1932

Abstract

The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-122120-122554
2021-11-03
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-122120-122554.html?itemId=/content/journals/10.1146/annurev-ecolsys-122120-122554&mimeType=html&fmt=ahah

Literature Cited

  1. Albert JS. 2001. Species Diversity and Phylogenetic Systematics of American Knifefishes (Gymnotiformes, Teleostei) Misc. Publ. 190 Ann Arbor, MI: Mus. Zool. Univ. Mich.
    [Google Scholar]
  2. Albert JS, Lannoo MJ, Yuri T 1998. Testing hypotheses of neural evolution in gymnotiform electric fishes using phylogenetic character data. Evolution 52:1760–80
    [Google Scholar]
  3. Alfaro ME, Faircloth BC, Harrington RC, Sorenson L, Friedman M et al. 2018. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nat. Ecol. Evol. 2:688–96
    [Google Scholar]
  4. Arcila D, Orti G, Vari R, Armbruster JW, Stiassny MLJ et al. 2017. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1:0020
    [Google Scholar]
  5. Arratia G. 1997. Basal teleosts and teleostean phylogeny. Paleo. Ichth. 7:1–168
    [Google Scholar]
  6. Arratia G. 1998. Basal teleosts and teleostean phylogeny: response to C. Patterson. Copeia 1998 1109–13
    [Google Scholar]
  7. Arratia G. 2018. Otomorphs (= otocephalans or ostarioclupeomorphs) revisited. Neotrop. Ichthyol. 16:e180079
    [Google Scholar]
  8. Barrett PH, Gautrey PJ, Herbert S, Kohn D, Smith S 1987. Charles Darwin's Notebooks, 18361844: Geology, Transmutation of Species, Metaphysical Enquiries London: British Mus. (Nat. Hist.)
    [Google Scholar]
  9. Berg LS. 1947 (1940). Classification of fishes both recent and fossil. Travaux de l'Institut de l'Academie des Sciences de l'URSS, Book 5, Part 2 Ann Arbor, MI: J. W. Edwards
    [Google Scholar]
  10. Berra TM, Allen GR. 1989. Burrowing, emergence, behavior, and functional-morphology of the Australian Salamanderfish, Lepidogalaxias salamandroides. Fisheries 14:2–10
    [Google Scholar]
  11. Bessa E, Geffroy B, Gonçalves-De-Freitas E. 2017. Tourism impact on stream fish measured with an ecological and a behavioural indicator. Aquat. Conserv. Mar. Freshwater Ecosystems 27:1281–89
    [Google Scholar]
  12. Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA et al. 2013. The tree of life and a new classification of bony fishes. PLOS Curr. Tree Life 5: ecurrents.tol.53ba26640df0ccaee75bb165c8c26288
    [Google Scholar]
  13. Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N et al. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:162
    [Google Scholar]
  14. Bian C, Hu Y, Ravi V, Kuznetsova IS, Shen X et al. 2016. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep. 6:24501
    [Google Scholar]
  15. Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T et al. 2016. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48:427–37
    [Google Scholar]
  16. Burbrink FT, Grazziotin FG, Pyron RA, Cundall D, Donnellan S et al. 2020. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst. Biol. 69:502–20
    [Google Scholar]
  17. Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there?. J. Mammal. 99:1–14
    [Google Scholar]
  18. Campbell MA, Alfaro ME, Belasco M, López JA. 2017. Early-branching euteleost relationships: areas of congruence between concatenation and coalescent model inferences. PeerJ 5:e3548
    [Google Scholar]
  19. Chakrabarty P, Faircloth BC, Alda F, Ludt WB, McMahan CD et al. 2017. Phylogenomic systematics of ostariophysan fishes: Ultraconserved elements support the surprising non-monophyly of Characiformes. Syst. Biol. 66:881–95
    [Google Scholar]
  20. Chanet B, Guintard C, Betti E, Gallut C, Dettaï A, Lecointre G. 2013. Evidence for a close phylogenetic relationship between the teleost orders Tetraodontiformes and Lophiiformes based on an analysis of soft anatomy. Cybium 37:179–98
    [Google Scholar]
  21. Chen JN, Lopez JA, Layoue S, Miya M, Chen WJ. 2014. Phylogeny of the Elopomorpha (Teleostei): evidence from six nuclear and mitochondrial markers. Mol. Phylogenet. Evol. 70:152–61
    [Google Scholar]
  22. Chen M-Y, Liang D, Zhang P. 2015. Selecting question-specific genes to reduce incongruence in phylogenomics: a case study of jawed vertebrate backbone phylogeny. Syst. Biol. 64:1104–20
    [Google Scholar]
  23. Chen W-J, Bonillo C, Lecointre G. 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26:262–88
    [Google Scholar]
  24. Chen W-J, Santini F, Carnevale G, Chen JN, Liu SH et al. 2014. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Front. Mar. Sci. 1:53
    [Google Scholar]
  25. Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M et al. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307:1928–33
    [Google Scholar]
  26. Cumplido N, Allende ML, Arratia G. 2020. From Devo to Evo: patterning, fusion and evolution of the zebrafish terminal vertebra. Front. Zool. 17:18
    [Google Scholar]
  27. Daane JM, Dornburg A, Smits P, MacGuigan DJ, Hawkins MB et al. 2019. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat. Ecol. Evol. 3:1102–9
    [Google Scholar]
  28. Dai W, Zou M, Yang L, Du K, Chen W et al. 2018. Phylogenomic perspective on the relationships and evolutionary history of the major otocephalan lineages. Sci. Rep. 8:205
    [Google Scholar]
  29. Darwin C. 1859. On the Origin of Species London: John Murray
    [Google Scholar]
  30. Davesne D, Gallut C, Barriel V, Janvier P, Lecointre G, Otero O. 2016. The phylogenetic intrarelationships of spiny-rayed fishes (Acanthomorpha, Teleostei, Actinopterygii): Fossil taxa increase the congruence of morphology with molecular data. Front. Ecol. Evol. 4:129
    [Google Scholar]
  31. de Queiroz K. 2007. Toward an integrated system of clade names. Syst. Biol. 56:956–74
    [Google Scholar]
  32. Dornburg A, Friedman M, Near TJ. 2015a. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Mol. Phylogenet. Evol. 89:205–18
    [Google Scholar]
  33. Dornburg A, Moore J, Beaulieu JM, Eytan RI, Near TJ. 2015b. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution 69:146–61
    [Google Scholar]
  34. Dornburg A, Townsend JP, Brooks W, Spriggs E, Eytan RI et al. 2017. New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Mol. Phylogenet. Evol. 110:27–38
    [Google Scholar]
  35. Dornburg A, Wcisel DJ, Zapfe K, Ferraro E, Roupe-Abrams L et al. 2021. Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. bioRxiv 448072. https://doi.org/10.1101/2021.06.11.448072
    [Crossref]
  36. Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R et al. 2018. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28:770–78.e5
    [Google Scholar]
  37. Faircloth BC, Sorenson L, Santini F, Alfaro ME. 2013. A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLOS ONE 8:e65923
    [Google Scholar]
  38. Fink SV, Fink WL. 1981. Interrelationships of the ostariophysan fishes (Teleostei). Zool. J. Linn. Soc. 72:297–353
    [Google Scholar]
  39. Fink SV, Fink WL 1996. Interrelationships of ostariophysan fishes (Teleostei). Interrelationships of Fishes MLJ Stiassny, LR Parenti, GD Johnson 209–49 San Diego, CA: Academic
    [Google Scholar]
  40. Fricke R, Eschmeyer WN, Fong JD. 2021a. Eschmeyer's catalog of fishes: genera/species by family/subfamily Calif. Acad. Sci. San Francisco: accessed Mar. 1. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp
    [Google Scholar]
  41. Fricke R, Eschmeyer WN, Van der Laan R 2021b. Eschmeyer's catalog of fishes: genera, species, references Calif. Acad. Sci. San Francisco: accessed Mar. 1. http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
    [Google Scholar]
  42. Friedman M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B 277:1675–83
    [Google Scholar]
  43. Friedman M, Feilich KL, Beckett HT, Alfaro ME, Faircloth BC et al. 2019. A phylogenomic framework for pelagiarian fishes (Acanthomorpha: Percomorpha) highlights mosaic radiation in the open ocean. Proc. R. Soc. B 286:20191502
    [Google Scholar]
  44. Friedman ST, Price SA, Corn KA, Larouche O, Martinez CM, Wainwright PC. 2020. Body shape diversification along the benthic–pelagic axis in marine fishes. Proc. R. Soc. B 287:20201053
    [Google Scholar]
  45. Gardiner BG, Maisey JG, Littlewood TJ 1996. Interrelationships of basal neopterygians. Interrelationships of Fishes MLJ Stiassny, LR Parenti, GD Johnson 117–46 San Diego, CA: Academic
    [Google Scholar]
  46. Gill AC, Mooi RD 2002. Phylogeny and systematics of fishes. Handbook of Fish Biology and Fisheries PJB Hart, JD Reynolds 15–42 Oxford, UK: Blackwell Sci. Ltd
    [Google Scholar]
  47. Gill F, Donsker D, Rasmussen P 2020. IOC world bird list (v10.2) Int. Ornithol. Union Baton Rouge, LA: updated July 25. https://doi.org/10.14344/IOC.ML.10.2
    [Crossref] [Google Scholar]
  48. Girard MG, Davis MP, Smith WL. 2020. The phylogeny of carangiform fishes: morphological and genomic investigations of a new fish clade. Copeia 108:265–98
    [Google Scholar]
  49. Goodrich ES. 1909. Vertebrata Craniata. (First fascicle: cyclostomes and fishes). A Treatise on Zoology Vol. 9, ed. R Lankester 1–518 London: A. & C. Black
    [Google Scholar]
  50. Grande L. 2010. An Empirical and Synthetic Pattern Study of Gars (Lepisosteiformes) and Closely Related Species, Based Mostly on Skeletal Anatomy. The Resurrection of Holostei Amer. Soc. Ich. Herp. Spec. Pub. 6. Lawrence KS: Allen
    [Google Scholar]
  51. Grande TC, Borden WC, Smith WL 2013. Limits and relationships of Paracanthopterygii: a molecular framework for evaluating past morphological hypotheses. Mesozoic Fishes 5: Global Diversity and Evolution G Arratia, H-P Schultze, MVH Wilson 385–418 Munich: Verlag Dr. Fredrich Pfeil
    [Google Scholar]
  52. Greenwood PH, Rosen DE, Weitzman SH, Myers GS. 1966. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull. Amer. Mus. Nat. Hist. 131:341–455
    [Google Scholar]
  53. Hao S, Han K, Meng L, Huang X, Cao W et al. 2020. African Arowana genome provides insights on ancient teleost evolution. iScience 23:101662
    [Google Scholar]
  54. Heath TA, Huelsenbeck JP, Stadler T 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. PNAS 111:E2957–66
    [Google Scholar]
  55. Hilton EJ, Lavoué S. 2018. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei). Neotrop. Ichthyol. 16:e180031
    [Google Scholar]
  56. Höhne C, Prokopov D, Kuhl H, Du K, Klopp C et al. 2021. The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome-scale sturgeon genome. Rev. Aquaculture 13:1709–29
    [Google Scholar]
  57. Holt BG, Jønsson KA. 2014. Reconciling hierarchical taxonomy with molecular phylogenies. Syst. Biol. 63:1010–17
    [Google Scholar]
  58. Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC et al. 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115:6249–54
    [Google Scholar]
  59. Inoue JG, Miya M, Tsukamoto K, Nishida M. 2001. A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Mol. Phylogenet. Evol. 20:275–85
    [Google Scholar]
  60. Inoue JG, Miya M, Tsukamoto K, Nishida M. 2003. Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish.”. Mol. Phylogenet. Evol. 26:110–20
    [Google Scholar]
  61. Inoue JG, Miya M, Tsukamoto K, Nishida M. 2004. Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol. Phylogenet. Evol. 32:274–86
    [Google Scholar]
  62. Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1:1370–78
    [Google Scholar]
  63. Ishiguro NB, Miya M, Nishida M. 2003. Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii. .” Mol. Phylogenet. Evol. 27:476–88
    [Google Scholar]
  64. Jermiin LS, Catullo RA, Holland BR. 2020. A new phylogenetic protocol: dealing with model misspecification and confirmation bias in molecular phylogenetics. NAR Genom. Bioinform. 2:lqaa041
    [Google Scholar]
  65. Johnson GD, Patterson C. 1993. Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bull. Mar. Sci. 52:554–626
    [Google Scholar]
  66. Johnson GD, Patterson C 1996. Relationships of lower euteleostean fishes. Interrelationships of Fishes MLJ Stiassny, LR Parenti, GD Johnson 251–332 San Diego, CA: Academic
    [Google Scholar]
  67. Jordan DS. 1923. A Classification of Fishes: Including Families and Genera as Far as Known. Ser. Biol. Sci. Vol. III, No. 2 Stanford, CA: Stanford Univ. Publ.
    [Google Scholar]
  68. Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34:1812–19
    [Google Scholar]
  69. Lauder GV, Liem KF. 1983. The evolution and interrelationships of the actinopterygian fishes. Bull. Mus. Comp. Zool. 150:95–197
    [Google Scholar]
  70. Lavoué S, Miya M, Inoue JG, Saitoh K, Ishiguro NB, Nishida M. 2005. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. Mol. Phylogenet. Evol. 37:165–77
    [Google Scholar]
  71. Lecointre G, Nelson G 1996. Clupeomorpha, sister-group of Ostariophysi. Interrelationships of Fishes MLJ Stiassny, LR Parenti, GD Johnson 193–207 San Diego, CA: Academic
    [Google Scholar]
  72. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, Chun J 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67:2053–57
    [Google Scholar]
  73. Leprieur F, Descombes P, Gaboriau T, Cowman PF, Parravicini V et al. 2016. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7:11461
    [Google Scholar]
  74. Li B, Dettai A, Cruaud C, Couloux A, Desoutter-Meniger M, Lecointre G. 2009. RNF213, a new nuclear marker for acanthomorph phylogeny. Mol. Phylogenet. Evol. 50:345–63
    [Google Scholar]
  75. Li CH, Lu GQ, Ortí G. 2008. Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst. Biol. 57:519–39
    [Google Scholar]
  76. Li J, Xia R, McDowall RM, Lopez JA, Lei GC, Fu CZ. 2010. Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes. Mol. Phylogenet. Evol. 57:932–36
    [Google Scholar]
  77. Liu Z, Liu S, Yao J, Bao L, Zhang J et al. 2016. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 7:11757
    [Google Scholar]
  78. Malmstrøm M, Matschiner M, Tørresen OK, Jakobsen KS, Jentoft S. 2017. Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Sci. Data 4:160132
    [Google Scholar]
  79. Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A et al. 2021. Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst. Biol https://doi.org/10.1093/sysbio/syab040
    [Crossref] [Google Scholar]
  80. Mirande JM. 2017. Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of morphological characters in large-scale analyses. Cladistics 33:333–50
    [Google Scholar]
  81. Miya M, Holcroft NI, Satoh TP, Yamaguchi M, Nishida M, Wiley EO. 2007. Mitochondrial genome and a nuclear gene indicate a novel phylogenetic position of deep-sea tube-eye fish (Stylephoridae). Ichthyol. Res. 54:323–32
    [Google Scholar]
  82. Miya M, Satoh TR, Nishida M. 2005. The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biol. J. Linn. Soc. 85:289–306
    [Google Scholar]
  83. Miya M, Takahashi M, Endo H, Ishiguro NB, Inoue JG et al. 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol. 26:121–38
    [Google Scholar]
  84. Moore JA. 1993. Phylogeny of the Trachichthyiformes (Teleostei: Percomorpha). Bull. Mar. Sci. 52:114–36
    [Google Scholar]
  85. Müller J. 1845. Über den Bau und die Grenzen der Ganoiden und über das natürliche System der Fische Arch. Naturgesch 1191141
    [Google Scholar]
  86. Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M. 2011. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol. Biol. 11:177
    [Google Scholar]
  87. Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL et al. 2013. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. PNAS 110:12738–43
    [Google Scholar]
  88. Near TJ, Dornburg A, Tokita M, Suzuki D, Brandley MC, Friedman M. 2014. Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fishes. Evolution 68:1014–26
    [Google Scholar]
  89. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA et al. 2012. Resolution of ray-finned fish phylogeny and timing of diversification. PNAS 109:13698–703
    [Google Scholar]
  90. Nelson G 1989. Phylogeny of major fish groups. The Hierarchy of Life: Molecules and Morphology in Phylogenetic Analysis B Fernholm, K Bremer, H Jôrnvall 325–36 Amsterdam: Elsevier
    [Google Scholar]
  91. Nelson GJ. 1969. Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bull. Amer. Mus. Nat. Hist. 141:475–552
    [Google Scholar]
  92. Nelson JS. 2006. Fishes of the World Hoboken, NJ: Wiley, 4th ed..
    [Google Scholar]
  93. Nelson JS, Grande TC, Wilson MVH. 2016. Fishes of the World Hoboken, NJ: Wiley, 5th ed..
    [Google Scholar]
  94. Normark BB, McCune AR, Harrison RG. 1991. Phylogenetic relationships of neopterygian fishes inferred from mitochondrial DNA sequences. Mol. Biol. Evol. 8:819–34
    [Google Scholar]
  95. Olney JE, Johnson GD, Baldwin CC. 1993. Phylogeny of lampridiform fishes. Bull. Mar. Sci. 52:137–69
    [Google Scholar]
  96. Ortí G, Meyer A. 1996. Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes. Mol. Biol. Evol. 13:556–73
    [Google Scholar]
  97. Patterson C 1973. Interrelationships of holosteans. Interrelationships of Fishes PH Greenwood, RS Miles, C Patterson 233–305 London: Academic
    [Google Scholar]
  98. Patterson C 1994. Bony fishes. Major Features of Vertebrate Evolution DR Prothero, RM Schoch 57–84 Knoxville, TN: Paleontol. Soc.
    [Google Scholar]
  99. Patterson C. 1998. Comments on basal teleosts and teleostean phylogeny, by Gloria Arratia. Copeia 1998 1107–9
    [Google Scholar]
  100. Patterson C, Rosen DE. 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bull. Amer. Mus. Nat. Hist. 158:85–172
    [Google Scholar]
  101. Patterson C, Rosen DE. 1989. The Paracanthopterygii revisited: order and disorder. Papers on the Systematics of Gadiform Fishes DM Cohen 5–36 Los Angeles: Nat. Hist. Mus. Los Angeles Cty.
    [Google Scholar]
  102. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–73
    [Google Scholar]
  103. Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L et al. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–95
    [Google Scholar]
  104. Regan CT. 1924. The morphology of a rare oceanic fish, Stylephorus chordatus, Shaw; based on specimens collected in the Atlantic by the “Dana” Expeditions, 1920–1922. Proc. R. Soc. B 96:193–207
    [Google Scholar]
  105. Renema W, Bellwood DR, Braga JC, Bromfield K, Hall R et al. 2008. Hopping hotspots: global shifts in marine biodiversity. Science 321:654–57
    [Google Scholar]
  106. Ribeiro E, Davis AM, Rivero-Vega RA, Ortí G, Betancur-R R 2018. Post-Cretaceous bursts of evolution along the benthic–pelagic axis in marine fishes. Proc. R. Soc. B 285:20182010
    [Google Scholar]
  107. Rincon-Sandoval M, Duarte-Ribeiro E, Davis AM, Santaquiteria A, Hughes LC et al. 2020. Evolutionary determinism and convergence associated with water-column transitions in marine fishes. PNAS 117:33396
    [Google Scholar]
  108. Romiguier J, Cameron SA, Woodard SH, Fischman BJ, Keller L, Praz CJ. 2016. Phylogenomics controlling for base compositional bias reveals a single origin of eusociality in corbiculate bees. Mol. Biol. Evol. 33:670–78
    [Google Scholar]
  109. Ronco F, Matschiner M, Böhne A, Boila A, Büscher HH et al. 2020. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589:76–81
    [Google Scholar]
  110. Rosen DE 1973. Interrelationships of higher euteleostean fishes. Interrelationships of Fishes PH Greenwood, RS Miles, C Patterson 397–513 London: Academic
    [Google Scholar]
  111. Rosen DE. 1974. Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides. Bull. Amer. Mus. Nat. Hist. 153:269–325
    [Google Scholar]
  112. Rosen DE, Greenwood PH. 1970. Origin of the Weberian Apparatus and the Relationships of the Ostariophysan and Gonorynchiform Fishes Amer. Mus. Novit. 2428 New York: Am. Mus. Nat. Hist.
    [Google Scholar]
  113. Rosen DE, Patterson C. 1969. The structure and relationships of the paracanthopterygian fishes. Bull. Amer. Mus. Nat. Hist. 141:357–474
    [Google Scholar]
  114. Sanciangco MD, Carpenter KE, Betancur-R R 2016. Phylogenetic placement of enigmatic percomorph families (Teleostei: Percomorphaceae). Mol. Phylogenet. Evol. 94:Part B565–76
    [Google Scholar]
  115. Simion P, Delsuc F, Philippe H 2020. To what extent current limits of phylogenomics can be overcome?. Phylogenetics in the Genomic Era C Scornavacca, F Delsuc, N Galtier 2.11–34 https://hal.inria.fr/PGE/hal-02535366
    [Google Scholar]
  116. Siqueira AC, Bellwood DR, Cowman PF. 2019. Historical biogeography of herbivorous coral reef fishes: the formation of an Atlantic fauna. J. Biogeogr. 46:1611–24
    [Google Scholar]
  117. Smith WL, Craig MT. 2007. Casting the percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes. Copeia 2007 35–55
    [Google Scholar]
  118. Smith WL, Wheeler WC. 2004. Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data. Mol. Phylogenet. Evol. 32:627–46
    [Google Scholar]
  119. Smith WL, Wheeler WC. 2006. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J. Hered. 97:206–17
    [Google Scholar]
  120. Somarelli JA, Gardner H, Cannataro VL, Gunady EF, Boddy AM et al. 2020. Molecular biology and evolution of cancer: from discovery to action. Mol. Biol. Evol. 37:320–26
    [Google Scholar]
  121. Stiassny MLJ. 1986. The limits and relationships of acanthomorph teleosts. J. Zool. London (B) 1986:411–60
    [Google Scholar]
  122. Stiassny MLJ, Moore JA. 1992. A review of the pelvic girdle of acanthomorph fishes, with comments on hypotheses of acanthomorph intrarelationships. Zool. J. Linn. Soc. 104:209–42
    [Google Scholar]
  123. Stiassny MLJ, Wiley EO, Johnson GD, de Carvalho MR 2004. Gnathostome fishes. Assembling the Tree of Life J Cracraft, MJ Donoghue 410–29 New York: Oxford Univ. Press
    [Google Scholar]
  124. Straube N, Li C, Mertzen M, Yuan H, Moritz T. 2018. A phylogenomic approach to reconstruct interrelationships of main clupeocephalan lineages with a critical discussion of morphological apomorphies. BMC Evol. Biol. 18:158
    [Google Scholar]
  125. Takezaki N. 2021. Resolving the early divergence pattern of teleost fish using genome-scale data. Genome Biol. Evol. 13:evab052
    [Google Scholar]
  126. Thompson A, Hawkins M, Parey E, Wcisel D, Ota T et al. 2021. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet https://doi.org/10.1038/s41588-021-00914-y
    [Crossref] [Google Scholar]
  127. Thomson RC, Spinks PQ, Shaffer HB 2021. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. PNAS 118:e2012215118
    [Google Scholar]
  128. Turner DD. 2019. In defense of living fossils. Biol. Philos. 34:23
    [Google Scholar]
  129. Uetz P, Freed P, Aguilar R, Hošek J. 2020. The Reptile Database. accessed Dec. http://www.reptile-database.org
  130. Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol 17:e3000494
    [Google Scholar]
  131. Vân Lê HL, Lecointre G, Perasso R. 1993. A 28S rRNA-based phylogeny of gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol. Phylogenet. Evol. 2:31–51
    [Google Scholar]
  132. Vialle RA, de Souza JES, Lopes KDP, Teixeira DG, Alves Sobrinho PDA et al. 2018. Whole genome sequencing of the Pirarucu (Arapaima gigas) supports independent emergence of major teleost clades. Genome Biol. Evol. 10:2366–79
    [Google Scholar]
  133. Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS et al. 2012. The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst. Biol. 61:1001–27
    [Google Scholar]
  134. Ward P, Myers R. 2005. Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing. Ecology 86:835–47
    [Google Scholar]
  135. Wcisel DJ, Howard JT, Yoder JA, Dornburg A. 2020. Transcriptome Ortholog Alignment Sequence Tools (TOAST) for phylogenomic dataset assembly. BMC Evol. Biol. 20:41
    [Google Scholar]
  136. Wiens JJ. 2004. The role of morphological data in phylogeny reconstruction. Syst. Biol. 53:653–61
    [Google Scholar]
  137. Williams RRG. 1997. Bones and muscles of the suspensorium in the galaxioids and Lepidogalaxias salamandroides (Teleostei: Osmeriformes) and their phylogenetic significance. Rec. Australian Mus. 49:139–66
    [Google Scholar]
  138. Wilson MVH, Williams RRG 2010. Salmoniform fishes: key fossils, supertree, and possible morphological synapomorphies. Origin and Phylogenetic Interrelationships of Teleosts JS Nelson, H-P Schultze, MVH Wilson 379–409 Munchen: Verlag Dr. Friedrich Pfeil
    [Google Scholar]
  139. Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf 19:153
    [Google Scholar]
  140. Zhang X, Unmack PJ, Kuchling G, Wang Y, Georges A 2017. Resolution of the enigmatic phylogenetic relationship of the critically endangered western swamp tortoise Pseudemydura umbrina (Pleurodira: Chelidae) using a complete mitochondrial genome. Mol. Phylogenet. Evol. 115:58–61
    [Google Scholar]
  141. Zhou X, Lutteropp S, Czech L, Stamatakis A, Looz MV, Rokas A. 2020. Quartet-based computations of internode certainty provide robust measures of phylogenetic incongruence. Syst. Biol. 69:308–24
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-122120-122554
Loading
/content/journals/10.1146/annurev-ecolsys-122120-122554
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error