1932

Abstract

Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non- bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non- bees. We find that the insights into non- bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-040323-020625
2024-01-25
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-040323-020625.html?itemId=/content/journals/10.1146/annurev-ento-040323-020625&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Almeida CHS, Haddi K, Toledo PFS, Rezende SM, Santana WC et al. 2021. Sublethal agrochemical exposures can alter honey bees' and neotropical stingless bees' color preferences, respiration rates, and locomotory responses. Sci. Total Environ. 779:146432
    [Google Scholar]
  2. 2.
    Anderson NL, Harmon-Threatt AN. 2019. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9:3724
    [Google Scholar]
  3. 3.
    Anderson NL, Harmon-Threatt AN. 2021. Chronic contact with imidacloprid during development may decrease female solitary bee foraging ability and increase male competitive ability for mates. Chemosphere 283:131177
    [Google Scholar]
  4. 4.
    Andersson GKS, Rundlöf M, Smith HG. 2012. Organic farming improves pollination success in strawberries. PLOS ONE 7:e31599
    [Google Scholar]
  5. 5.
    Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29:730–41
    [Google Scholar]
  6. 6.
    Antoine CM, Forrest JRK. 2021. Nesting habitat of ground-nesting bees: a review. Ecol. Entomol. 46:143–59
    [Google Scholar]
  7. 7.
    Arce AN, David TI, Randall EL, Rodrigues AR, Colgan TJ et al. 2017. Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. J. Appl. Ecol. 54:1199–208
    [Google Scholar]
  8. 8.
    Arce AN, Rodrigues AR, Yu J, Colgan TJ, Wurm Y, Gill RJ. 2018. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc. R. Soc. B 285:20180655
    [Google Scholar]
  9. 9.
    Arena M, Sgolastra F. 2014. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–34
    [Google Scholar]
  10. 10.
    Artz DR, Pitts-Singer TL. 2015. Effects of fungicides and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata. PLOS ONE 10:e0135688
    [Google Scholar]
  11. 11.
    Azpiazu C, Bosch J, Viñuela E, Medrzycki P, Teper D, Sgolastra F. 2019. Chronic oral exposure to field realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci. Rep. 9:13770
    [Google Scholar]
  12. 12.
    Baas J, Goussen B, Miles M, Preuss TG, Roessink I. 2022. BeeGUTS—a toxicokinetic-toxicodynamic model for the interpretation and integration of acute and chronic honey bee tests. Environ. Toxicol. Chem. 41:2193–201
    [Google Scholar]
  13. 13.
    Baas J, Jager T, Kooijman B. 2010. A review of DEB theory in assessing toxic effects of mixtures. Sci. Total Environ. 408:3740–45
    [Google Scholar]
  14. 14.
    Banks JE, Banks HT, Myers N, Laubmeier AN, Bommarco R. 2020. Lethal and sublethal effects of toxicants on bumble bee populations: a modelling approach. Ecotoxicology 29:237–45
    [Google Scholar]
  15. 15.
    Baron GL, Jansen VAA, Brown MJF, Raine NE. 2017. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 1:1308–16
    [Google Scholar]
  16. 16.
    Baron GL, Raine NE, Brown MJF. 2014. Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. J. Appl. Ecol. 51:460–69
    [Google Scholar]
  17. 17.
    Baron GL, Raine NE, Brown MJF. 2017. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc. R. Soc. B 284:20170123
    [Google Scholar]
  18. 18.
    Beadle K, Singh KS, Troczka BJ, Randall E, Zaworra M et al. 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLOS Genet. 15:e1007903
    [Google Scholar]
  19. 19.
    Becher MA, Twiston-Davies G, Penny TD, Goulson D, Rotheray E, Osborne JL. 2018. Bumble-BEEHAVE: a systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level. J. Appl. Ecol. 55:2790–801
    [Google Scholar]
  20. 20.
    Bednarska AJ, Mikołajczyk L, Ziółkowska E, Kocjan K, Wnęk A et al. 2023. Effects of agricultural landscape structure, insecticide residues, and pollen diversity on the life-history traits of the red mason bee Osmia bicornis. Sci. Total Environ. 809:151142
    [Google Scholar]
  21. 21.
    Berenbaum MR, Liao L-H. 2019. Honey bees and environmental stress: toxicologic pathology of a superorganism. Toxicol. Pathol. 47:1076–81
    [Google Scholar]
  22. 22.
    Biddinger DJ, Rajotte EG. 2015. Integrated pest and pollinator management—adding a new dimension to an accepted paradigm. Curr. Opin. Insect Sci. 10:204–9
    [Google Scholar]
  23. 23.
    Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft SA et al. 2013. Comparative toxicities and syngergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLOS ONE 8:e72587
    [Google Scholar]
  24. 24.
    Blitzer EJ, Dormann CF, Holzschuh A, Klein A-M, Rand TA, Tscharntke T. 2012. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146:34–43
    [Google Scholar]
  25. 25.
    Boesten JJTI, Köpp H, Adraanse PI, Brock TCM, Forbes VE. 2007. Conceptual model for improving the link between exposure and effects in the aquatic risk assessment of pesticides. Ecotoxicol. Environ. Saf. 66:291–308
    [Google Scholar]
  26. 26.
    Bohnenblust EW, Vaudo AD, Egan JF, Mortenson DA, Tooker JF. 2015. Effects of the herbicide dicamba on non-target plants and pollinator visitation. Environ. Toxicol. Chem. 35:144–51
    [Google Scholar]
  27. 27.
    Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E et al. 2015. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49:12731–40
    [Google Scholar]
  28. 28.
    Botías C, David A, Hill EM, Goulson D. 2017. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ. Pollut. 222:73–82
    [Google Scholar]
  29. 29.
    Botías C, Jones JC, Pamminger T, Bartomeus I, Hughes WOH, Goulson D. 2021. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 90:415–31
    [Google Scholar]
  30. 30.
    Boyle NK, Pitts-Singer TL, Abbott J, Alix A, Cox-Foster DL et al. 2019. Workshop on pesticide exposure assessment paradigm for non-Apis bees: foundation and summaries. Environ. Entomol. 48:4–11
    [Google Scholar]
  31. 31.
    Brittain C, Bommarco R, Vighi M, Settele J, Potts SG. 2010. Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol. Conserv. 143:1860–67
    [Google Scholar]
  32. 32.
    Brittain C, Potts SG. 2011. The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl. Ecol. 12:321–31
    [Google Scholar]
  33. 33.
    Bryden J, Gill RJ, Mitton RAA, Raine NE, Jansen VAA. 2013. Chronic sublethal stress causes bee colony failure. Ecol. Lett. 16:1463–69
    [Google Scholar]
  34. 34.
    Cabrera AR, Almanza MT, Cutler GC, Fischer DL, Hinarejos S et al. 2016. Initial recommendations for higher-tier risk assessment protocols for bumble bees, Bombus spp. (Hymenoptera: Apidae). Integr. Environ. Assess. Manag. 12:222–29
    [Google Scholar]
  35. 35.
    Calhoun AC, Harrod AE, Bassingthwaite TA, Sadd BM. 2021. Testing the multiple stressor hypothesis: Chlorothalonil exposure alters transmission potential of a bumblebee pathogen but not individual host health. Proc. R. Soc. B 288:20202922
    [Google Scholar]
  36. 36.
    Cameron SA, Lozier J, Strange JP, Koch JB, Cordes N et al. 2011. Patterns of widespread decline in North American bumble bees. PNAS 108:662–67
    [Google Scholar]
  37. 37.
    Camp AA, Lehmann DM. 2021. Impacts of neonicotinoids on the bumble bees Bombus terrestris and Bombus impatiens examined through an Adverse Outcome Pathway framework lens. Environ. Toxicol. Chem. 40:309–22
    [Google Scholar]
  38. 38.
    Centrella M, Russo L, Moreno Ramírez N, Eitzer B, van Dyke M et al. 2020. Diet diversity and pesticide risk mediate the negative effects of land use change on solitary bee offspring production. J. Appl. Ecol. 57:1031–42
    [Google Scholar]
  39. 39.
    Cham KO, Nocelli RCF, Borges LO, Viana-Silva FEC, Tonelli CAM et al. 2019. Pesticide exposure assessment paradigm for stingless bees. Environ. Entomol. 48:36–48
    [Google Scholar]
  40. 40.
    Chole H, de Guinea M, Woodard SH, Bloch G. 2022. Field-realistic concentrations of a neonicotinoid insecticide influence socially regulated brood development in a bumblebee. Proc. R. Soc. B 289:20220253
    [Google Scholar]
  41. 41.
    Cowie RH, Bouchet P, Fontaine B. 2022. The sixth mass extinction: fact, fiction or speculation?. Biol. Rev. 97:640–63
    [Google Scholar]
  42. 42.
    Crall JD, Raine NE. 2023. How do neonicotinoids affect social bees? Linking proximate mechanisms to ecological impacts. Adv. Insect Physiol. 64:191–253
    [Google Scholar]
  43. 43.
    Crall JD, Switzer CM, Oppenheimer RL, Ford Versypt AN, Dey B et al. 2018. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362:683–86
    [Google Scholar]
  44. 44.
    Danforth BN, Minckley RL, Neff JL. 2019. The Solitary Bees: Biology, Evolution, Conservation Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  45. 45.
    David A, Botías C, Abdul-Sada A, Nicholls E, Rotheray EL et al. 2016. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88:169–78
    [Google Scholar]
  46. 46.
    Dirilgen T, Herbertsson L, O'Reilly AD, Mahon N, Stanley DA. 2023. Moving past neonicotinoids and honeybees: a systematic review of existing research on other insecticides and bees. Environ. Res. 235:116612
    [Google Scholar]
  47. 47.
    Drescher W, Geusen-Pfister H. 1991. Comparative testing of the oral toxicity of Acephate, Dimethoate and Methomyl to honeybees, bumblebees and Syrphidae. Acta Hortic. 288:133–38
    [Google Scholar]
  48. 48.
    EFSA, Adriaanse P, Arce A, Focks A, Ingels B et al. 2023. Revised guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 21:e07989
    [Google Scholar]
  49. 49.
    EFSA, Auteri D, Arce A, Ingels B, Marchesi M et al. 2022. Analysis of the evidence to support the definition of Specific Protection Goals for bumble bees and solitary bees. EFSA Support. Publ. 19:7125E
    [Google Scholar]
  50. 50.
    EFSA, Auteri D, Devos Y, Fabrega J, Pagani S et al. 2022. Advancing the Environmental Risk Assessment of Chemicals to Better Protect Insect Pollinators (IPol-ERA). EFSA Support. Publ. 19:E200505E
    [Google Scholar]
  51. 51.
    Ellis C, Park KJ, Whitehorn P, David A, Goulson D. 2017. The neonicotinoid insecticide thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51:1727–32
    [Google Scholar]
  52. 52.
    Escher BI, Hackermüller J, Polte T, Scholz S, Aigner A et al. 2017. From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int. 99:97–106
    [Google Scholar]
  53. 53.
    Fauser A, Sandrock C, Neumann P, Sadd BM. 2017. Neonicotinoids override a parasite exposure impact on hibernation success of a key bumblebee pollinator. Ecol. Entomol. 42:306–14
    [Google Scholar]
  54. 54.
    Fauser-Misslin A, Sadd BM, Neumann P, Sandrock C. 2014. Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. J. Appl. Ecol. 51:450–59
    [Google Scholar]
  55. 55.
    Feltham H, Park K, Goulson D. 2014. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23:317–23
    [Google Scholar]
  56. 56.
    Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B, Menzel R. 2014. Neonicotinoids interfere with specific components of navigation in honeybees. PLOS ONE 9:e91364
    [Google Scholar]
  57. 57.
    Fortuin CC, Gandhi KJK. 2021. Mason bees (Hymenoptera: Megachilidae) exhibit no avoidance of imidacloprid-treated soils. Environ. Entomol. 50:1438–45
    [Google Scholar]
  58. 58.
    Fortuin CC, McCarty E, Gandhi KJK. 2021. Acute contact with imidacloprid in soil affects the nesting and survival success of a solitary wild bee, Osmia lignaria (Hymenoptera: Megachilidae). Chemosphere 264:128572
    [Google Scholar]
  59. 59.
    Franke L, Elston C, Jütte T, Klein O, Knäbe S et al. 2021. Results of 2-year ring testing of a semifield study design to investigate potential impacts of plant protection products on the solitary bees Osmia bicornis and Osmia cornuta and a proposal for a suitable test design. Environ. Toxicol. Chem. 40:236–50
    [Google Scholar]
  60. 60.
    Franklin EL, Raine NE. 2019. Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3:1373–75
    [Google Scholar]
  61. 61.
    Free JB, Butler CG. 1959. Bumblebees London: Collins
    [Google Scholar]
  62. 62.
    Gardner E, Breeze TD, Clough Y, Smith HG, Baldock KCR et al. 2020. Reliably predicting pollinator abundance: challenges of calibrating process-based ecological models. Methods Ecol. Evol. 11:1673–89
    [Google Scholar]
  63. 63.
    Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M et al. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11:97–105
    [Google Scholar]
  64. 64.
    Gill RJ, Raine NE. 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28:1459–71
    [Google Scholar]
  65. 65.
    Gill RJ, Ramos-Rodríguez O, Raine NE. 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–8
    [Google Scholar]
  66. 66.
    Godfray HCJ, Blacquière T, Field LM, Hails RS, Petrokofsky G et al. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B 281:20140558
    [Google Scholar]
  67. 67.
    Godfray HCJ, Blacquière T, Field LM, Hails RS, Potts SG et al. 2015. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B 282:20151821
    [Google Scholar]
  68. 68.
    Goulson D. 2015. Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the UK's Food & Environment Research Agency 2012 experiment. PeerJ 3:e854
    [Google Scholar]
  69. 69.
    Gradish AE, van der Steen J, Scott-Dupree CD, Cabrera AR, Cutler GC et al. 2019. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48:12–21
    [Google Scholar]
  70. 70.
    Graham KK, Milbrath MO, Zhang Y, Soehnlen A, Baert N et al. 2021. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Sci. Rep. 11:16857
    [Google Scholar]
  71. 71.
    Grüter C. 2020. Stingless Bees: Their Behaviour, Ecology and Evolution Berlin: Springer
    [Google Scholar]
  72. 72.
    Haas J, Hayward A, Buer B, Maiwald F, Nebelsiek B et al. 2022. Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. PNAS 119:e2205850119
    [Google Scholar]
  73. 73.
    Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12:e0185809
    [Google Scholar]
  74. 74.
    Hardstone MC, Scott JG. 2010. Is Apis mellifera more sensitive to insecticides than other insects?. Pest Manag. Sci. 66:1171–80
    [Google Scholar]
  75. 75.
    Häussler J, Sahlin U, Baey C, Smith HG, Clough Y. 2017. Pollinator population size and pollination ecosystem service responses to enhancing floral and nesting resources. Ecol. Evol. 7:1898–908
    [Google Scholar]
  76. 76.
    Hayward A, Beadle K, Singh KS, Exeler N, Zaworra M et al. 2019. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3:1521–24
    [Google Scholar]
  77. 77.
    Heard MS, Baas J, Dorne J-L, Lahive E, Robinson AG et al. 2017. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?. Sci. Total Environ. 578:357–65
    [Google Scholar]
  78. 78.
    Hellström S, Strobl V, Straub L, Osterman WHA, Paxton RJ, Osterman J. 2023. Beyond generalists: the Brassicaceae pollen specialist Osmia brevicornis as a prospective model organism when exploring pesticide risk to bees. Environ. Sustain. Indic. 18:100239
    [Google Scholar]
  79. 79.
    Herbertsson L, Klatt BK, Blasi M, Rundlöf M, Smith HG. 2022. Seed-coating of rapeseed (Brassica napus) with the neonicotinoid clothianidin affects behaviour of red mason bees (Osmia bicornis) and pollination of strawberry flowers (Fragaria × ananassa). PLOS ONE 17:e0273851
    [Google Scholar]
  80. 80.
    Hladik ML, Vandever M, Smalling KL. 2016. Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci. Total Environ. 542:469–77
    [Google Scholar]
  81. 81.
    Holzschuh A, Steffan-Dewenter I, Tscharntke T. 2008. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–61
    [Google Scholar]
  82. 82.
    Ingwell LL, Ternest JJ, Pecenka JR, Kaplan I. 2021. Supplemental forage ameliorates the negative impact of insecticides on bumblebees in a pollinator-dependent crop. Proc. R. Soc. B 288:20210785
    [Google Scholar]
  83. 83.
    Iwasa T, Motoyama N, Ambrose JT, Roe RM. 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 23:371–78
    [Google Scholar]
  84. 84.
    Jacob CRO, Zanardi OZ, Malaquias JB, Silva CAS, Yamamoto PT. 2019. The impact of four widely used neonicotinoid insecticides on Tetragonisca angustula (Latreille) (Hymenoptera: Apidae). Chemosphere 224:65–70
    [Google Scholar]
  85. 85.
    Jin N, Klein S, Leimig F, Bischoff G, Menzel R. 2015. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol. 218:2821–25
    [Google Scholar]
  86. 86.
    Jonsson O, Rundlöf M, Svensson G, Forsberg M, Lindström B et al. 2022. Pollinators’ exposure to pesticides via pollen, nectar and air in the agricultural landscape Rep. SLU Cent. Pestic. Environ., Swed. Univ. Agric. Sci. Uppsala:
    [Google Scholar]
  87. 87.
    Karbassioon A, Stanley DA. 2023. Exploring relationships between time of day and pollinator activity in the context of pesticide use. Basic Appl. Ecol. 72:74–81
    [Google Scholar]
  88. 88.
    Kendall LK, Mola JM, Portman ZM, Cariveau DP, Smith HG, Bartomeus I. 2022. The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology 103:e3809
    [Google Scholar]
  89. 89.
    Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RJ. 2019. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol. Evol. 9:5637–50
    [Google Scholar]
  90. 90.
    Kenna D, Graystock P, Gill RJ. 2023. Toxic temperatures: Bee behaviours exhibit divergent pesticide toxicity relationships with warming. Glob. Change Biol. 29:2981–98
    [Google Scholar]
  91. 91.
    Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J et al. 2015. Bees prefer foods containing neonicotinoid pesticides. Nature 521:74–76
    [Google Scholar]
  92. 92.
    Khoury DS, Myerscough MR, Barron AB. 2011. A quantitative model of honey bee colony population dynamics. PLOS ONE 6:e18491
    [Google Scholar]
  93. 93.
    Klaus F, Tscharntke T, Bischoff G, Grass I. 2021. Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects—evidence from a semi-field experiment. Ecol. Lett. 24:668–75
    [Google Scholar]
  94. 94.
    Kleczkowski A, Ellis C, Hanley N, Goulson D. 2017. Pesticides and bees: ecological-economic modelling of bee populations on farmland. Ecol. Model. 360:53–62
    [Google Scholar]
  95. 95.
    Knapp JL, Bates A, Jonsson O, Klatt B, Krausl T et al. 2022. Pollinators, pests and yield—multiple trade-offs from insecticide use in a mass-flowering crop. J. Appl. Ecol. 59:2419–29
    [Google Scholar]
  96. 96.
    Knapp JL, Nicholson CC, Jonsson O, de Miranda JR, Rundlöf M. 2023. Ecological traits interact with landscape context to determine bees’ pesticide risk. Nat. Ecol. Evol. 7:547–56
    [Google Scholar]
  97. 97.
    Kopit AM, Pitts-Singer TL. 2018. Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol. 47:499–510
    [Google Scholar]
  98. 98.
    Lämsä J, Kuusela E, Tuomi J, Juntunen S, Watts PC. 2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proc. R. Soc. B 285:20180506
    [Google Scholar]
  99. 99.
    Larson JL, Redmond CT, Potter DA. 2013. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLOS ONE 8:e66375
    [Google Scholar]
  100. 100.
    Laycock I, Cotterell KC, O'Shea-Wheller TA, Cresswell JE 2014. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicol. Environ. Saf. 100:153–58
    [Google Scholar]
  101. 101.
    Laycock I, Cresswell JE. 2013. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid. PLOS ONE 8:e79872
    [Google Scholar]
  102. 102.
    Laycock I, Lenthall KM, Barratt AT, Cresswell JE. 2012. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–45
    [Google Scholar]
  103. 103.
    LeBuhn G, Vargas Luna J. 2021. Pollinator decline: What do we know about the drivers of solitary bee declines?. Curr. Opin. Insect Sci. 46:106–11
    [Google Scholar]
  104. 104.
    Lehmann DM, Camp AA. 2021. A systematic scoping review of the methodological approaches and effects of pesticide exposure on solitary bees. PLOS ONE 16:e0251197
    [Google Scholar]
  105. 105.
    Levine SL, Giddings J, Valenti T, Cobb GP, Carley DS, McConnell LL. 2019. Overcoming challenges of incorporating higher tier data in ecological risk assessments and risk management of pesticides in the United States: findings and recommendations from the 2017 workshop on regulation and innovation in agriculture. Integr. Environ. Assess. Manag. 15:714–25
    [Google Scholar]
  106. 106.
    Leza M, Watrous KM, Bratu J, Woodard SH. 2018. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc. R. Soc. B 285:20180761
    [Google Scholar]
  107. 107.
    Lindström SAM, Andersson GKS, Nilsson L, Rundlöf M, Smith HG. 2021. Methods for assessing the effects of plant protection products on biodiversity Rep. Swed. Chem. Agency Sundbyberg:
    [Google Scholar]
  108. 108.
    Linguadoca A, Jürison M, Hellström S, Straw EA, Šima P et al. 2022. Intra-specific variation in sensitivity of Bombus terrestris and Osmia bicornis to three pesticides. Sci. Rep. 12:17311
    [Google Scholar]
  109. 109.
    Linguadoca A, Rizzi C, Villa S, Brown MJF. 2021. Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees. Sci. Total Environ. 795:148680
    [Google Scholar]
  110. 110.
    Long EY, Krupke CH. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 7:11629
    [Google Scholar]
  111. 111.
    Lourencetti APS, Azevedo P, Miotelo L, Malaspina O, Nocelli RCF. 2023. Surrogate species in pesticide risk assessments: toxicological data of three stingless bees species. Environ. Pollut. 318:120842
    [Google Scholar]
  112. 112.
    Lundin O, Rundlöf M, Jonsson M, Bommarco R, Williams NM. 2021. Integrated pest and pollinator management—expanding the concept. Front. Ecol. Environ. 19:283–91
    [Google Scholar]
  113. 113.
    Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R. 2015. Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLOS ONE 10:e0136928
    [Google Scholar]
  114. 114.
    Main AR, Webb EB, Goyne KW, Abney R, Mengel D. 2021. Impacts of neonicotinoid seed treatments on the wild bee community in agricultural field margins. Sci. Total Environ. 786:147299
    [Google Scholar]
  115. 115.
    Main AR, Webb EB, Goyne KW, Mengel D. 2020. Reduced species richness of native bees in field margins associated with neonicotinoid concentrations in non-target soils. Agric. Ecosyst. Environ. 287:106693
    [Google Scholar]
  116. 116.
    Manjon C, Troczka BJ, Zaworra M, Beadle K, Randall E et al. 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28:1137–43
    [Google Scholar]
  117. 117.
    McArt SH, Fersch AA, Milano NJ, Truitt LL, Böröczky K. 2017. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7:46554
    [Google Scholar]
  118. 118.
    McArt SH, Urbanowicz C, McCoshum S, Irwin RE, Adler LS. 2017. Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proc. R. Soc. B 284:20172181
    [Google Scholar]
  119. 119.
    Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G. 2010. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–15
    [Google Scholar]
  120. 120.
    Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R et al. 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLOS ONE 5:e9754
    [Google Scholar]
  121. 121.
    Mundy-Heisz KA, Prosser RS, Raine NE. 2022. Acute oral toxicity and risks of exposure to the neonicotinoid thiamethoxam, and other classes of systemic insecticide, for the Common Eastern Bumblebee (Bombus impatiens). Chemosphere 295:133771
    [Google Scholar]
  122. 122.
    Muth F, Leonard AS. 2019. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 9:4764
    [Google Scholar]
  123. 123.
    Muth F, Gaxiola RL, Leonard AS. 2020. No evidence for neonicotinoid preferences in the bumblebee Bombus impatiens. R. Soc. Open Sci. 7:191883
    [Google Scholar]
  124. 124.
    Nabaes Jodar DN, Pérez-Méndez N, Botías C, Garibaldi LA, Hunicken PL et al. 2023. Removing non-crop flowers within orchards promotes the decline of pollinators, not their conservation: a comment on McDougall et al. 2021. Insect. Conserv. Divers. 16:550–54
    [Google Scholar]
  125. 125.
    Nicholls E, Fowler R, Niven JE, Gilbert JD, Goulson D. 2017. Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee. Osmia bicornis. PeerJ 5:e3417
    [Google Scholar]
  126. 126.
    Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat M-P et al. 2023. Pesticide use negatively affects bumble bees across European landscapes. Nature In press
    [Google Scholar]
  127. 127.
    Omuse ER, Niassy S, Kiatoko N, Lattorff HMG, Wagacha JM, Dubois T. 2022. A fungal-based pesticide does not harm pollination service provided by the African stingless bee Meliponula ferruginea on cucumber (Cucumis sativus). Apidologie 53:28
    [Google Scholar]
  128. 128.
    Orr MC, Hughes AC, Chesters D, Pickering J, Zhu C-D, Ascher JS. 2021. Global patterns and drivers of bee distribution. Curr. Biol. 31:451–58
    [Google Scholar]
  129. 129.
    Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN. 2015. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B 282:20150299
    [Google Scholar]
  130. 130.
    Pelaez V, da Silva LR, Araújo EB. 2013. Regulation of pesticides: a comparative analysis. Sci. Public Policy 40:644–56
    [Google Scholar]
  131. 131.
    Persson AS, Mazier F, Smith HG. 2018. When beggars are choosers—how nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape. Ecol. Evol. 8:5777–91
    [Google Scholar]
  132. 132.
    Phelps JD, Strang CG, Gbylik-Sikorska M, Sniegocki T, Posyniak A, Sherry DF. 2018. Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology 27:175–87
    [Google Scholar]
  133. 133.
    Piiroinen S, Botías C, Nicholls B, Goulson D. 2016. No effect of low-level chronic neonicotinoid exposure on bumblebee learning and fecundity. PeerJ 4:e1808
    [Google Scholar]
  134. 134.
    Piiroinen S, Goulson D. 2016. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc. R. Soc. B 283:20160246
    [Google Scholar]
  135. 135.
    Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC et al. 2016. Safeguarding pollinators and their values to human well-being. Nature 540:220–29
    [Google Scholar]
  136. 136.
    Raimondo S, Schmolke A, Pollesch N, Accolla C, Galic N et al. 2021. Pop-guide: population modeling guidance, use, interpretation, and development for ecological risk assessment. Integr. Environ. Assess. Manag. 17:767–84
    [Google Scholar]
  137. 137.
    Robinson A, Hesketh H, Lahive E, Horton AA, Svendsen C et al. 2017. Comparing bee species responses to chemical mixtures: common response patterns?. PLOS ONE 12:e0176289
    [Google Scholar]
  138. 138.
    Rollin O, Bretagnolle V, Decourtye A, Aptel J, Michel N et al. 2013. Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agric. Ecosyst. Environ. 179:78–86
    [Google Scholar]
  139. 139.
    Rondeau S, Baert N, McArt S, Raine NE. 2022. Quantifying exposure of bumblebee (Bombus spp.) queens to pesticide residues when hibernating in agricultural soils. Environ. Pollut. 309:119722
    [Google Scholar]
  140. 140.
    Rondeau S, Raine NE. 2022. Fungicides and bees: a review of exposure and risk. Environ. Int. 165:107311
    [Google Scholar]
  141. 141.
    Rubach MN, Ashauer R, Buchwalter DB, De Lange HJ, Hamer M et al. 2011. Framework for traits-based assessment in ecotoxicology. Integr. Environ. Assess. Manag. 7:172–86
    [Google Scholar]
  142. 142.
    Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V et al. 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80
    [Google Scholar]
  143. 143.
    Rundlöf M, Lundin O. 2019. Can costs of pesticide exposure for bumblebees be balanced by benefits from a mass-flowering crop?. Environ. Sci. Technol. 53:14144–51
    [Google Scholar]
  144. 144.
    Rundlöf M, Nilsson H, Smith HG. 2008. Interacting effects of farming practice and landscape context on bumble bees. Biol. Conserv. 141:417–26
    [Google Scholar]
  145. 145.
    Rundlöf M, Stuligross C, Lindh A, Malfi RL, Burns K et al. 2022. Flower plantings support wild bee reproduction and may also mitigate pesticide exposure effects. J. Appl. Ecol. 59:2117–27
    [Google Scholar]
  146. 146.
    Samuelson EEW, Chen-Wishart ZP, Gill RJ, Leadbeater E. 2016. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6:38957
    [Google Scholar]
  147. 147.
    Sanchez-Bayo F, Goka K. 2014. Pesticide residues and bees—a risk assessment. PLOS ONE 9:e94482
    [Google Scholar]
  148. 148.
    Sandrock C, Tanadini LG, Pettis JS, Biesmeijer JC, Potts SG, Neumann P. 2014. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol. 16:119–28
    [Google Scholar]
  149. 149.
    Schmolke A, Galic N, Feken M, Thompson H, Sgolastra F et al. 2021. Assessment of the vulnerability to pesticide exposures across bee species. Environ. Toxicol. Chem. 40:2640–51
    [Google Scholar]
  150. 150.
    Schwarz JM, Knauer AC, Allan MJ, Dean RR, Ghazoul J et al. 2022. No evidence for impaired solitary bee fitness following pre-flowering sulfoxaflor application alone or in combination with a common fungicide in a semi-field experiment. Environ. Int. 164:107252
    [Google Scholar]
  151. 151.
    Scott-Dupree CD, Conroy L, Harris CR. 2009. Impact of currently used or potentially useful insecticides for Canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymenoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 102:177–82
    [Google Scholar]
  152. 152.
    Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J et al. 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671–74
    [Google Scholar]
  153. 153.
    Sgolastra F, Hinarejos S, Pitts-Singer TL, Boyle NK, Joseph T et al. 2019. Pesticide exposure assessment paradigm for solitary bees. Environ. Entomol. 48:22–35
    [Google Scholar]
  154. 154.
    Sibly RM, Hone J. 2002. Population growth rate and its determinants: an overview. Philos. Trans. R. Soc. B 357:1153–70
    [Google Scholar]
  155. 155.
    Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V. 2019. Pesticide residues in European agricultural soils—a hidden reality unfolded. Sci. Total Environ. 653:1532–45
    [Google Scholar]
  156. 156.
    Siviter H, Bailes EJ, Martin CD, Oliver TR, Koricheva J et al. 2021. Agrochemicals interact synergistically to increase bee mortality. Nature 596:389–92
    [Google Scholar]
  157. 157.
    Siviter H, Brown MJF, Leadbeater E. 2018. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561:109–12
    [Google Scholar]
  158. 158.
    Siviter H, Linguadoca A, Ippolito A, Muth F. 2023. Pesticide licensing in the EU and protecting pollinators. Curr. Biol. 33:PR44–48
    [Google Scholar]
  159. 159.
    Siviter H, Richman SK, Muth F. 2021. Field-realistic neonicotinoid exposure has sub-lethal effects on non-Apis bees: a meta-analysis. Ecol. Lett. 24:2586–97
    [Google Scholar]
  160. 160.
    Siviter H, Scott A, Pasquier G, Pull CD, Brown MJF, Leadbeater E. 2019. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 7:e7208
    [Google Scholar]
  161. 161.
    Smith DB, Arce AN, Ramos Rodrigues A, Bischoff PH, Burris D et al. 2020. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc. R. Soc. B 287:20192442
    [Google Scholar]
  162. 162.
    Sponsler DB, Grozinger CM, Hitaj C, Rundlöf M, Botías C et al. 2019. Pesticides and pollinators: a socioecological synthesis. Sci. Total Environ. 662:1012–27
    [Google Scholar]
  163. 163.
    Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE. 2015. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528:548–50
    [Google Scholar]
  164. 164.
    Stanley DA, Raine NE. 2016. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct. Ecol. 30:1132–39
    [Google Scholar]
  165. 165.
    Stanley DA, Raine NE. 2017. Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Sci. Rep. 7:8005
    [Google Scholar]
  166. 166.
    Stanley DA, Russell AL, Morrison SJ, Rogers C, Raine NE. 2016. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53:1440–49
    [Google Scholar]
  167. 167.
    Stanley DA, Smith KE, Raine NE. 2015. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5:16508
    [Google Scholar]
  168. 168.
    Stewart SD, Lorenz GM, Catchot AL, Gore J, Cook D et al. 2014. Potential exposure of pollinators to neonicotinoid insecticides from the use of insecticide seed treatments in the mid-southern United States. Environ. Sci. Technol. 48:9762–69
    [Google Scholar]
  169. 169.
    Straub L, Williams GR, Pettis J, Fries I, Neumann P. 2015. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12:109–12
    [Google Scholar]
  170. 170.
    Straw EA, Carpentier EN, Brown MJF. 2021. Roundup causes high levels of mortality following contact exposure in bumble bees. J. Appl. Ecol. 58:1167–76
    [Google Scholar]
  171. 171.
    Strobl V, Albrecht M, Villamar-Bouza L, Tosi S, Neumann P, Straub L. 2021. The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta. Environ. Pollut. 284:117106
    [Google Scholar]
  172. 172.
    Stuligross C, Williams NM. 2020. Pesticide and resource stressors additively impair wild bee reproduction. Proc. R. Soc. B 287:20201390
    [Google Scholar]
  173. 173.
    Stuligross C, Williams NM. 2021. Past insecticide exposure reduces bee reproduction and population growth rate. PNAS 118:e2109909118
    [Google Scholar]
  174. 174.
    Suzuki T, Ikegami M, Goka K, Sakamoto Y. 2023. Insecticide residues associated with apple orchard treatments in the mason bee, Osmia cornifrons, and their nests. Environ. Toxicol. Chem. 42:1564–74
    [Google Scholar]
  175. 175.
    Switzer CM, Combes SA. 2016. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology 25:1150–59
    [Google Scholar]
  176. 176.
    Tamburini G, Pereira-Peixoto M-H, Borth J, Lotz S, Wintermantel D et al. 2021. Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. Environ. Int. 157:106813
    [Google Scholar]
  177. 177.
    Tang FHM, Lenzen M, McBratney A, Maggi F. 2021. Risk of pesticide pollution at the global scale. Nat. Geosci. 14:206–10
    [Google Scholar]
  178. 178.
    Tasei JN, Aupinel P. 2008. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39:397–409
    [Google Scholar]
  179. 179.
    Teeguarden JG, Tan Y-M, Edwards SW, Leonard JA, Anderson KA et al. 2016. Completing the link between exposure science and toxicology for improved environmental health decision making: the aggregate exposure pathway framework. Environ. Sci. Technol. 50:4579–86
    [Google Scholar]
  180. 180.
    Thompson HM. 2001. Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32:305–21
    [Google Scholar]
  181. 181.
    Thompson HM. 2012. Interaction between pesticides and other factors in effects on bees. EFSA Support. Publ. 9:340E
    [Google Scholar]
  182. 182.
    Tomé HVV, Barbosa WF, Martins GF, Guedes RNC. 2015. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124:103–9
    [Google Scholar]
  183. 183.
    Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC. 2012. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidiodes. PLOS ONE 7:e38406
    [Google Scholar]
  184. 184.
    Tomé HVV, Ramos GS, Araújo MF, Santana WC, Santos GR et al. 2017. Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. R. Soc. Open Sci. 4:160866
    [Google Scholar]
  185. 185.
    Topping CJ, Craig PS, de Jong F, Klein M, Laskowski R et al. 2015. Towards a landscape scale management of pesticides: ERA using changes in modelled occupancy and abundance to assess long-term population impacts of pesticides. Sci. Total Environ. 537:159–69
    [Google Scholar]
  186. 186.
    Tosi S, Sfeir C, Carnesecchi E, vanEngelsdorp D, Chauzat MP. 2022. Lethal, sublethal, and combined effects of pesticides on bees: a meta-analysis and new risk assessment tools. Sci. Total Environ. 844:156857
    [Google Scholar]
  187. 187.
    Traas TP, Janse JH, van den Brink PJ, Brock TCM, Aldenburg T. 2004. A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery. Environ. Toxicol. Chem. 23:521–29
    [Google Scholar]
  188. 188.
    Uhl P, Brühl CA. 2019. The impact of pesticides on flower-visiting insects: a review with regard to European risk assessment. Environ. Toxicol. Chem. 38:2355–70
    [Google Scholar]
  189. 189.
    Valdovinos-Núñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Ruiz Sánchez E. 2009. Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J. Econ. Entomol. 102:1737–42
    [Google Scholar]
  190. 190.
    van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417–20
    [Google Scholar]
  191. 191.
    van Straalen NM. 1994. Biodiversity of ecotoxicological responses in animals. Neth. J. Zool. 44:112–29
    [Google Scholar]
  192. 192.
    Vanbergen AJ, Insect Pollinators Initiat 2013. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11:251–59
    [Google Scholar]
  193. 193.
    Végh R, Sörös C, Majercsik N, Sipos L. 2022. Determination of pesticides in bee pollen: validation of a multiresidue high-performance liquid chromatography-mass spectrometry/mass spectrometry method and testing pollen samples of selected botanical origin. J. Agric. Food Chem. 70:1507–15
    [Google Scholar]
  194. 194.
    Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65:457–80
    [Google Scholar]
  195. 195.
    Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. 2021. Insect decline in the Anthropocene: death by a thousand cuts. PNAS 118:e2023989118
    [Google Scholar]
  196. 196.
    Ward LT, Hladik ML, Guzman A, Winsemius S, Bautista A et al. 2022. Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Sci. Total Environ. 831:154697
    [Google Scholar]
  197. 197.
    Whitehorn PR, O'Connor S, Wackers FL, Goulson D. 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–52
    [Google Scholar]
  198. 198.
    Whitehorn PR, Wallace C, Vallejo-Marin M. 2017. Neonicotinoid pesticide limits improvement in buzz pollination by bumblebees. Sci. Rep. 7:15562
    [Google Scholar]
  199. 199.
    Willis Chan DS, Prosser RS, Rodríguez-Gil JL, Raine NE. 2019. Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from systemic insecticides in agricultural soil. Sci. Rep. 9:11870
    [Google Scholar]
  200. 200.
    Willis Chan DS, Raine NE. 2021. Hoary squash bees (Eucera pruinosa: Hymenoptera: Apidae) provide abundant and reliable pollination services to Cucurbita crops in Ontario (Canada). Environ. Entomol. 50:968–81
    [Google Scholar]
  201. 201.
    Willis Chan DS, Raine NE. 2021. Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo). Sci. Rep. 11:4241
    [Google Scholar]
  202. 202.
    Willmer PG, Stone GN. 2004. Behavioral, ecological, and physiological determinants of the activity patterns of bees. Adv. Study Behav. 34:347–466
    [Google Scholar]
  203. 203.
    Wintermantel D, Locke B, Andersson GKS, Semberg E, Forsgren E et al. 2018. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat. Commun. 9:5446
    [Google Scholar]
  204. 204.
    Wintermantel D, Pereira-Peixoto M-H, Warth N, Melcher K, Faller M et al. 2022. Flowering resources modulate the sensitivity of bumblebees to a common fungicide. Sci. Total Environ. 829:154450
    [Google Scholar]
  205. 205.
    Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG et al. 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356:1393–95
    [Google Scholar]
  206. 206.
    Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG et al. 2016. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7:12459
    [Google Scholar]
  207. 207.
    Wu-Smart J, Spivak M. 2018. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environ. Entomol. 47:55–62
    [Google Scholar]
/content/journals/10.1146/annurev-ento-040323-020625
Loading
/content/journals/10.1146/annurev-ento-040323-020625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error