Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. In this review, we discuss how biotic attributes, climate, grazing pressure, land cover change, and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g., species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrates how nitrogen deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlights the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adler PB, Raff DA, Lauenroth WK. 2001. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–79 [Google Scholar]
  2. Antoninka AJ, Bowker MA, Reed SC, Dohert KD. 2016. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restor. Ecol. 24:324–35 [Google Scholar]
  3. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. 2004. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour 29:261–99Provides a review of global grazing systems, with key data on the extent and impacts of grazing in drylands. [Google Scholar]
  4. Austin AT. 2011. Has water limited our imagination for aridland biogeochemistry?. Trends Ecol. Evol. 26:229–35 [Google Scholar]
  5. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A. et al. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35 [Google Scholar]
  6. Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505–11 [Google Scholar]
  7. Bautista S, Mayor AG, Bourakhouadar J, Bellot J. 2007. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 10:987–98 [Google Scholar]
  8. Belnap J. 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 3178:3159–78 [Google Scholar]
  9. Berdugo M, Soliveres S, Maestre FT. 2014. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17:1242–56 [Google Scholar]
  10. Bestelmeyer BT, Duniway MC, James DK, Burkett LM, Havstad KM. 2013. A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought. Ecol. Lett. 163:339–45 [Google Scholar]
  11. Bestelmeyer BT, Okin GS, Duniway MC, Archer SR, Sayre NF. et al. 2015. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 131:28–36 [Google Scholar]
  12. Bhark EW, Small EE. 2003. Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6:185–96 [Google Scholar]
  13. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R. et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20:30–59 [Google Scholar]
  14. Boer M, Puigdefábregas J. 2005. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: a simulation study. Earth Surf. Process. Landf. 167:149–67 [Google Scholar]
  15. Bowker MA, Maestre FT, Mau RL. 2013. Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–33 [Google Scholar]
  16. Bracken LJ, Croke J. 2007. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol. Process. 21:1749–63 [Google Scholar]
  17. Brookshire ENJ, Weaver T. 2015. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 6:7148 [Google Scholar]
  18. Brown JH, Valone TJ, Curtin CG. 1997. Reorganization of an arid ecosystem in response to recent climate change. PNAS 94:9729–33 [Google Scholar]
  19. Chiquoine LP, Abella SR, Bowker MA. 2016. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecol. Appl. 26:1260–72 [Google Scholar]
  20. Collins SL, Belnap J, Grimm NB, Rudgers JA, Dahm CN. et al. 2014. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45:397–419Includes an updated paradigm on how water pulses affect dryland structure and functioning. [Google Scholar]
  21. Conti G, Díaz S. 2013. Plant functional diversity and carbon storage—an empirical test in semi-arid forest ecosystems. J. Ecol. 101:18–28 [Google Scholar]
  22. Cook BI, Ault TR, Smerdon JE. 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1:e1400082 [Google Scholar]
  23. Cortina J, Amat B, Castillo V, Fuentes D, Maestre FT. et al. 2011. The restoration of vegetation cover in the Iberian southeast. J. Arid Environ. 75:1377–84 [Google Scholar]
  24. Darrouzet-Nardi A, Reed SC, Grote EE, Belnap J. 2015. Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils. Biogeochemistry 126:363–78 [Google Scholar]
  25. Daryanto S, Eldridge DJ, Throop HL. 2013. Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above- and belowground carbon. Agric. Ecosyst. Environ. 169:1–11 [Google Scholar]
  26. Dean WRJ, Milton SJ, Jeltsch F. 1999. Large trees, fertile islands, and birds in arid savanna. J. Arid Environ. 41:61–78 [Google Scholar]
  27. Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J. 2008. The global biogeography of semi-arid periodic vegetation patterns. Glob. Ecol. Biogeogr. 17:715–23 [Google Scholar]
  28. Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V. et al. 2016b. Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytol 209:1540–52 [Google Scholar]
  29. Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD. et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–76 [Google Scholar]
  30. Delgado-Baquerizo M, Maestre FT, Gallardo A, Eldridge, Soliveres S. et al. 2016c. Human impacts and aridity differentially alter soil N availability in drylands worldwide. Glob. Ecol. Biogeogr. 25:36–45 [Google Scholar]
  31. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitán JJ. et al. 2016a. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7:10541Reports microbial diversity–multifunctionality relationships in global drylands using data from a standardized field survey. [Google Scholar]
  32. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B. et al. 2006. Nitrogen and sulfur deposition on regional and global scales. A multimodel evaluation. Glob. Biogeochem. Cycles 20:GB4003 [Google Scholar]
  33. D'Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW. 2013. Global desertification: drivers and feedbacks. Adv. Water Resour. 51:326–44 [Google Scholar]
  34. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14:709–22Provides a quantitative literature review of the effects of woody encroachment on ecosystem structure and functioning. [Google Scholar]
  35. Eldridge DJ, Maestre FT, Maltez-Mouro S, Bowker MA. 2012. A global database of woody encroachment effects on ecosystem structure and functioning. Ecology 93:2499 [Google Scholar]
  36. Eldridge DJ, Poore AGB, Ruiz-Colmenero M, Letnic M, Soliveres S. 2016. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26:1273–83 [Google Scholar]
  37. Eldridge DJ, Soliveres S. 2015. Are shrubs really a sign of declining ecosystem function? Disentangling the myths and truths of woody encroachment in Australia. Aust. J. Bot. 62:594–608 [Google Scholar]
  38. Eldridge DJ, Soliveres S, Bowker MA, Val J. 2013. Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland. J. Appl. Ecol. 50:1028–38 [Google Scholar]
  39. Escolar C, Maestre FT, Rey A. 2015. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland. Soil Biol. Biochem. 80:9–17 [Google Scholar]
  40. Escolar C, Martínez I, Bowker MA, Maestre FT. 2012. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos. Trans. R. Soc. B 367:3087–99 [Google Scholar]
  41. Evans RD, Koyama A, Sonderegger DL, Charlet TN, Newingham BA. et al. 2014. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat. Clim. Change 4:394–97 [Google Scholar]
  42. Ferrenberg S, Reed SC, Belnap J. 2015. Climate change and physical disturbance cause similar community shifts in biological soil crusts. PNAS 112:12116–21 [Google Scholar]
  43. Fleischner TL. 1994. Ecological costs of livestock grazing in western North America. Conserv. Biol. 8:629–44 [Google Scholar]
  44. Flombaum P, Sala OE. 2008. Higher effect of plant species diversity on productivity in natural than artificial ecosystems. PNAS 105:6087–90 [Google Scholar]
  45. Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119:7863–75 [Google Scholar]
  46. Fynn RWS. 1998. Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, Kwazulu-Natal Master Sci. Thesis, Univ. Natal, S. Afr. [Google Scholar]
  47. Gaitán JJ, Oliva GE, Bran DE, Maestre FT, Aguiar MR. et al. 2014a. Vegetation structure is as important as climate to explain ecosystem functioning across Patagonian rangelands. J. Ecol. 102:1419–28 [Google Scholar]
  48. Gaitán JJ, Bran D, Oliva G, Maestre FT, Aguiar MR. et al. 2014b. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biol. Lett. 10:20140673 [Google Scholar]
  49. García-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. 2013. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–77 [Google Scholar]
  50. Gómez-Aparicio L. 2009. The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. J. Ecol. 976:1202–14 [Google Scholar]
  51. Goodall DW. 1976. Evolution of Desert Biota Austin: Univ. Texas Press [Google Scholar]
  52. Grace JB. 2006. Structural Equation Modeling and Natural Systems Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  53. Hanke W, Böhner J, Dreber N, Jürgens N, Schmiedel U. et al. 2014. The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa. Ecol. Appl. 245:1188–203 [Google Scholar]
  54. Hassink J. 1994. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biol. Biochem. 26:1221–31 [Google Scholar]
  55. Haynes RJ, Williams PH. 1999. The influence of stock camping behaviors on the soil microbial and biochemical properties of grazed pastoral soils. Biol. Fertil. Soils 28:253–58 [Google Scholar]
  56. Hector A, Bagchi R. 2007. Biodiversity and ecosystem multifunctionality. Nature 448:188–91 [Google Scholar]
  57. Herrick JE, Lessard VC, Spaeth KE, Shaver PL, Dayton RS. et al. 2010. National ecosystem assessments supported by scientific and local knowledge. Front. Ecol. Environ. 8:403–8 [Google Scholar]
  58. Herrick JE, Van Zee JW, Havstad KM, Burkett LM, Whitford WG. 2005. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems. Volume II: Design, Supplementary Methods and Interpretation. Las Cruces, NM: USDA-ARS [Google Scholar]
  59. Holt JA. 1997. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Appl. Soil. Ecol. 5:143–49 [Google Scholar]
  60. Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change 6:166–71Contains the latest global aridity scenarios for the second half of the twenty-first century. [Google Scholar]
  61. IPCC (Intergov. Panel Clim. Change) 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  62. Jiao F, Shi XR, Han FP, Yuan ZY. 2016. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6:19601 [Google Scholar]
  63. Jing X, Sanders NJ, Shi Y, Chu H, Classen AT. et al. 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6:8159 [Google Scholar]
  64. Kairis O, Kosmas C, Karavitis C, Ritsema C, Salvati L. et al. 2014. Evaluation and selection of indicators for land degradation and desertification monitoring: Types of degradation, causes, and implications for management. Environ. Manag. 54:971–82 [Google Scholar]
  65. Kéfi S, Alados CL, Chaves RCG, Pueyo Y, Rietkerk M. 2010b. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Comment. Ecology 91:3739–42 [Google Scholar]
  66. Kéfi S, Eppinga MB, de Ruiter PC, Rietkerk M. 2010a. Bistability and regular spatial patterns in arid ecosystems. Theor. Ecol. 3:257–69 [Google Scholar]
  67. Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM. et al. 2014. Early warning signals of ecological transitions: methods for spatial patterns. PLOS ONE 9:e9209 [Google Scholar]
  68. Kéfi S, Rietkerk M, Alados CL, Pueyo Y, ElAich A. et al. 2007. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–17Provides evidence on the potential of vegetation patterns to inform about ecosystem degradation and desertification. [Google Scholar]
  69. Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS. et al. 2008. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob. Change Biol. 14:615–23 [Google Scholar]
  70. Ladrón de Guevara M, Lázaro R, Quero JL, Ochoa V, Gozalo B. et al. 2014. Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodivers. Conserv. 23:1787–807 [Google Scholar]
  71. Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C. 2014. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates succession of vegetation. Environ. Sci. Technol. 48:307–15 [Google Scholar]
  72. Lin Y, Han G, Zhao M, Chang SX. 2010. Spatial vegetation patterns as early signs of desertification: a case study of a desert steppe in Inner Mongolia, China. Landsc. Ecol. 25:1519–27 [Google Scholar]
  73. Ludwig F, Dawson TE, Prins HHT, Berendse F, Kroon H. 2003. Hydraulic lift in Acacia tortilis trees on an East African savanna. Oecologia 134:293–300 [Google Scholar]
  74. Maestre FT, Bowker MA, Cantón Y, Castillo-Monroy AP, Cortina J. et al. 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid Environ. 75:1282–91 [Google Scholar]
  75. Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S. et al. 2010. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos. Trans. R. Soc. B 365:2057–70 [Google Scholar]
  76. Maestre FT, Bowker MA, Puche MD, Hinojosa MB, Martínez I. et al. 2009. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 12:930–41 [Google Scholar]
  77. Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R. 2012b. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J. Ecol. 100:317–30 [Google Scholar]
  78. Maestre FT, Delgado-Baquerizo M, Jeffries TC, Ochoa V, Gozalo B. et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. PNAS 112:15684–89 [Google Scholar]
  79. Maestre FT, Escolar C, Ladrón de Guevara M, Quero JL, Lázaro R. et al. 2013. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Change Biol. 19:3835–47 [Google Scholar]
  80. Maestre FT, Escudero A. 2009. Is the patch size distribution of vegetation a suitable indicator of desertification processes?. Ecology 90:1729–35 [Google Scholar]
  81. Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V. et al. 2012a. Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–18Reports plant species richness–multifunctionality relationships in global drylands using data from a standardized field survey. [Google Scholar]
  82. Manor A, Shnerb NM. 2008. Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns. J. Theor. Biol. 253:838–42 [Google Scholar]
  83. Maphangwa KW, Musil CF, Raitt L, Zedda L. 2012. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. Oecologia 169:257–68 [Google Scholar]
  84. Martínez-Mena M, Alvarez Rogel J, Castillo V, Albaladejo J. 2002. Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid Mediterranean soil. Biogeochemistry 61:309–21 [Google Scholar]
  85. Mayor AG, Kéfi S, Bautista S, Rodríguez F, Cartení F, Rietkerk M. 2013. Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model. Landsc. Ecol. 28:931–42 [Google Scholar]
  86. McCluney KE, Belnap J, Collins SL, González AL, Hagen EM. et al. 2012. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87:563–82 [Google Scholar]
  87. Millenn. Ecosyst. Assess. 2005. Ecosystems and Human Well-being: Desertification Synthesis. Washington, DC: World Resour. Inst. [Google Scholar]
  88. Meron E. 2015. Nonlinear Physics of Ecosystems Boca Raton, FL: CRC Press [Google Scholar]
  89. Meserve PL, Kelt DA, Gutiérrez JL, Previtali MA, Milstead WB. 2015. Biotic interactions and community dynamics in the semiarid thorn scrub of Bosque Fray Jorge National Park, north-central Chile: a paradigm revisited. J. Arid Environ. 126:81–88 [Google Scholar]
  90. Milchunas DG, Lauenroth WK. 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63:327–66 [Google Scholar]
  91. Mora JL, Lázaro R. 2013. Evidence of a threshold in soil erodibility generating differences in vegetation development and resilience between two semiarid grasslands. J. Arid Environ. 89:57–66 [Google Scholar]
  92. Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4:25–51 [Google Scholar]
  93. Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T. et al. 2011. Nitrogen deposition effects on Mediterranean type ecosystems: an ecological assessment. Environ. Pollut. 159:2265–79 [Google Scholar]
  94. Padilla FM, Pugnaire FI. 2006. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 4:196–202 [Google Scholar]
  95. Parton W, Silver WL, Burke IC, Grassens L, Harmon ME. et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–64 [Google Scholar]
  96. Pueyo Y, Alados CL. 2007. Abiotic factors determining plant communities in a semi-arid Mediterranean landscape: differential response of vegetation on gypsum and non-gypsum substrates. J. Arid Environ. 69:490–505 [Google Scholar]
  97. Puigdefábregas J, Solé A, Gutierrez L, del Barrio G, Boer M. 1999. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Sci. Rev. 48:39–70 [Google Scholar]
  98. Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J. et al. 2014. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally. Proc. R. Soc. B 281:20141988 [Google Scholar]
  99. Reynolds JF, Kemp PR, Ogle K, Fernández RJ. 2004. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water and plant responses. Oecologia 141:194–210 [Google Scholar]
  100. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M. et al. 2007. Global desertification: building a science for dryland development. Science 316:847–51Presents the Drylands Development Paradigm, an analytical framework to investigate desertification and dryland development [Google Scholar]
  101. Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de Koppel J. et al. 2002. Self-organization of vegetation in arid ecosystems. Am. Nat. 160:524–30 [Google Scholar]
  102. Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J. 2004. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–29 [Google Scholar]
  103. Riginos C, Grace JB. 2008. Savanna tree density, herbivores, and the herbaceous community: bottom-up versus top-down effects. Ecology 89:2228–38 [Google Scholar]
  104. Riginos C, Grace JB, Augustine DJ, Young TP. 2009. Local versus landscape-scale effects of savanna trees on grasses. J. Ecol. 976:1337–45 [Google Scholar]
  105. Ruppert JC, Harmoney K, Henkin Z, Snyman HA, Sternberg M. et al. 2015. Quantifying drylands' drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Change Biol. 21:1258–70 [Google Scholar]
  106. Safriel U, Adeel Z. 2005. Dryland systems. Ecosystems and Human Well-Being: Current State and Trends 1 Millenn. Ecosyst. Assess. 623–62 Washington, DC: IslandSynthesizes main features of drylands worldwide and of the ecosystem services they provide. [Google Scholar]
  107. Sala OE, Parton WJ, Joyce LA, Lauenroth WK. 1988. Primary production of the central grassland region of the United States. Ecology 691:40–45 [Google Scholar]
  108. Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I. 2007. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–12 [Google Scholar]
  109. Scheffer M, Carpenter SR, Dakos V, van Nes EH. 2015. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46:145–67 [Google Scholar]
  110. Schlesinger WH. 2009. On the fate of anthropogenic nitrogen. PNAS 106:203–8 [Google Scholar]
  111. Schlesinger WH, Bernhardt ES. 2013. Biogeochemistry: An Analysis of Global Change San Diego: Academic [Google Scholar]
  112. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM. et al. 1990. Biological feedbacks in global desertification. Science 247:1043–48 [Google Scholar]
  113. Schwinning S, Sala OE. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–20 [Google Scholar]
  114. Soliveres S, Maestre FT. 2014. Plant-plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies. Perspect. Plant Ecol. Evol. Syst. 16:154–63 [Google Scholar]
  115. Soliveres S, Maestre FT, Bowker MA, Torices R, Quero JL. et al. 2014b. Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspect. Plant Ecol. Evol. Syst. 16:164–73 [Google Scholar]
  116. Soliveres S, Maestre FT, Eldridge DJ, Delgado-Baquerizo M. et al. 2014a. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Glob. Ecol. Biogeogr. 23:1408–16 [Google Scholar]
  117. Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J. 2014. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 348:2792–804 [Google Scholar]
  118. Strickland MS, Rousk J. 2010. Considering fungal:bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol. Biochem. 42:1385–95 [Google Scholar]
  119. Suding KN, Gross KL, Houseman GR. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19:46–53 [Google Scholar]
  120. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS. et al. 2014. Global diversity and geography of soil fungi. Science 346:1256688 [Google Scholar]
  121. Thornton PK. 2010. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B 365:2853–67 [Google Scholar]
  122. Tietjen B, Jeltsch F. 2007. Semi-arid grazing systems and climate change: a survey of present modelling potential and future needs. J. Appl. Ecol. 44:425–34 [Google Scholar]
  123. Tongway DJ, Hindley N. 2004. Landscape Function Analysis: Procedures for Monitoring and Assessing Landscapes. Brisbane, Austr.: CSIRO Publishing [Google Scholar]
  124. Trivedi P, Anderson IC, Singh BK. 2013. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–51 [Google Scholar]
  125. Ukkola AM, Prentice IC, Keenan TF, van Dijk AIJM, Viney NR. et al. 2016. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change. In press. doi: 10.1038/nclimate2831 [Google Scholar]
  126. Urgeghe AM, Bautista S. 2014. Size and connectivity of upslope runoff-source areas modulate the performance of woody plants in Mediterranean drylands. Ecohydrology 8:1292–303 [Google Scholar]
  127. Van Auken OW. 2000. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 31:197–215 [Google Scholar]
  128. Verstraete MM, Hutchinson CF, Grainger A, Stafford Smith M, Scholes RJ. et al. 2011. Towards a global drylands observing system: observational requirements and institutional solutions. Land. Degrad. Dev. 22:198–213 [Google Scholar]
  129. von Hardenberg J, Meron E, Shachak M, Zarmi Y. 2001. Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87:198101 [Google Scholar]
  130. Washington-Allen RA, Ramsey RD, West NE, Norton BE. 2008. Quantification of the ecological resilience of drylands using digital remote sensing. Ecol. Soc. 131:33 [Google Scholar]
  131. Whitford WG. 2002. Ecology of Desert Systems London: AcademicServes as a reference on the ecology of drylands and their biota. [Google Scholar]
  132. Wiesmeier M. 2015. Environmental indicators of dryland. Environmental Indicators RH Armon, O Hanninen 239–50 Dordrecht, Neth.: Springer [Google Scholar]
  133. Xu C, Holmgren M, Van Nes EH, Maestre FT, Soliveres S. et al. 2015. Can we infer plant facilitation from remote sensing? A test across global drylands. Ecol. Appl. 25:1456–62 [Google Scholar]
  134. Xu D, Li C, Zhuang D, Pan J. 2011. Assessment of the relative role of climate change and human activities in desertification: a review. J. Geogr. Sci. 215:926–36 [Google Scholar]
  135. Zhao Y, Bowker MA, Zhang Y, Zaady E. 2016. Enhanced recovery of biological soil crusts after disturbance. Biological Soil Crusts: An Organizing Principle in Drylands B Weber, B Büdel, J Belnap 499–526 Berlin: Springer-Verlag [Google Scholar]
  136. Zhou Z, Sun OJ, Huang J, Gao Y, Han X. 2006. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe. Funct. Ecol. 20:753–62 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error