1932

Abstract

The process of adaptive radiation—the proliferation of species from a single ancestor and diversification into many ecologically different forms—has been of great interest to evolutionary biologists since Darwin. Since the middle of the last century, ecological opportunity has been invoked as a potential key to understanding when and how adaptive radiation occurs. Interest in the topic of ecological opportunity has accelerated as research on adaptive radiation has experienced a resurgence, fueled in part by advances in phylogenetic approaches to studying evolutionary diversification. Nonetheless, what the term actually means, much less how it mechanistically leads to adaptive diversification, is currently debated; whether the term has any predictive value or is a heuristic useful only for post hoc explanation also remains unclear. Recent recognition that evolutionary change can occur rapidly and on a timescale commensurate with ecological processes suggests that it is time to synthesize ecological and evolutionary approaches to the study of community assembly and evolutionary diversification.

[Erratum, Closure]

An erratum has been published for this article:
Ecological Opportunity and Adaptive Radiation
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032254
2016-11-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/47/1/annurev-ecolsys-121415-032254.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032254&mimeType=html&fmt=ahah

Literature Cited

  1. Adamowicz SJ, Purvis A, Wills MA. 2008. Increasing morphological complexity in multiple parallel lineages of the Crustacea. PNAS 105:124786–91 [Google Scholar]
  2. Agrawal AA, Fishbein M, Haltschke R, Hastings AP, Rabosky DL, Rasmann S. 2009. Evidence for adaptive radiation from a phylogenetic study of plant defenses. PNAS 106:4318067–72 [Google Scholar]
  3. Alfaro ME, Santini F, Brock CD. 2007. Do reefs drive diversification in marine teleosts? Evidence from the pufferfishes and their allies (order Tetraodontiformes). Evolution 61:92104–26 [Google Scholar]
  4. Allen GR. 2004. Toxotes kimberleyensis, a new species of archerfish (Pisces: Toxotidae) from fresh waters of Western Australia. Rec. Aust. Mus. 56:225–30 [Google Scholar]
  5. Allen WL, Baddeley R, Scott-Samuel NE, Cuthill IC. 2013. The evolution and function of pattern diversity in snakes. Behav. Ecol. 24:51237–50 [Google Scholar]
  6. Almen MS, Lamichhaney S, Berglund J, Grant BR, Grant PR. et al. 2015. Adaptive radiation of Darwin's finches revisited using whole genome sequencing. BioEssays 38:114–20 [Google Scholar]
  7. Alroy J. 1999. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48:1107–18 [Google Scholar]
  8. Alroy J. 2015. Current extinction rates of reptiles and amphibians. PNAS 112:4213003–8 [Google Scholar]
  9. Anacker BL, Strauss SY. 2014. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B 281:20132980 [Google Scholar]
  10. Anderson CM, Langerhans RB. 2015. Origins of female genital diversity: Predation risk and lock-and-key explain rapid divergence during an adaptive radiation. Evolution 69:92452–67 [Google Scholar]
  11. Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U. et al. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. PNAS 108:208379–84 [Google Scholar]
  12. Arbogast BS, Drovetski SV, Curry RL, Boag PT, Seutin G. et al. 2006. The origin and diversification of Galápagos mockingbirds. Evolution 60:2370–82 [Google Scholar]
  13. Arbuckle K, Speed MP. 2015. Antipredator defenses predict diversification rates. PNAS 2015:1–6 [Google Scholar]
  14. Archibald JD. 2011. Extinction and Radiation: How the Fall of Dinosaurs Led to the Rise of Mammals Baltimore, MD: Johns Hopkins Univ. Press [Google Scholar]
  15. Arnegard ME, McGee MD, Matthews B, Marchinko KB, Conte GL. et al. 2014. Genetics of ecological divergence during speciation. Nature 511:7509307–11 [Google Scholar]
  16. Arnold SJ, Pfrender ME, Jones AG. 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113:9–32 [Google Scholar]
  17. Bailey SF, Kassen R. 2012. Spatial structure of ecological opportunity drives adaptation in a bacterium. Am. Nat. 180:2270–83 [Google Scholar]
  18. Baldwin JM. 1896. A new factor in evolution. Am. Nat. 30:354441–51 [Google Scholar]
  19. Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J. 2004. Phylogeny and diversification of the largest avian radiation. PNAS 101:3011040–45 [Google Scholar]
  20. Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A. 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:7077719–23 [Google Scholar]
  21. Baum DA, Larson A. 1991. Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst. Zool. 40:1–18 [Google Scholar]
  22. Benkman CW. 1991. Predation, seed size partitioning and the evolution of body size in seed-eating finches. Evol. Ecol. 5:2118–27 [Google Scholar]
  23. Benton MJ. 1996. On the nonprevalence of competitive replacement in the evolution of tetrapods. Evolutionary Paleobiology JW Valentine, D Jablonski 185–210 Chicago: Univ. Chicago Press [Google Scholar]
  24. Benton MJ. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:5915728–32 [Google Scholar]
  25. Benton MJ, Forth J, Langer MC. 2014. Models for the rise of the dinosaurs. Curr. Biol. 24:2R87–95 [Google Scholar]
  26. Bird CE, Fernandez-Silva I, Skillings DJ, Toonen RJ. 2012. Sympatric speciation in the post “modern synthesis” era of evolutionary biology. Evol. Biol. 39:2158–80 [Google Scholar]
  27. Blair WF. 1955. Size differences as a possible isolation mechanism in Microhyla. Am. Nat. 89:297–301 [Google Scholar]
  28. Bolnick DI, Fitzpatrick BM. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38:1459–87 [Google Scholar]
  29. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I. et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–81 [Google Scholar]
  30. Brockhurst MA, Colegrave N, Hodgson DJ, Buckling A. 2007. Niche occupation limits adaptive radiation in experimental microcosms. PLOS ONE 2:2e193 [Google Scholar]
  31. Broeckhoven C, Diedericks G, Mouton PlFN. 2015. What doesn't kill you might make you stronger: functional basis for variation in body armour. J. Anim. Ecol. 84:1213–21 [Google Scholar]
  32. Bronstein JL, Alarcón R, Geber M. 2006. The evolution of plant-insect mutualisms. New Phytol 172:3412–28 [Google Scholar]
  33. Brown WL, Wilson EO. 1956. Character displacement. Syst. Zool. 5:249–64 [Google Scholar]
  34. Brusatte SL, Benton MJ, Ruta M, Lloyd GT. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:58951485–88 [Google Scholar]
  35. Brusatte SL, Nesbitt SJ, Irmis RB, Butler RJ, Benton MJ, Norell MA. 2010. The origin and early radiation of dinosaurs. Earth-Sci. Rev. 101:168–100 [Google Scholar]
  36. Burbrink FT, Ruane S, Pyron RA. 2012. When are adaptive radiations replicated in areas? Ecological opportunity and unexceptional diversification in West Indian dipsadine snakes (Colubridae: Alsophiini). J. Biogeogr. 39:3465–75 [Google Scholar]
  37. Burnette MF, Ashley-Ross MA. 2015. One shot, one kill: the forces delivered by archer fish shots to distant targets. Zoology 118:5302–11 [Google Scholar]
  38. Burns KJ, Hackett SJ, Klein NK. 2002. Phylogenetic relationships and morphological diversity in Darwin's finches and their relatives. Evolution 56:61240–52 [Google Scholar]
  39. Carlquist S. 1974. Island Biology New York/London: Columbia Univ. Press [Google Scholar]
  40. Case TJ. 1979. Character displacement and coevolution in some Cnemidophorus lizards. Fortschr. Zool. 25:235–82 [Google Scholar]
  41. Catenazzi A. 2015. State of the world's amphibians. Annu. Rev. Environ. Resour. 40:191–119 [Google Scholar]
  42. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1:e1400253 [Google Scholar]
  43. Chase JM. 2007. Drought mediates the importance of stochastic community assembly. PNAS 104:4417430–34 [Google Scholar]
  44. Chase JM, Leibold MA. 2003. Ecological Niches: Linking Classical and Contemporary Approaches Chicago: Univ. Chicago Press [Google Scholar]
  45. Chen Z-Q, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5:6375–83 [Google Scholar]
  46. Ciampaglio CN. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evol. Dev. 4:3170–88 [Google Scholar]
  47. Clune J, Mouret JB, Lipson H. 2013. The evolutionary origins of modularity. Proc. R. Soc. B 280:175520122863 [Google Scholar]
  48. Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer [Google Scholar]
  49. Coyne JA, Price TD. 2000. Little evidence for sympatric speciation in island birds. Evolution 54:62166–71 [Google Scholar]
  50. Cracraft J. 1990. The origin of evolutionary novelties: pattern and process at different hierarchical levels. Evolutionary Innovations MH Nitecki 21–44 Chicago: Univ. Chicago Press [Google Scholar]
  51. Crother BI, Guyer C. 1996. Caribbean historical biogeography: Was the dispersal-vicariance debate eliminated by an extraterrestrial bolide. Herpetologica 52:440–65 [Google Scholar]
  52. Davis MA. 2013. Invasive species. Grzimek's Animal Life Encyclopedia: Extinction N MacLeod 779–87 Detroit, MI: Gale Publ. [Google Scholar]
  53. Dayan T, Simberloff D. 2005. Ecological and community-wide character displacement: the next generation. Ecol. Lett. 8:8875–94 [Google Scholar]
  54. de Queiroz A. 2002. Contingent predictability in evolution: key traits and diversification. Syst. Biol. 51:6917–29 [Google Scholar]
  55. Dieckmann U, Doebeli M. 1999. On the origin of species by sympatric speciation. Nature 400:6742354–57 [Google Scholar]
  56. Doebeli M, Dieckmann U. 2000. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156:477–101 [Google Scholar]
  57. Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31:Suppl. 277–93 [Google Scholar]
  58. Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. New Phytol 207:260–74 [Google Scholar]
  59. Draghi JA, Whitlock MC. 2012. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66:92891–902 [Google Scholar]
  60. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:4586–608 [Google Scholar]
  61. Erickson CJ. 1991. Percussive foraging in the aye-aye, Daubentonia madagascariensis. Anim. Behav. 41:5793–801 [Google Scholar]
  62. Erkens RHJ, Chatrou LW, Couvreur TLP. 2012. Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales). Bot. J. Linn. Soc. 169:1117–34 [Google Scholar]
  63. Erwin DH. 2007. Increasing returns, ecological feedback and the Early Triassic recovery. Palaeoworld 16:1–39–15 [Google Scholar]
  64. Erwin DH. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol. Evol. 23:6304–10 [Google Scholar]
  65. Erwin DH. 2015. Novelty and innovation in the history of life. Curr. Biol. 25:19R930–40 [Google Scholar]
  66. Farrell BD. 1998. “Inordinate fondness” explained: Why are there so many beetles?. Science 281:5376555–59 [Google Scholar]
  67. Fear KK, Price T. 1998. The adaptive surface in ecology. Oikos 82:3440–48 [Google Scholar]
  68. Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution 35:1124–38 [Google Scholar]
  69. Foote M. 1996. Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science 274:52921492–95 [Google Scholar]
  70. Foote M. 1997. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28:129–52 [Google Scholar]
  71. Foote M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:21–115 [Google Scholar]
  72. Forbes AA. 2009. Sequential sympatric speciation across tropic levels. Science 323:776–79 [Google Scholar]
  73. Freckleton RP, Harvey PH. 2006. Detecting non-Brownian trait evolution in adaptive radiations. PLOS Biol 4:112104–11 [Google Scholar]
  74. Friedman M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B 277:16881675–83 [Google Scholar]
  75. Futuyma DJ. 1998. Evolutionary Biology Sunderland, MA: Sinauer, 3rd ed.. [Google Scholar]
  76. Galis F. 2001. Key innovations and radiations. The Character Concept in Evolutionary Biology GP Wagner 581–605 San Diego: Academic [Google Scholar]
  77. Genner MJ, Ngatunga BP, Mzighani S, Smith A, Turner GF. 2015. Geographical ancestry of Lake Malawi's cichlid fish diversity Biol. Lett. 11:620150232 [Google Scholar]
  78. Giery ST, Layman CA. 2015. Interpopulation variation in a condition-dependent signal: predation regime affects signal intensity and reliability. Am. Nat. 186:2187–95 [Google Scholar]
  79. Giery ST, Layman CA, Langerhans RB. 2015. Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish. Evol. Appl. 8:679–91 [Google Scholar]
  80. Gillespie RG. 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303:5656356–59 [Google Scholar]
  81. Gillespie RG. 2015. Island time and the interplay between ecology and evolution in species diversification. Evol. Appl. 9:153–73 [Google Scholar]
  82. Gittenberger E. 1991. What about non-adaptive radiation. Biol. J. Linn. Soc. 43:4263–72 [Google Scholar]
  83. Givnish TJ. 1997a. Adaptive plant evolution on islands: classical patterns, molecular data, new insights. Evolution on Islands PR Grant 281–304 Oxford, UK: Oxford Univ. Press [Google Scholar]
  84. Givnish TJ. 1997b. Adaptive radiation and molecular systematics: Issues and approaches. See Givnish & Sytsma 1997 1–54
  85. Givnish TJ. 2010. Ecology of plant speciation. Taxon 59:51326–66 [Google Scholar]
  86. Givnish TJ. 2015. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol 207:2297–303 [Google Scholar]
  87. Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ. et al. 2009. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc. R. Soc. B Biol. Sci. 276:1656407–16 [Google Scholar]
  88. Givnish TJ, Montgomery RA, Goldstein G. 2004. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91:2228–46 [Google Scholar]
  89. Givnish TJ, Sytsma KJ. 1997. Molecular Evolution and Adaptive Radiation Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  90. Glor RE. 2010. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41:1251–70 [Google Scholar]
  91. Goldberg EE, Lande R, Price TD. 2012. Population regulation and character displacement in a seasonal environment. Am. Nat. 179:6693–705 [Google Scholar]
  92. Gomulkiewicz R, Holt RD. 1995. When does evolution by natural selection prevent extinction. Evolution 49:1201–7 [Google Scholar]
  93. Grant PR, Grant BR. 2006. Evolution of character displacement in Darwin's finches. Science 313:5784224–26 [Google Scholar]
  94. Grant PR, Grant BR. 2008. How and Why Species Multiply. The Radiation of Darwin's Finches Princeton, NJ: Princeton Univ. Press [Google Scholar]
  95. Grant PR, Grant BR. 2014. 40 Years of Evolution: Darwin's Finches on Daphne Major Island Princeton, NJ: Princeton Univ. Press [Google Scholar]
  96. Greene HW. 1986. Natural history and evolutionary biology. Predator-Prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates ME Feder, GV Lauder 99–108 Chicago: Univ. Chicago Press [Google Scholar]
  97. Grether GF, Losin N, Anderson CN, Okamoto K. 2009. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biol. Rev. 84:4617–35 [Google Scholar]
  98. Habets MGJL, Rozen DE, Hoekstra RF, de Visser JAGM. 2006. The effect of population structure on the adaptive radiation of microbial populations evolving in spatially structured environments. Ecol. Lett. 9:91041–48 [Google Scholar]
  99. Heinen JL, Coco MW, Marcuard MS, White DN, Peterson MN. et al. 2013. Environmental drivers of demographics, habitat use, and behavior during a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi). Evol. Ecol. 27:5971–91 [Google Scholar]
  100. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW. Heliconius Genome Consort. et al. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:740594–98 [Google Scholar]
  101. Henning F, Meyer A. 2014. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu. Rev. Genom. Hum. Genet. 15:417–41 [Google Scholar]
  102. Hillebrand H. 2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163:2192–211 [Google Scholar]
  103. Hodges SA, Arnold ML. 1995. Spurring plant diversification: are floral nectar spurs a key innovation. Proc. R. Soc. B 262:1365343–48 [Google Scholar]
  104. Holt RD. 1977. Predation, apparent competition and the structure of prey communities. Theor. Popul. Biol. 12:2197–229 [Google Scholar]
  105. Hughes CE, Atchison GW. 2015. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol 207:2275–85 [Google Scholar]
  106. Hughes CE, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS 103:2710334–39 [Google Scholar]
  107. Hughes M, Gerber S, Wills MA. 2013. Clades reach highest morphological disparity early in their evolution. PNAS 110:3413875–79 [Google Scholar]
  108. Hull P. 2015. Life in the aftermath of mass extinctions. Curr. Biol. 25:19R941–52 [Google Scholar]
  109. Hunter JP. 1998. Key innovations and the ecology of macroevolution. Trends Ecol. Evol. 13:131–36 [Google Scholar]
  110. Hunter JP, Jernvall J. 1995. The hypocone as a key innovation in mammalian evolution. PNAS 92:2310718–22 [Google Scholar]
  111. Jablonski D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:4715–39 [Google Scholar]
  112. Jeffries MJ, Lawton JH. 1984. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 23:269–86 [Google Scholar]
  113. Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:3373–86 [Google Scholar]
  114. Jones CG, Lawton JH, Shachak M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:71946–57 [Google Scholar]
  115. Jønsson KA, Fabre PH, Fritz SA, Etienne RS, Ricklefs RE. et al. 2012. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. PNAS 109:176620–25 [Google Scholar]
  116. Jønsson KA, Fabre P-H, Kennedy JD, Holt BG, Borregaard MK. et al. 2015. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94:Part A87–94 [Google Scholar]
  117. Jønsson KA, Fabre P-H, Ricklefs RE, Fjeldså J. 2011. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. PNAS 108:62328–33 [Google Scholar]
  118. Kassen R. 2009. Toward a general theory of adaptive radiation: insights from microbial experimental evolution. Ann. N. Y. Acad. Sci. 1168:3–22 [Google Scholar]
  119. Kautt AF, Elmer KR, Meyer A. 2012. Genomic signatures of divergent selection and speciation patterns in a “natural experiment”, the young parallel radiations of Nicaraguan crater lake cichlid fishes. Mol. Ecol. 21:194770–86 [Google Scholar]
  120. Kirschner M, Kirschner M, Gerhart J, Gerhart J. 1998. Evolvability. PNAS 95:158420–27 [Google Scholar]
  121. Kisel Y, Barraclough TG. 2010. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175:3316–34 [Google Scholar]
  122. Koblmüller S, Egger B, Sturmbauer C, Sefc KM. 2007. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes. Mol. Phylogenet. Evol. 44:31295–305 [Google Scholar]
  123. Koenigswald WV, Schierning H-P. 1987. The ecological niche of an extinct group of mammals, the early Tertiary apatemyids. Nature 326:595–97 [Google Scholar]
  124. Kondrashov AS, Kondrashov FA. 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400:6742351–54 [Google Scholar]
  125. Kraus F. 2015. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46:175–97 [Google Scholar]
  126. Labandeira CC, Sepkoski JJ. 1993. Insect diversity in the fossil record. Science 261:5119310–15 [Google Scholar]
  127. Lack D. 1947. Darwin's Finches Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  128. Langerhans RB. 2007. Evolutionary consequences of predation: avoidance, escape, reproduction, and diversification. Predation in Organisms: A Distinct Phenomenon AMT Elewa 177–220 Heidelberg, Ger.: Springer-Verlag [Google Scholar]
  129. Langerhans RB. 2009. Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis. J. Evol. Biol. 22:51057–75 [Google Scholar]
  130. Larson A, Losos JB. 1996. Phylogenetic systematics of adaptation. Adaptation MR Rose, GV Lauder 187–220 San Diego: Academic [Google Scholar]
  131. Le Gac M, Plucain J, Hindre T, Lenski RE, Schneider D. 2012. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. PNAS 109:249487–92 [Google Scholar]
  132. Leigh EG Jr., Hladik A, Hladik CM, Jolly A. 2007. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Rev. Écol. 62:105–68 [Google Scholar]
  133. Lidgard S, McKinney FK, Taylor PD. 1993. Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology 19:3352–71 [Google Scholar]
  134. Liem KF. 1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Biol. 22:425–41 [Google Scholar]
  135. Losos JB. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles Berkeley: Univ. Calif. Press [Google Scholar]
  136. Losos JB. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson Award address. Am. Nat. 175:6623–39 [Google Scholar]
  137. Losos JB, Mahler DL. 2010. Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. Evolution since Darwin: The First 150 Years MA Bell, DJ Futuyma, WF Eanes, JS Levinton 381–420 Sunderland, MA: Sinauer [Google Scholar]
  138. Losos JB, Parent CE. 2009. The speciation-area relationship. The Theory of Island Biogeography Revisited JB Losos, RE Ricklefs 415–38 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  139. Losos JB, Schluter D. 2000. Analysis of an evolutionary species-area relationship. Nature 408:6814847–50 [Google Scholar]
  140. Lovette IJ, Bermingham E, Ricklefs RE. 2002. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. R. Soc. Proc. B 269:148637–42 [Google Scholar]
  141. Mabuchi K, Miya M, Azuma Y, Nishida M. 2007. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evol. Biol. 7:10 [Google Scholar]
  142. MacArthur RH. 1972. Geographical Ecology: Patterns in the Distribution of Species New York: Harper & Row [Google Scholar]
  143. MacArthur RH, Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101:921377–85 [Google Scholar]
  144. MacFadden BJ. 2005. Fossil horses—evidence for evolution. Science 307:57161728–30 [Google Scholar]
  145. Madriñán S, Cortés AJ, Richardson JE. 2013. Páramo is the world's fastest evolving and coolest biodiversity hotspot. Front. Genet. 4:192 [Google Scholar]
  146. Mahler DL, Revell LJ, Glor RE, Losos JB. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:92731–45 [Google Scholar]
  147. Marazzi B, Ané C, Simon MF, Delgado-Salinas A, Luckow M, Sanderson MJ. 2012. Locating evolutionary precursors on a phylogenetic tree. Evolution 66:123918–30 [Google Scholar]
  148. Marchinko KB. 2009. Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution 63:1127–38 [Google Scholar]
  149. Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC. 2015. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 69:61406–22 [Google Scholar]
  150. Martin CH, Feinstein LC. 2014. Novel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes. Mol. Ecol. 23:71846–62 [Google Scholar]
  151. Martin CH, Wainwright PC. 2013a. On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes. PLOS ONE 8:8e71164 [Google Scholar]
  152. Martin CH, Wainwright PC. 2013b. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339:6116208–11 [Google Scholar]
  153. Matthews B, Aebischer T, Sullam KE, Seehausen O. 2016. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26:1–7 [Google Scholar]
  154. Matthews B, De Meester L, Jones CG, Ibelings BW, Bouma TJ. et al. 2014. Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecol. Monogr. 84:2245–63 [Google Scholar]
  155. Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Harvard Univ. Press [Google Scholar]
  156. McCune JL, Harrower WL, Avery-Gomm S, Brogan JM, Csergő AM. et al. 2013. Threats to Canadian species at risk: an analysis of finalized recovery strategies. Biol. Conserv. 166:254–65 [Google Scholar]
  157. McGowan AJ. 2004. Ammonoid taxonomic and morphologic recovery patterns after the Permian Triassic. Geology 32:8665–68 [Google Scholar]
  158. McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. PNAS 106:177083–88 [Google Scholar]
  159. Meyer A, Kocher TD, Basasibwaki P, Wilson AC. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 34:550–53 [Google Scholar]
  160. Miller AH. 1949. Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. Ornithologie als Biologische Wissenschaft, 28 Beiträge als Festschrift zum 60. Geburtstag von Erwin Stresemann E Mayr, E Schüz 84–88 Heidelberg, Ger.: Carl Winter [Google Scholar]
  161. Mitter C, Farrell B, Wiegmann B. 1988. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification. Am. Nat. 132:1107–28 [Google Scholar]
  162. Monasterio M, Sarmiento L. 1991. Adaptive radiation of Espeletia in the cold Andean tropics. Trends Ecol. Evol. 6:12387–91 [Google Scholar]
  163. Mouton PlFN, Van Wyk JH. 1997. Adaptive radiation in cordyliform lizards: an overview. Afr. J. Herpetol. 46:278–88 [Google Scholar]
  164. Mullen SP, Shaw KL. 2014. Insect speciation rules: unifying concepts in speciation research. Annu. Rev. Entomol. 59:339–61 [Google Scholar]
  165. Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN. et al. 2012. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. PNAS 109:93434–39 [Google Scholar]
  166. Nosil P. 2012. Ecological Speciation Oxford, UK: Oxford Univ. Press [Google Scholar]
  167. Odling-Smee FJ, Laland KN, Feldman MW. 2003. Niche Construction: The Neglected Process in Evolution Princeton, NJ: Princeton Univ. Press [Google Scholar]
  168. Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN. 2013. Niche construction theory: a practical guide for ecologists. Q. Rev. Biol. 88:13–28 [Google Scholar]
  169. Parent CE, Crespi BJ. 2009. Ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am. Nat. 174:6898–905 [Google Scholar]
  170. Parsons KJ, Son YH, Albertson RC. 2011. Hybridization promotes evolvability in African cichlids: connections between transgressive segregation and phenotypic integration. Evol. Biol. 38:3306–15 [Google Scholar]
  171. Paulay G. 1994. Biodiversity on oceanic islands: its origin and extinction. Am. Zool. 34:134–44 [Google Scholar]
  172. Pfaender J, Hadiaty RK, Schliewen UK, Herder F. 2016. Rugged adaptive landscapes shape a complex, sympatric radiation. Proc. R. Soc. B 283:182220152342 [Google Scholar]
  173. Pfaender J, Schliewen UK, Herder F. 2010. Phenotypic traits meet patterns of resource use in the radiation of “sharpfin” sailfin silverside fish in Lake Matano. Evol. Ecol. 24:5957–74 [Google Scholar]
  174. Pfennig DW, Pfennig KS. 2012a. Evolution's Wedge: Competition and the Origins of Diversity Berkeley/Los Angeles: Univ. Calif. Press [Google Scholar]
  175. Pfennig DW, Pfennig KS. 2012b. Development and evolution of character displacement. Ann. N. Y. Acad. Sci. 1256:189–107 [Google Scholar]
  176. Pfennig DW, Rice AM, Martin RA. 2006. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87:3769–79 [Google Scholar]
  177. Price TD. 2008. Speciation in Birds Boulder, CO: Roberts [Google Scholar]
  178. Pyron RA, Burbrink FT. 2014. Ecological and evolutionary determinants of species richness and phylogenetic diversity for island snakes. Glob. Ecol. Biogeogr. 23:8848–56 [Google Scholar]
  179. Rabosky DL. 2009. Ecological limits on clade diversification in higher taxa. Am. Nat. 173:5662–74 [Google Scholar]
  180. Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLOS ONE 9:2e89543 [Google Scholar]
  181. Rabosky DL, Lovette IJ. 2008. Density-dependent diversification in North American wood warblers. Proc. R. Soc. B 275:2363–71 [Google Scholar]
  182. Rainey PB, Travisano M. 1998. Adaptive radiation in a heterogeneous environment. Nature 394:668869–72 [Google Scholar]
  183. Rauscher JT. 2002. Molecular phylogenetics of the Espeletia complex (Asteraceae): evidence from nrDNA ITS sequences on the closest relatives of an Andean adaptive radiation. Am. J. Bot. 89:71074–84 [Google Scholar]
  184. Rawlins DR, Handasyde KA. 2002. The feeding ecology of the striped possum Dactylopsila trivirgata (Marsupialia: Petauridae) in far north Queensland, Australia. J. Zool. 257:2195–206 [Google Scholar]
  185. Reddy S, Driskell A, Rabosky DL, Hackett SJ, Schulenberg TS. 2012. Diversification and the adaptive radiation of the vangas of Madagascar. Proc. R. Soc. B 279:17352062–71 [Google Scholar]
  186. Ree RH. 2005. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution 59:2257–65 [Google Scholar]
  187. Roderick GK, Gillespie RG. 1998. Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol. Ecol. 7:4519–31 [Google Scholar]
  188. Rosenzweig ML, McCord RD. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:3202–13 [Google Scholar]
  189. Roy HE, Adriaens T, Isaac NJB, Kenis M, Martin GS. et al. 2012. Invasive alien predator causes rapid declines of native European ladybirds. Divers. Distrib. 18:717–25 [Google Scholar]
  190. Rundell RJ, Price TD. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24:7394–99 [Google Scholar]
  191. Runemark A, Brydegaard M, Svensson EI. 2014. Does relaxed predation drive phenotypic divergence among insular populations. J. Evol. Biol. 27:81676–90 [Google Scholar]
  192. Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:6709336–42 [Google Scholar]
  193. Santos JC, Coloma LA, Cannatella DC. 2003. Multiple, recurring origins of aposematism and diet specialization in poison frogs. PNAS 100:2212792–97 [Google Scholar]
  194. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN. et al. 2007. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol. 22:9465–71 [Google Scholar]
  195. Schenk JJ, Rowe KC, Steppan SJ. 2013. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62:6837–64 [Google Scholar]
  196. Schliewen UK, Tautz D, Pääbo S. 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368:6472629–32 [Google Scholar]
  197. Schluter D. 1988. Character displacement and the adaptive divergence of finches on islands and continents. Am. Nat. 131:6799–824 [Google Scholar]
  198. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press [Google Scholar]
  199. Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:5915737–41 [Google Scholar]
  200. Schluter D. 2016. Speciation, ecological opportunity, and latitude. Am. Nat. 187:11–18 [Google Scholar]
  201. Schluter D, Grant PR. 1984. Determinants of morphological patterns in communities of Darwin's finches. Am. Nat. 123:2175–96 [Google Scholar]
  202. Schuster S, Wöhl S, Griebsch M, Klostermeier I. 2006. Animal cognition: How archer fish learn to down rapidly moving targets. Curr. Biol. 16:4378–83 [Google Scholar]
  203. Sears KE, Behringer RR, Rasweiler JJ, Niswander LA. 2006. Development of bat flight: morphologic and molecular evolution of bat wing digits. PNAS 103:176581–86 [Google Scholar]
  204. Seehausen O. 2006. African cichlid fish: a model system in adaptive radiation research. Proc. R. Soc. B 273:15971987–98 [Google Scholar]
  205. Seehausen O, Wagner CE. 2014. Speciation in freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 45:621–51 [Google Scholar]
  206. Sepkoski JJ, McKinney FK, Lidgard S. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:17–18 [Google Scholar]
  207. Silvestro D, Antonelli A, Salamin N, Quental TB. 2015. The role of clade competition in the diversification of North American canids. PNAS 112:288684–89 [Google Scholar]
  208. Silvestro D, Zizka G, Schulte K. 2014. Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution 68:1163–75 [Google Scholar]
  209. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF. 2008. Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:7180818–21 [Google Scholar]
  210. Simpson GG. 1953. The Major Features of Evolution New York: Columbia Univ. Press [Google Scholar]
  211. Slater GJ. 2015. Not-so-early bursts and the dynamic nature of morphological diversification. PNAS 112:123595–96 [Google Scholar]
  212. Slatkin M. 1980. Ecological character displacement. Ecology 61:1163–77 [Google Scholar]
  213. Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T. et al. 2010. The evolution of maximum body size of terrestrial mammals. Science 330:60081216–19 [Google Scholar]
  214. Snell-Rood EC. 2013. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85:51004–11 [Google Scholar]
  215. Strobbe F, McPeek MA, De Block M, Stoks R. 2011. Fish predation selects for reduced foraging activity. Behav. Ecol. Sociobiol. 65:2241–47 [Google Scholar]
  216. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. 2014. Rapid evolution of a native species following invasion by a congener. Science 346:6208463–66 [Google Scholar]
  217. Stuart YE, Losos JB. 2013. Ecological character displacement: glass half full or half empty. Trends Ecol. Evol. 28:7402–8 [Google Scholar]
  218. Sturmbauer C, Husemann M, Danley PD. 2011. Explosive speciation and adaptive radiation of East African cichlid fishes. Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas FE Zachos, JC Habel 333–62 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  219. Summers K. 2003. Convergent evolution of bright coloration and toxicity in frogs. PNAS 100:2212533–34 [Google Scholar]
  220. Supple M, Papa R, Counterman B, McMillan WO. 2013. The genomics of an adaptive radiation: insights across the Heliconius speciation continuum. Ecological Genomics: Ecology and the Evolution of Genes and Genomes CR Landry, N Aubin-Horth 249–71 Dordrecht, Neth.: Springer [Google Scholar]
  221. Svensson EI, Calsbeek R. 2012. The Adaptive Landscape in Evolutionary Biology Oxford, UK: Oxford Univ. Press [Google Scholar]
  222. Takahashi R, Watanabe K, Nishida M, Hori M. 2007. Evolution of feeding specialization in Tanganyikan scale-eating cichlids: a molecular phylogenetic approach. BMC Evol. Biol. 7:195 [Google Scholar]
  223. Tanentzap AJ, Brandt AJ, Smissen RD, Heenan PB, Fukami T, Lee WG. 2015. When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space. New Phytol 207:468–79 [Google Scholar]
  224. Thorpe RS, Surget-Groba Y, Johansson H. 2008. The relative importance of ecology and geographic isolation for speciation in anoles. Philos. Trans. R. Soc. B 363:15063071–81 [Google Scholar]
  225. Tokeshi M. 2009. Species Coexistence: Ecological and Evolutionary Perspectives Oxford, UK: Blackwell [Google Scholar]
  226. Tyerman JG, Bertrand M, Spencer CC, Doebeli M. 2008. Experimental demonstration of ecological character displacement. BMC Evol. Biol. 8:34 [Google Scholar]
  227. Valente LM, Phillimore AB, Etienne RS. 2015. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands. Ecol. Lett. 18:8844–52 [Google Scholar]
  228. Vamosi SM. 2005. On the role of enemies in divergence and diversification of prey: a review and synthesis. Can. J. Zool. 83:7894–910 [Google Scholar]
  229. Van Valkenburgh B. 1999. Major patterns in the history of carnivorous mammals. Annu. Rev. Earth Planet. Sci. 27:463–93 [Google Scholar]
  230. Vermeij GJ. 1973. Adaptation, versatility, and evolution. Syst. Biol. 22:4466–77 [Google Scholar]
  231. Vermeij GJ. 1987. Evolution and Escalation: An Ecological History of Life Princeton, NJ: Princeton Univ. Press [Google Scholar]
  232. von Hagen KB, Kadereit JW. 2003. The diversification of Halenia (Gentianaceae): ecological opportunity versus key innovation. Evolution 57:112507–18 [Google Scholar]
  233. Wagner CE, Harmon LJ, Seehausen O. 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:7407366–69 [Google Scholar]
  234. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S. et al. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 22:3787–98 [Google Scholar]
  235. Walsh MR, Post DM. 2011. Interpopulation variation in a fish predator drives evolutionary divergence in prey in lakes. Proc. R. Soc. B 278:17182628–37 [Google Scholar]
  236. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475–505 [Google Scholar]
  237. Weber MG, Strauss SY. 2016. Coexistence in close relatives: beyond competition and reproductive isolation in sister taxa. Annu. Rev. Ecol. Evol. Syst. 47:359–81 [Google Scholar]
  238. Wellborn GA, Langerhans RB. 2015. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5:1176–95 [Google Scholar]
  239. Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET. 2014. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5:4087 [Google Scholar]
  240. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press [Google Scholar]
  241. Whittaker RH. 1977. Evolution of species diversity in land communities [birds and vascular plants]. Evol. Biol. 10:1–67 [Google Scholar]
  242. Williams EE, Peterson JA. 1982. Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:45391509–11 [Google Scholar]
  243. Wilson EO. 1992. The Diversity of Life Cambridge, MA: Belknap [Google Scholar]
  244. Wilson GP, Evans AR, Corfe IJ, Smits PD, Fortelius M, Jernvall J. 2012. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483:457–60 [Google Scholar]
  245. Wright JP, Jones CG. 2006. The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience 56:3203–9 [Google Scholar]
  246. Yamagishi S, Honda M, Eguchi K, Thorstrom R. 2001. Extreme endemic radiation of the Malagasy vangas (Aves: Passeriformes). J. Mol. Evol. 53:39–46 [Google Scholar]
  247. Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L. et al. 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23:81581–96 [Google Scholar]
  248. Zaman L, Meyer JR, Devangam S, Bryson DM, Lenski RE, Ofria C. 2014. Coevolution drives the emergence of complex traits and promotes evolvability. PLOS Biol 12:12e1002023 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032254
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error