Modularity has emerged as a central concept for evolutionary biology, thereby providing the field with a theory of organismal structure and variation. This theory has reframed long-standing questions and serves as a unified conceptual framework for genetics, developmental biology, and multivariate evolution. Research programs in systems biology and quantitative genetics are bridging the gap between these fields. Although this synthesis is ongoing, some major themes have emerged, and empirical evidence for modularity has become abundant. In this review, we look at modularity from a historical perspective, highlighting its meaning at different levels of biological organization and the different methods that can be used to detect it. We then explore the relationship between quantitative genetic approaches to modularity and developmental genetic studies. We conclude by investigating the dynamic relationship between modularity and the adaptive landscape and how this relationship potentially shapes evolution and can help bridge the gap between micro- and macroevolution.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackermann RR, Cheverud JM. 2004. Detecting genetic drift versus selection in human evolution. PNAS 101:5217946–51 [Google Scholar]
  2. Adams D, Rohlf F, Slice D. 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix Ital. J. Mammal. 24:7–14 [Google Scholar]
  3. Alberch P. 1991. From genes to phenotype: dynamical systems and evolvability. Genetica 84:15–11 [Google Scholar]
  4. Armbruster S, Pelabon C, Hansen T, Mulder C. 2004. Floral integration, modularity, and accuracy: distinguishing complex adaptations from genetic constraints. Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes M Pigliucci, K Preston 23–49 Oxford, UK: Oxford Univ. Press [Google Scholar]
  5. Arnold SJ. 2014. Phenotypic evolution: the ongoing synthesis (American Society of Naturalists address). Am. Nat. 183:6729–46 [Google Scholar]
  6. Arnold SJ, Bürger R, Hohenlohe PA, Ajie BC, Jones AG. 2008. Understanding the evolution and stability of the G-matrix. Evolution 62:102451–61 [Google Scholar]
  7. Arnold SJ, Pfrender ME, Jones AG. 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113:9–32 [Google Scholar]
  8. Ayroles JF, Buchanan SM, O'Leary C, Skutt-Kakaria K, Grenier JK. et al. 2015. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. PNAS 112:216706–11 [Google Scholar]
  9. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF. et al. 2009. Systems genetics of complex traits in Drosophila melanogaster. Nat. Genet. 41:3299–307 [Google Scholar]
  10. Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF. 2012. A phylogenetic comparative method for studying multivariate adaptation. J. Theor. Biol. 314:204–15 [Google Scholar]
  11. Beldade P, Brakefield PM. 2002. The genetics and evo-devo of butterfly wing patterns. Nat. Rev. Genet. 3:6442–52 [Google Scholar]
  12. Beldade P, Koops K, Brakefield PM. 2002. Modularity, individuality, and evo-devo in butterfly wings. PNAS 99:2214262–67 [Google Scholar]
  13. Berg RL. 1960. The ecological significance of correlation pleiades. Evolution 14:2171–80 [Google Scholar]
  14. Berner D. 2011. Size correction in biology: How reliable are approaches based on (common) principal component analysis. Oecologia 166:4961–71 [Google Scholar]
  15. Berner D, Kaeuffer R, Grandchamp A-C, Raeymaekers JAM, Räsänen K, Hendry AP. 2011. Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation. J. Evol. Biol. 24:91975–83 [Google Scholar]
  16. Berner D, Stutz WE, Bolnick DI. 2010. Foraging trait (co)variances in stickleback evolve deterministically and do not predict trajectories of adaptive diversification. Evolution 64:82265–77 [Google Scholar]
  17. Björklund M, Husby A, Gustafsson L. 2013. Rapid and unpredictable changes of the G-matrix in a natural bird population over 25 years. J. Evol. Biol. 26:11–13 [Google Scholar]
  18. Blows MW, Hoffmann AA. 2005. A reassessment of genetic limits to evolutionary change. Ecology 86:61371–84 [Google Scholar]
  19. Bolstad GH, Cassara JA, Márquez E, Hansen TF, van der Linde K. et al. 2015. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster. PNAS 112:4313284–89 [Google Scholar]
  20. Bolstad GH, Hansen TF, Pélabon C, Falahati-Anbaran M, Pérez-Barrales R, Armbruster WS. 2014. Genetic constraints predict evolutionary divergence in Dalechampia blossoms. Philos. Trans. R. Soc. B 369:164920130255 [Google Scholar]
  21. Bookstein FL. 1997. Morphometric Tools for Landmark Data: Geometry and Biology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  22. Bulmer MG. 1971. The effect of selection on genetic variability. Am. Nat. 105:943201–11 [Google Scholar]
  23. Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:6683–95 [Google Scholar]
  24. Calsbeek B, Goodnight CJ. 2009. Empirical comparison of G matrix test statistics: finding biologically relevant change. Evolution 63:102627–35 [Google Scholar]
  25. Chenoweth SF, Rundle HD, Blows MW. 2010. The contribution of selection and genetic constraints to phenotypic divergence. Am. Nat. 175:2186–96 [Google Scholar]
  26. Cheverud JM. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36:3499 [Google Scholar]
  27. Cheverud JM. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110:2155–71 [Google Scholar]
  28. Cheverud JM. 1989. A comparative analysis of morphological variation patterns in the papionins. Evolution 43:81737 [Google Scholar]
  29. Cheverud JM. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36:144–50 [Google Scholar]
  30. Cheverud JM, Marroig G. 2007. Comparing covariance matrices: random skewers method compared to the common principal components model. Genet. Mol. Biol. 30:2461–69 [Google Scholar]
  31. Cheverud JM, Richtsmeier JT. 1986. Finite-element scaling applied to sexual dimorphism in rhesus macaque (Macaca mulatta) facial growth. Syst. Biol. 35:3381–99 [Google Scholar]
  32. Conner JK. 2012. Quantitative genetic approaches to evolutionary constraint: how useful. Evolution 66:113313–20 [Google Scholar]
  33. Cressler CE, Butler MA, King AA. 2015. Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein-Uhlenbeck model. Syst. Biol. 64:6953–68 [Google Scholar]
  34. Delph LF, Steven JC, Anderson IA, Herlihy CR, Brodie ED III.. 2011. Elimination of a genetic correlation between the sexes via artificial correlational selection. Evolution 65:102872–80 [Google Scholar]
  35. Eroukhmanoff F, Svensson EI. 2011. Evolution and stability of the G-matrix during the colonization of a novel environment. J. Evol. Biol. 24:61363–73 [Google Scholar]
  36. Felsenstein J. 1988. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19:445–71 [Google Scholar]
  37. Garcia G, Hingst-Zaher E, Cerqueira R, Marroig G. 2014. Quantitative genetics and modularity in cranial and mandibular morphology of Calomys expulsus. Evol. Biol. 41:4619–36 [Google Scholar]
  38. Goswami A, Finarelli JA. 2016. EMMLi: a maximum likelihood approach to the analysis of modularity. Evolution 70:71622–37 [Google Scholar]
  39. Grant PR, Grant BR. 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:2241 [Google Scholar]
  40. Hallgrímsson B, Jamniczky HA, Young NM, Rolian C, Schmidt-Ott U, Marcucio RS. 2012. The generation of variation and the developmental basis for evolutionary novelty. J. Exp. Zool. B Mol. Dev. Evol. 318:6501–17 [Google Scholar]
  41. Hallgrímsson B, Jamniczky H, Young NM, Rolian C, Parsons TE. et al. 2009. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36:4355–76 [Google Scholar]
  42. Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:51341–51 [Google Scholar]
  43. Hansen TF. 2003. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. BioSystems 69:2–383–94 [Google Scholar]
  44. Hansen TF. 2013. Why epistasis is important for selection and adaptation. Evolution 67:123501–11 [Google Scholar]
  45. Hansen TF, Alvarez-Castro JM, Carter AJR, Hermisson J, Wagner GP. 2006. Evolution of genetic architecture under directional selection. Evolution 60:81523–36 [Google Scholar]
  46. Hansen TF, Houle D. 2008. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21:51201–19 [Google Scholar]
  47. Hansen TF, Pélabon C, Armbruster WS, Carlson ML. 2003. Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. J. Evol. Biol. 16:4754–66 [Google Scholar]
  48. Hazel LN. 1943. The genetic basis for constructing selection indexes. Genetics 28:6476–90 [Google Scholar]
  49. Hohenlohe PA, Arnold SJ. 2008. MIPoD: a hypothesis-testing framework for microevolutionary inference from patterns of divergence. Am. Nat. 171:3366–85 [Google Scholar]
  50. Houle D, Meyer K. 2015. Estimating sampling error of evolutionary statistics based on genetic covariance matrices using maximum likelihood. J. Evol. Biol. 28:81542–49 [Google Scholar]
  51. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N. 2002. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31:4370–77 [Google Scholar]
  52. Jones AG, Arnold SJ, Bürger R. 2003. Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution 57:81747–60 [Google Scholar]
  53. Jones AG, Arnold SJ, Bürger R. 2004. Evolution and stability of the G-matrix on a landscape with a moving optimum. Evolution 58:81639–54 [Google Scholar]
  54. Jones AG, Bürger R, Arnold SJ. 2014. Epistasis and natural selection shape the mutational architecture of complex traits. Nat. Commun. 5:3709 [Google Scholar]
  55. Jones AG, Bürger R, Arnold SJ, Hohenlohe PA, Uyeda JC. 2012. The effects of stochastic and episodic movement of the optimum on the evolution of the G-matrix and the response of the trait mean to selection. J. Evol. Biol. 25:112210–31 [Google Scholar]
  56. Juenger T, Pérez-Pérez JM, Bernal S, Micol JL. 2005. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Evol. Dev. 7:3259–71 [Google Scholar]
  57. Karhunen M, Merilä J, Leinonen T, Cano JM, Ovaskainen O. 2013. DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits. Mol. Ecol. Resour. 13:4746–54 [Google Scholar]
  58. Kauffman S, Levin S. 1987. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128:111–45 [Google Scholar]
  59. Kendall DG. 1984. Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16:81–121 [Google Scholar]
  60. Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM. 2012. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26:51101–18 [Google Scholar]
  61. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN. et al. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157:3245–61 [Google Scholar]
  62. Klingenberg CP. 2009. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol. Dev. 11:4405–21 [Google Scholar]
  63. Lande R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:2314 [Google Scholar]
  64. Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:1402 [Google Scholar]
  65. Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:61210 [Google Scholar]
  66. Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559 [Google Scholar]
  67. Laughlin DC, Messier J. 2015. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30:8487–96 [Google Scholar]
  68. Lele S, Richtsmeier JT. 1991. Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. Am. J. Phys. Anthropol. 86:415–27 [Google Scholar]
  69. Lemos B, Marroig G, Cerqueira R. 2001. Evolutionary rates and stabilizing selection in large-bodied opossum skulls (Didelphimorphia: Didelphidae). J. Zool. 255:181–89 [Google Scholar]
  70. Mackay TFC, Stone EA, Ayroles JF. 2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10:8565–77 [Google Scholar]
  71. MacMahon M, Garlaschelli D. 2015. Community detection for correlation matrices. Phys. Rev. X 5:2021006 [Google Scholar]
  72. Magwene PM. 2001. New tools for studying integration and modularity. Evolution 55:91734–45 [Google Scholar]
  73. Márquez EJ. 2008. A statistical framework for testing modularity in multidimensional data. Evolution 62:102688–708 [Google Scholar]
  74. Márquez EJ, Cabeen R, Woods RP, Houle D. 2012. The measurement of local variation in shape. Evol. Biol. 39:3419–39 [Google Scholar]
  75. Marroig G, Cheverud JM. 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution 55:122576–600 [Google Scholar]
  76. Marroig G, Cheverud JM. 2005. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59:51128–42 [Google Scholar]
  77. Marroig G, Cheverud J. 2010. Size as a line of least resistance II: direct selection on size or correlated response due to constraints. Evolution 64:51470–88 [Google Scholar]
  78. Marroig G, de Vivo M, Cheverud JM. 2004. Cranial evolution in sakis (Pithecia, Platyrrhini) II: evolutionary processes and morphological integration. J. Evol. Biol. 17:144–55 [Google Scholar]
  79. Marroig G, Melo DAR, Garcia G. 2012. Modularity, noise, and natural selection. Evolution 66:51506–24 [Google Scholar]
  80. Martin CH, Wainwright PC. 2013. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339:6116208–11 [Google Scholar]
  81. Matamoro-Vidal A, Salazar-Ciudad I, Houle D. 2015. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Dev. Dyn. 244:91058–73 [Google Scholar]
  82. Maxwell TJ, Ballantyne CM, Cheverud JM, Guild CS, Ndumele CE, Boerwinkle E. 2013. APOE modulates the correlation between triglycerides, cholesterol, and CHD through pleiotropy, and gene-by-gene interactions. Genetics 195:41397–405 [Google Scholar]
  83. Mayr E. 1963. Animal Species and Evolution. Cambridge, MA: Harvard Univ. Press [Google Scholar]
  84. Melo D, Marroig G. 2015. Directional selection can drive the evolution of modularity in complex traits. PNAS 112:2470–75 [Google Scholar]
  85. Mitteroecker P. 2009. The developmental basis of variational modularity: insights from quantitative genetics, morphometrics, and developmental biology. Evol. Biol. 36:4377–85 [Google Scholar]
  86. Mitteroecker P, Bookstein F. 2007. The conceptual and statistical relationship between modularity and morphological integration. Syst. Biol. 56:5818–36 [Google Scholar]
  87. Olson R, Miller E. 1958. Morphological Integration Chicago: Univ. Chicago Press [Google Scholar]
  88. Paaby AB, Rockman MV. 2013. The many faces of pleiotropy. Trends Genet 29:266–73 [Google Scholar]
  89. Pavlicev M, Cheverud JM, Wagner GP. 2011a. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc. R. Soc. B 278:17131903–12 [Google Scholar]
  90. Pavlicev M, Hansen TF. 2011. Genotype-phenotype maps maximizing evolvability: modularity revisited. Evol. Biol. 38:4371–89 [Google Scholar]
  91. Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. 2008. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62:1199–213 [Google Scholar]
  92. Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM. 2011b. Evolution of pleiotropy: Epistatic interaction pattern supports a mechanistic model underlying variation in genotype–phenotype map. J. Exp. Zool. B Mol. Dev. Evol. 316:5371–85 [Google Scholar]
  93. Pavličev M, Cheverud JM. 2015. Constraints evolve: Context dependency of gene effects allows evolution of pleiotropy. Annu. Rev. Ecol. Evol. Syst. 46:413–34 [Google Scholar]
  94. Pearson K. 1896. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. A 187:253–318 [Google Scholar]
  95. Pepin KM, Samuel MA, Wichman HA. 2006. Variable pleiotropic effects from mutations at the same locus hamper prediction of fitness from a fitness component. Genetics 172:42047–56 [Google Scholar]
  96. Pfaender J, Hadiaty RK, Schliewen UK, Herder F. 2016. Rugged adaptive landscapes shape a complex, sympatric radiation. Proc. R. Soc. B 283:182220152342 [Google Scholar]
  97. Phillips PC, Whitlock MC, Fowler K. 2001. Inbreeding changes the shape of the genetic covariance matrix in Drosophila melanogaster. Genetics 158:31137–45 [Google Scholar]
  98. Polly PD. 2008. Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution?. Evol. Biol. 35:283–96 [Google Scholar]
  99. Porto A, de Oliveira FB, Shirai LT, De Conto V, Marroig G. 2009. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evol. Biol. 36:1118–35 [Google Scholar]
  100. Porto A, Sebastião H, Pavan SE, VandeBerg JL, Marroig G, Cheverud JM. 2015. Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation. J. Evol. Biol. 28:4973–85 [Google Scholar]
  101. Porto A, Shirai LT, de Oliveira FB, Marroig G. 2013. Size variation, growth strategies, and the evolution of modularity in the mammalian skull. Evolution 67:113305–22 [Google Scholar]
  102. Reichardt J, Bornholdt S. 2006. Statistical mechanics of community detection. Phys. Rev. E 74:1016110 [Google Scholar]
  103. Renaud S, Auffray J-C, Michaux J. 2006. Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution 60:81701–17 [Google Scholar]
  104. Riedl R. 1978. Order in Living Systems: A Systems Analysis of Evolution New York: Wiley [Google Scholar]
  105. Salazar-Ciudad I, Jernvall J. 2002. A gene network model accounting for development and evolution of mammalian teeth. PNAS 99:128116–20 [Google Scholar]
  106. Salazar-Ciudad I, Jernvall J. 2010. A computational model of teeth and the developmental origins of morphological variation. Nature 464:7288583–86 [Google Scholar]
  107. Schäfer J, Strimmer K. 2005. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4:32 [Google Scholar]
  108. Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:51766 [Google Scholar]
  109. Shaw RG, Geyer CJ. 2010. Inferring fitness landscapes. Evolution 64:92510–20 [Google Scholar]
  110. Simpson GG. 1944. Tempo and Mode in Evolution New York: Columbia Univ. Press [Google Scholar]
  111. Simpson G. 1958. Book reviews: Morphological Integration by Everett C. Olson, Robert L. Miller. Science 128:3316138 [Google Scholar]
  112. Stearns FW. 2010. One hundred years of pleiotropy: a retrospective. Genetics 186:3767–73 [Google Scholar]
  113. Steppan SJ, Phillips PC, Houle D. 2002. Comparative quantitative genetics: evolution of the G matrix. Trends Ecol. Evol. 17:7320–27 [Google Scholar]
  114. Templeton AR, Crease TJ, Shah F. 1985. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. I. Basic genetics. Genetics 111:4805–18 [Google Scholar]
  115. Turelli M. 1988. Phenotypic evolution, constant covariances, and the maintenance of additive variance. Evolution 42:61342 [Google Scholar]
  116. van der Linde K, Houle D. 2009. Inferring the nature of allometry from geometric data. Evol. Biol. 36:3311–22 [Google Scholar]
  117. Wagner GP. 2007. The developmental genetics of homology. Nat. Rev. Genet. 8:6473–79 [Google Scholar]
  118. Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the evolution of evolvability. Evolution 50:3967 [Google Scholar]
  119. Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat. Rev. Genet. 8:12921–31 [Google Scholar]
  120. Wang Z, Liao B-Y, Zhang J. 2010. Genomic patterns of pleiotropy and the evolution of complexity. PNAS 107:4218034–39 [Google Scholar]
  121. Watson RA, Wagner GP, Pavlicev M, Weinreich DM, Mills R. 2014. The evolution of phenotypic correlations and “developmental memory. Evolution 68:41124–38 [Google Scholar]
  122. Weldon WFR. 1893. On certain correlated variations in Carcinus maenas. Proc. R. Soc. B 54:326–330318–29 [Google Scholar]
  123. Whitlock MC, Phillips PC, Fowler K. 2002. Persistence of changes in the genetic covariance matrix after a bottleneck. Evolution 56:101968–75 [Google Scholar]
  124. Wolf JB, Leamy LJ, Routman EJ, Cheverud JM. 2005. Epistatic pleiotropy and the genetic architecture of covariation within early and late-developing skull trait complexes in mice. Genetics 171:2683–94 [Google Scholar]
  125. Wright S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. VI Int. Congr. Genet. 1:356–66 [Google Scholar]
  126. Young NM, Hallgrímsson B. 2005. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59:122691–704 [Google Scholar]
  127. Zeng Z-B. 1988. Long-term correlated response, interpopulation covariation, and interspecific allometry. Evolution 42:2363–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error