. Syst. 44:5–29 [Google Scholar]
  28. di Menna ME. 1959. Yeasts from the leaves of pasture plants. N.Z. J. Agric. Res. 2:2394–405 [Google Scholar]
  29. Doan HK, Leveau JHJ. 2015. Artificial surfaces in phyllosphere microbiology. Phytopathology 105:81036–42 [Google Scholar]
  30. Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10:8538–50An authoritative overview of microbial interaction networks. [Google Scholar]
  31. Fiala V, Glad C, Martin M, Jolivet E, Derridj S. 1990. Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol. 115:609–15 [Google Scholar]
  32. Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM. et al. 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:4797–804 [Google Scholar]
  33. Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE. et al. 2012. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert. Appl. Environ. Microbiol. 78:176187–93 [Google Scholar]
  34. Freiberg E. 1998. Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 17:9–18 [Google Scholar]
  35. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. 2011. Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst. 42:23–46One of the most exhaustive reviews on the influence of microorganisms on plant functional traits. [Google Scholar]
  36. Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J. 2:561–70 [Google Scholar]
  37. Galbally IE, Kirstine W. 2002. The production of methanol by flowering plants and the global cycle of methanol. J. Atmos. Chem. 43:195–229 [Google Scholar]
  38. Galès A, Latrille E, Wéry N, Steyer J-P, Godon J-J. 2014. Needles of Pinus halepensis as biomonitors of bioaerosol emissions. PLOS ONE 9:11e112182 [Google Scholar]
  39. Glawe DA. 2008. The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 46:27–51 [Google Scholar]
  40. Goatley JL, Lewis RW. 1966. Composition of guttation fluid from rye, wheat, and barley seedlings. Plant Physiol. 41:373–75 [Google Scholar]
  41. Hacquard S, Schadt CW. 2015. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol. 205:41424–30 [Google Scholar]
  42. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10:7497–506 [Google Scholar]
  43. Helander ML, Ranta H, Neuvonen S. 1993. Responses of phyllosphere microfungi to simulated sulphuric and nitric acid deposition. Mycol. Res. 97:5533–37 [Google Scholar]
  44. Hirano SS, Upper CD. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:3624–53 [Google Scholar]
  45. Hislop EC, Cox TW. 1969. Effects of captan on the non-parasitic microflora of apple leaves. Trans. Br. Mycol. Soc. 52:2223–35 [Google Scholar]
  46. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD. et al. 2014. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5:5320The first thorough examination of plant loci shaping phyllosphere microbial communities. [Google Scholar]
  47. Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD. 2010. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl. Environ. Microbiol. 76:248117–25 [Google Scholar]
  48. Hunter PJ, Pink DAC, Bending GD. 2015. Cultivar-level genotype differences influence diversity and composition of lettuce (Lactuca sp.) phyllosphere fungal communities. Fungal Ecol 17:183–86 [Google Scholar]
  49. Iguchi H, Yurimoto H, Sakai Y. 2015. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3:137–51 [Google Scholar]
  50. Inácio J, Ludwig W, Spencer-Martins I, Fonseca A. 2010. Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol. Ecol. 71:161–72 [Google Scholar]
  51. Innerebner G, Knief C, Vorholt JA. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77:103202–10 [Google Scholar]
  52. Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C. 2016. Deciphering the pathobiome: intra- and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microb. Ecol. In press. doi: 10.1007/s00248-016-0777-x
  53. Jochner S, Markevych I, Beck I, Traidl-hoffmann C, Heinrich J, Menzel A. 2015. The effects of short- and long-term air pollutants on plant phenology and leaf characteristics. Environ. Pollut. 206:382–89 [Google Scholar]
  54. Jones AM, Harrison RM. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci. Total Environ. 326:151–80 [Google Scholar]
  55. Jones K. 1970. Nitrogen fixation in the phyllosphere of the Douglas Fir, Pseudotsuga douglasii. Ann. Bot. 34:239–44 [Google Scholar]
  56. Jumpponen A, Jones KL. 2009. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol. 184:2438–48 [Google Scholar]
  57. Jumpponen A, Jones KL. 2010. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol. 186:2496–513 [Google Scholar]
  58. Junker RR, Tholl D. 2013. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39:7810–25 [Google Scholar]
  59. Kembel SW, Connor TKO, Arnold HK, Hubbell SP, Wright SJ. 2014. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. PNAS 111:13715–20 [Google Scholar]
  60. Kembel SW, Mueller RC. 2014. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:4303–11 [Google Scholar]
  61. Khanna KK. 1986. Phyllosphere microflora of certain plants in relation to air pollution. Environ. Pollut. Ser. A 42:191–200 [Google Scholar]
  62. Kim M, Singh D, Lai-hoe A, Chun J, Adams JM. 2012. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63:674–81 [Google Scholar]
  63. Kinkel LL. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35:327–47 [Google Scholar]
  64. Kinkel LL, Andrews JH, Berbee FM, Nordheim EV. 1987. Leaves as islands for microbes. Oecologia 71:405–8 [Google Scholar]
  65. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G. et al. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6:1378–90 [Google Scholar]
  66. Koonin EV, Makarova KS, Aravind L. 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55:709–42 [Google Scholar]
  67. Koskella B. 2013. Phage-mediated selection on microbiota of a long-lived host. Curr. Biol. 23:131256–60 [Google Scholar]
  68. Koskella B, Vos M. 2015. Adaptation in natural microbial populations. Annu. Rev. Ecol. Evol. Syst. 46:503–22 [Google Scholar]
  69. Lambais MR, Lucheta AR, Crowley DE. 2014. Bacterial community assemblages associated with the phyllosphere, dermosphere, and rhizosphere of tree species of the Atlantic forest are host taxon dependent. Microb. Ecol. 68:3567–74 [Google Scholar]
  70. Last FT. 1955. Seasonal incidence of Sporobolomyces on cereal leaves. Trans. Br. Mycol. Soc. 38:3221–39This article was the first to use the term phyllosphere. [Google Scholar]
  71. Last FT, Deighton FC. 1965. The non-parasitic microflora on the surfaces of living leaves. Trans. Br. Mycol. Soc. 48:183–99 [Google Scholar]
  72. Leben C. 1965. Epiphytic microorganisms in relation to plant disease. Annu. Rev. Phytopathol. 3:209–30 [Google Scholar]
  73. Leff JW, Del Tredici P, Friedman WE, Fierer N. 2015. Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ. Microbiol. 17:72352–61 [Google Scholar]
  74. Leuzinger S, Körner C. 2007. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. For. Meteorol. 146:29–37 [Google Scholar]
  75. Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:41875–83 [Google Scholar]
  76. Loreto F, Schnitzler J-P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15:154–66 [Google Scholar]
  77. Magan N, Baxter ES. 1996. Effect of increased CO2 concentration and temperature on the phyllosphere mycoflora of winter wheat flag leaves during ripening. Ann. Appl. Biol. 129:189–95 [Google Scholar]
  78. Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL. 2014. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5:1e00682–13The first experimental study indicating that stochastic processes, including drift and colonization history, shape phyllosphere microbial communities. [Google Scholar]
  79. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M. et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:6614–29 [Google Scholar]
  80. Mason CJ, Pfammatter JA, Holeski LM, Raffa KF. 2015. Foliar bacterial communities of trembling aspen in a common garden. Can. J. Microbiol. 61:143–49 [Google Scholar]
  81. Melotto M, Underwood W, He SY. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46:101–22 [Google Scholar]
  82. Menkis A, Marčiulynas A, Gedminas A, Lynikienė J, Povilaitienė A. 2015. High-throughput sequencing reveals drastic changes in fungal communities in the phyllosphere of Norway spruce (Picea abies) following invasion of the spruce bud scale (Physokermes piceae). Microb. Ecol. 70:904–11 [Google Scholar]
  83. Meyer KM, Leveau JHJ. 2012. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:3621–29 [Google Scholar]
  84. Morris CE. 2002. Phyllosphere. eLS. doi: 10.1038/npg.els.0000400 One of the most comprehensive overviews of the phyllosphere.
  85. Morris CE, Conen F, Huffman JA, Phillips V, Pöschl U, Sands DC. 2014a. Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob. Change Biol. 20:341–51 [Google Scholar]
  86. Morris CE, Leyronas C, Nicot PC. 2014b. Movement of bioaerosols in the atmosphere and the consequences for climate and microbial evolution. Aerosol Science: Technology and Applications I Colbeck, M Lazaridis 393–416 Chicester, UK: Wiley [Google Scholar]
  87. Morris CE, Monteil CL, Berge O. 2013. The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu. Rev. Phytopathol. 51:85–104 [Google Scholar]
  88. Moulas C, Petsoulas C, Rousidou K, Perruchon C, Karas P, Karpouzas DG. 2013. Effects of systemic pesticides imidacloprid and metalaxyl on the phyllosphere of pepper plants. Biomed. Res. Int. 2013:969750 [Google Scholar]
  89. Mushegian AA, Ebert D. 2016. Rethinking “mutualism” in diverse host-symbiont communities. BioEssays 1:100–8 [Google Scholar]
  90. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A. 2014. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 97:30–39 [Google Scholar]
  91. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM. et al. 2013. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77:3342–56This article refined the framework of Vellend (2010) for application to microbial communities. [Google Scholar]
  92. Osono T. 2006. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can. J. Microbiol. 52:8701–16 [Google Scholar]
  93. Osono T. 2014. Diversity and ecology of endophytic and epiphytic fungi of tree leaves in Japan: a review. Advances in Endophytic Research VC Verma, AC Gange 3–26 New Delhi: Springer India [Google Scholar]
  94. Ottesen AR, González Peña A, White JR, Pettengill JB, Li C. et al. 2013. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol. 13:114 [Google Scholar]
  95. Ottesen AR, Gorham S, Pettengill JB, Rideout S, Evans P, Brown E. 2015. The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes. J. Sci. Food Agric. 95:1116–25 [Google Scholar]
  96. Peñuelas J, Rico L, Ogaya R, Jump AS, Terradas J. 2012. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14:4565–75 [Google Scholar]
  97. Peñuelas J, Terradas J. 2014. The foliar microbiome. Trends Plant Sci. 19:5278–80 [Google Scholar]
  98. Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M. et al. 2014. Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl. Environ. Microbiol. 80:123585–96 [Google Scholar]
  99. Pincebourde S, Woods HA. 2012. Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26:844–53 [Google Scholar]
  100. Porras-Alfaro A, Bayman P. 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49:291–315 [Google Scholar]
  101. Rashidi F, Jalili A, Kafaki SB, Sagheb-Talebi K, Hodgson J. 2012. Anatomical responses of leaves of Black Locust (Robinia pseudoacacia L.) to urban pollutant gases and climatic factors. Trees 26:363–75 [Google Scholar]
  102. Rastogi G, Coaker GL, Leveau JHJ. 2013. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348:11–10 [Google Scholar]
  103. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12:112885–93 [Google Scholar]
  104. Redford AJ, Fierer N. 2009. Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb. Ecol. 58:1189–98 [Google Scholar]
  105. Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. 2012. Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie van Leeuwenhoek 101:551–60 [Google Scholar]
  106. Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. 2013. Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLOS ONE 8:11e78613 [Google Scholar]
  107. Remus-Emsermann MNP, Tecon R, Kowalchuk GA, Leveau JHJ. 2012. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 6:4756–65 [Google Scholar]
  108. Ren G, Zhu C, Alam MS, Tokida T, Sakai H. et al. 2015. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392:127–44 [Google Scholar]
  109. Rennie EA, Turgeon R. 2009. A comprehensive picture of phloem loading strategies. PNAS 106:14162–67 [Google Scholar]
  110. Rico L, Ogaya R, Terradas J, Peñuelas J. 2014. Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biol. 16:3586–93 [Google Scholar]
  111. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L'Haridon F. 2016. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol. 210:1033–43 [Google Scholar]
  112. Rodriguez RJ, White JF Jr., Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182:2314–30 [Google Scholar]
  113. Ruinen J. 1956. Occurrence of Beijerinckia species in the “Phyllosphere.”. Nature 177:220–21 [Google Scholar]
  114. Ruinen J. 1961. The phyllosphere. I. An ecologically neglected milieu. Plant Soil 15:281–109 [Google Scholar]
  115. Ruinen J. 1963. The phyllosphere. II. Yeasts from the phyllosphere of tropical foliage. Antonie van Leeuwenhoek 29:425–38 [Google Scholar]
  116. Ruinen J. 1965. The phyllosphere. III. Nitrogen fixation in the phyllosphere. Plant Soil 22:3375–94 [Google Scholar]
  117. Runion GB, Curl EA, Rogers H, Backman P, Rodriguez-Kábana R, Helms B. 1994. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric. For. Meteorol. 70:93117–30 [Google Scholar]
  118. Sandhu A, Halverson LJ, Beattie GA. 2007. Bacterial degradation of airborne phenol in the phyllosphere. Environ. Microbiol. 9:383–92 [Google Scholar]
  119. Sapkota R, Knorr K, Jørgensen LN, O'Hanlon KA, Nicolaisen M. 2015. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207:41134–44 [Google Scholar]
  120. Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, Kroppenstedt RM. 2005. Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol. 166:589–94 [Google Scholar]
  121. Setati ME, Jacobson D, Andong U-C, Bauer F. 2012. The vineyard yeast microbiome, a mixed model microbial map. PLOS ONE 7:12e52609 [Google Scholar]
  122. Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:1–26 [Google Scholar]
  123. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA. et al. 2013. Impacts of biological invasions: What's what and the way forward. Trends Ecol. Evol. 28:158–66 [Google Scholar]
  124. Singh S. 2014. Guttation: quantification, microbiology and implications for phytopathology. Progress in Botany 75 U Lüttge, W Beyschlag, J Cushman 187–214 London: Springer [Google Scholar]
  125. Soanes D, Richards TA. 2014. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52:583–614 [Google Scholar]
  126. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM. et al. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.”. PNAS 103:3212115–20 [Google Scholar]
  127. Stokes VJ, Morecroft MD, Morison JIL. 2006. Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy. Agric. For. Meteorol. 139:40–54 [Google Scholar]
  128. Torres MA. 2010. ROS in biotic interactions. Physiol. Plant. 138:414–29 [Google Scholar]
  129. Tukey HB Jr. 1970. The leaching of substances from plants. Annu. Rev. Plant. Physiol. 21:305–24 [Google Scholar]
  130. Unterseher M, Jumpponen A, Opik M, Tedersoo L, Moora M. et al. 2011. Species abundance distributions and richness estimations in fungal metagenomics—lessons learned from community ecology. Mol. Ecol. 20:2275–85 [Google Scholar]
  131. Unterseher M, Peršoh D, Schnittler M. 2013. Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Divers 60:143–54 [Google Scholar]
  132. Vacher C, Tamaddoni-Nezhad A, Kamenova S, Peyrard N, Moalic Y. et al. 2016. Learning ecological network from NGS data. Adv. Ecol. Res. 54:1–39 [Google Scholar]
  133. Van Der Wal A, Leveau JHJ. 2011. Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria. Environ. Microbiol. 13:3792–97 [Google Scholar]
  134. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206:1196–206 [Google Scholar]
  135. Vellend M. 2010. Conceptual synthesis in community ecology. Q. Rev. Biol. 85:2183–206This article provided a novel framework for community ecology articulated around four processes: dispersal, speciation, selection, and drift. [Google Scholar]
  136. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH. et al. 2012. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27:4244–52 [Google Scholar]
  137. Vorholt JA. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10:12828–40An authoritative overview of microbial adaptations to the phyllosphere environment. [Google Scholar]
  138. Voříšková J, Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:3477–86 [Google Scholar]
  139. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK. et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:510–23 [Google Scholar]
  140. Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I. 2012. Modelling the effect of size on the aerial dispersal of microorganisms. J. Biogeogr. 39:89–97 [Google Scholar]
  141. Yadav RKP, Karamanoli K, Vokou D. 2005. Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microb. Ecol. 50:2185–96 [Google Scholar]
  142. Yang C, Crowley DE, Borneman J, Keen NT. 2001. Microbial phyllosphere populations are more complex than previously realized. PNAS 98:73889–94 [Google Scholar]
  143. Yashiro E, McManus PS. 2012. Effect of streptomycin treatment on bacterial community structure in the apple phyllosphere. PLOS ONE 7:5e37131 [Google Scholar]
  144. Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiol. 163:5–20 [Google Scholar]
  145. Zhang B, Bai Z, Hoefel D, Tang L, Wang X. et al. 2009. The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci. Total Environ. 407:61915–22 [Google Scholar]
  146. Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32:5723–35Reference article for the hologenome theory of evolution. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error