Pyroclastic density currents are generated in explosive volcanic eruptions when gas and particle mixtures remain denser than the surrounding atmosphere. These mobile currents have a diversity of flow regimes, from energetic granular flows to turbulent suspensions. Given their hazardous nature, much of our understanding of the internal dynamics of these currents has been explored through mathematical and computational models. This review discusses the anatomy of these currents and their phenomenology and places these observations in the context of forces driving the currents. All aspects of the current dynamics are influenced by multiphase interactions, and the study of these currents offers insight into a high-energy end-member of multiphase flow. At low concentration, momentum transfer is dominated by particle-gas drag. At higher concentration, particle collisions, friction, and gas pore pressure act to redistribute momentum. This review examines end-member theoretical models for dilute and concentrated flow and then considers insight gained from multiphase simulations of pyroclastic density currents.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen SR, Cas RAF. 2001. Transport of pyroclastic flows across the sea during explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull. Volcanol. 62:441–56 [Google Scholar]
  2. Anderson KG, Jackson R. 1992. A comparison of the solutions of some proposed equations of motion of granular materials for fully-developed flow down inclined planes. J. Fluid Mech. 241:145–68 [Google Scholar]
  3. Anderson T, Flett JS. 1903. Report on the eruption of the Soufrière in St. Vincent in 1902 and on a visit to Montagne Pelée in Martinique. Philos. Trans. R. Soc. A 200:353–553 [Google Scholar]
  4. Andrews BJ. 2014. Dispersal and air entrainment in unconfined dilute pyroclastic density currents. Bull. Volcanol. 76:852 [Google Scholar]
  5. Andrews BJ, Manga M. 2011. Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology 39:1099–102 [Google Scholar]
  6. Bayarri MJ, Berger JO, Calder ES, Dalbey K, Lunagomez S. et al. 2009. Using statistical and computer models to quantify volcanic hazards. Technometrics 51:402–13 [Google Scholar]
  7. Bemmelen RW. 1930. The origin of Lake Toba (North Sumatra). Proc. 4th Pac. Sci. Congr.115–24 Java: Batavia-Bandoeng [Google Scholar]
  8. Benage M, Dufek J, Degruyter W, Geist D, Harpp K, Rader E. 2014. Tying textures of breadcrust bombs to their transport regime and cooling history. J. Volcanol. Geotherm. Res. 274:92–107 [Google Scholar]
  9. Benjamin TB. 1968. Gravity currents and related phenomena. J. Fluid Mech. 31:209–48 [Google Scholar]
  10. Bonnecaze RT, Huppert H, Lister JR. 1993. Particle-driven gravity currents. J. Fluid Mech. 250:339–69 [Google Scholar]
  11. Brand B, Mackaman-Lofland C, Pollock N, Bedana S, Dawson B, Wichgers P. 2014. Dynamics of pyroclastic density currents: conditions that promote substrate erosion and self-channelization—Mount St Helens, Washington (USA). J. Volcanol. Geotherm. Res. 276:189–214 [Google Scholar]
  12. Branney MJ, Kokelaar P. 2002. Pyroclastic Density Currents and the Sedimentation of Ignimbrites London: Geol. Soc. [Google Scholar]
  13. Britter RE, Simpson JE. 1978. Experiments on the dynamics of gravity current head. J. Fluid Mech. 88:223–40 [Google Scholar]
  14. Brown RJ, Branney MJ. 2004. Bypassing and diachronous deposition from density currents: evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32:445–48 [Google Scholar]
  15. Burgisser A, Bergantz GW. 2002. Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet. Sci. Lett. 202:405–18 [Google Scholar]
  16. Burgisser A, Bergantz GW, Breidenthal RE. 2005. Addressing complexity in laboratory experiments: the scaling of dilute multiphase flows in magmatic systems. J. Volcanol. Geotherm. Res. 141:245–65 [Google Scholar]
  17. Bursik M, Woods A. 1996. The dynamics and thermodynamics of large ash flows. Bull. Volcanol. 58:175–93 [Google Scholar]
  18. Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B. 2002. Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J. Geophys. Res. 107:2277 [Google Scholar]
  19. Carey S, Sigurdsson H, Mandeville C, Bronto S. 1996. Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull. Volcanol. 57:493–511 [Google Scholar]
  20. Charbonnier SJ, Gertisser R. 2011. Deposit architecture and dynamics of the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia. Sedimentology 58:1573–612 [Google Scholar]
  21. Charbonnier SJ, Gertisser R. 2012. Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J. Volcanol. Geotherm. Res. 231:87–108 [Google Scholar]
  22. Clarke AB, Voight B, Neri A, Macedonio G. 2002. Transient dynamics of vulcanian explosions and column collapse. Nature 415:897–901 [Google Scholar]
  23. Dade WB. 2003. The emplacement of low-aspect ratio ignimbrites. J. Geophys. Res. 108:2211 [Google Scholar]
  24. Dade WB, Huppert HE. 1994. Predicting the geometry of channelized deep-sea turbidites. Geology 22:645–48 [Google Scholar]
  25. Dade WB, Huppert HE. 1995a. A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42:453–71 [Google Scholar]
  26. Dade WB, Huppert HE. 1995b. Runout and fine-sediment deposits of axisymmetrical turbidity currents. J. Geophys. Res. 100:18597–609 [Google Scholar]
  27. Dade WB, Huppert HE. 1996. Emplacement of the Taupo ignimbrite by a dilute turbulent flow. Nature 381:509–12 [Google Scholar]
  28. Dade WB, Lister JR, Huppert HE. 1994. Fine-sediment deposition from gravity surges on uniform slopes. J. Sediment. Res. A 64:423–32 [Google Scholar]
  29. Dalbey K, Patra AK, Pitman EB, Bursik MI, Sheridan MF. 2008. Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J. Geophys. Res. 113:B05203 [Google Scholar]
  30. Dartevelle S. 2004. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows. Geochem. Geophys. Geosyst. 5:Q08003 [Google Scholar]
  31. Dartevelle S, Rose WI, Stix J, Kelfoun K, Vallance JW. 2004. Numerical modeling of geophysical granular flows: 2. Computer simulations of plinian clouds and pyroclastic flows and surges. Geochem. Geophys. Geosyst. 5:Q08004 [Google Scholar]
  32. Dellino P, Zimanowkski B, Büttner R, La Volpe L, Mele D, Sulpizio R. 2007. Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and first results. J. Geophys. Res. 112:B04202 [Google Scholar]
  33. Denlinger RP, Iverson RM. 2004. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J. Geophys. Res. 109:F01014 [Google Scholar]
  34. Dobran F, Neri A, Macedonio G. 1993. Numerical simulation of collapsing volcanic columns. J. Geophys. Res. 98:4231–59 [Google Scholar]
  35. Doronzo DM, Valentine GA, Dellino P, de Tullio MD. 2010. Numerical analysis of the effect of topography on deposition from dilute pyroclastic density currents. Earth Planet. Sci. Lett. 300:164–73 [Google Scholar]
  36. Douillet G, Pacheco D, Kueppers U, Letort J, Tsang-Hin-Sun E. et al. 2013. Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador. Bull. Volcanol. 75:762 [Google Scholar]
  37. Doyle EE, Hogg AJ, Mader HM, Sparks RSJ. 2010. A two-layer model for the evolution and propagation of dense and dilute regions of pyroclastic currents. J. Volcanol. Geotherm. Res. 190:365–78 [Google Scholar]
  38. Druitt TH, Avard G, Bruni G, Lettieri P, Maez F. 2007. Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull. Volcanol. 69:881–901 [Google Scholar]
  39. Druitt TH, Calder ES, Cole PD, Hoblitt R, Loughlin S. et al. 2002. Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills Volcano, Montserrat: an important volcanic hazard. The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999 TH Druitt, BP Kokelaar 263–79 London: Geol. Soc. [Google Scholar]
  40. Druitt TH, Francaviglia V. 1992. Caldera formation on Santorini and physiograhy of the islands in the late Bronze Age. Bull. Volcanol. 54:484–93 [Google Scholar]
  41. Dufek J, Bergantz GW. 2007a. Dynamics and deposits generated by the Kos Plateau Tuff eruption: controls of basal particle loss on pyroclastic flow transport. Geochem. Geophys. Geosyst. 8:Q12007 [Google Scholar]
  42. Dufek J, Bergantz GW. 2007b. Suspended load and bed-load transport of particle-laden gravity currents: the role of particle–bed interaction. Theor. Comput. Fluid Dyn. 21:119–45 [Google Scholar]
  43. Dufek J, Manga M. 2008. In situ production of ash in pyroclastic flows. J. Geophys. Res. 113:B09207 [Google Scholar]
  44. Dufek J, Manga M, Staedter M. 2007. Littoral blasts: pumice-water heat transfer and the conditions for steam explosions when pyroclastic flows enter the ocean. J. Geophys. Res. 112:B11201 [Google Scholar]
  45. Dufek J, Wexler J, Manga M. 2009. Transport capacity of pyroclastic density currents: experiments and models of substrate-flow interaction. J. Geophys. Res. 114:B11203 [Google Scholar]
  46. Efford JT, Bylsma RJ, Clarkson BD, Pittari A, Mauriohooho K, Moon VG. 2014. Vegetation dieback as a proxy for temperature within a wet pyroclastic density current: a novel experiment and observations from the 6th of August 2012 Tongariro eruption. J. Volcanol. Geotherm. Res. 286:367–72 [Google Scholar]
  47. Ellison TH, Turner JS. 1959. Turbulent entrainment in stratified flows. J. Fluid Mech. 6:423–48 [Google Scholar]
  48. Esposti Ongaro T, Clarke AB, Neri A, Voight B, Widiwijayanti C. 2008. Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies. J. Geophys. Res. 113:B03211 [Google Scholar]
  49. Esposti Ongaro T, Clarke AB, Voight B, Neri A, Widiwijayanti C. 2012. Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens. J. Geophys. Res. 117:B06208 [Google Scholar]
  50. Estep J, Dufek J. 2013. Discrete element simulations of bed force anomalies due to force chains in dense granular flows. J. Volcanol. Geotherm. Res. 254:108–17 [Google Scholar]
  51. Faccanoni G, Mangeney A. 2013. Exact solution for granular flows. Int. J. Numer. Anal. Methods Geomech. 37:1408–33 [Google Scholar]
  52. Fenner CN. 1923. The origin and mode of emplacement of the great tuff deposit in the Valley of Ten Thousand Smokes Contrib. Tech. Pap., Nat. Geol. Soc., Washington, DC [Google Scholar]
  53. Fernando HJS. 1991. Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23:455–93 [Google Scholar]
  54. Fisher RV. 1966. Mechanism of deposition from pyroclastic flows. Am. J. Sci. 264:350–63 [Google Scholar]
  55. Fisher RV, Heiken G. 1982. Mt. Pelée, Martinique: May 8 and 20, 1902, pyroclastic flows and surges. J. Volcanol. Geotherm. Res. 13:339–71 [Google Scholar]
  56. Fisher RV, Orsi G, Ort M, Heiken G. 1993. Mobility of a large-volume pyroclastic flow: emplacement of the Campanian ignimbrite, Italy. J. Volcanol. Geotherm. Res. 56:262–75 [Google Scholar]
  57. Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S. 2006. Santorini eruption radiocarbon dated to 1627–1600 BC. Science 312:548 [Google Scholar]
  58. Gonnermann HM, Manga M. 2007. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39:321–56 [Google Scholar]
  59. Gray J, Kokelaar BP. 2010. Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652:105–37 [Google Scholar]
  60. Hall ML, Steele AL, Mothes PA, Ruiz MC. 2013. Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: geophysical registry and characteristics. J. Volcanol. Geotherm. Res. 265:78–93 [Google Scholar]
  61. Hartel C, Meiburg E, Necker F. 2000. Analysis and direct numerical simulation of the flow at a gravity current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418:189–212 [Google Scholar]
  62. Heap MJ, Kolzenburg S, Russell JK, Campbell ME, Welles J. et al. 2014. Conditions and timescales for welding block-and-ash flow deposits. J. Volcanol. Geotherm. Res. 289:202–9 [Google Scholar]
  63. Heilprin A. 1903. Mont Pelée and the Tragedy of Martinique: a Study of the Great Catastrophes of 1902, with Observations and Experiences in the Field Philadelphia, PA: J.B. Lippincott [Google Scholar]
  64. Hooker M. 1965. The origin of the volcanological concept nuée ardente. ISIS 56:401–7 [Google Scholar]
  65. Huppert HE, Simpson JE. 1980. The slumping of gravity currents. J. Fluid Mech. 99:785–99 [Google Scholar]
  66. Iverson RM, Denlinger RP. 2001. Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. 106:537–52 [Google Scholar]
  67. Jolly AD, Lokmer I, Kennedy B, Keys HJR, Proctor J. et al. 2014. Active seismic sources as a proxy for seismic surface processes: an example from the 2012 Tongariro volcanic eruptions, New Zealand. J. Volcanol. Geotherm. Res. 286:317–30 [Google Scholar]
  68. Kelfoun K. 2011. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J. Geophys. Res. 116:B08209 [Google Scholar]
  69. Kelfoun K, Druitt TH. 2005. Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J. Geophys. Res. 110B12202 [Google Scholar]
  70. Kelfoun K, Samaniego P, Palacios P, Barba D. 2009. Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull. Volcanol. 71:1057–75 [Google Scholar]
  71. Kuno H. 1941. Characteristics of deposits formed by pumice flows and those by ejected pumice. Tokyo Univ. Earthq. Res. Inst. Bull. 19:144–49 [Google Scholar]
  72. LaCroix A. 1904. La Montagne Pelée et ses eruptions Paris: Masson [Google Scholar]
  73. Lipman PW, Steven TA, Mehnert HH. 1970. Volcanic history of San Juan Mountains, Colorado, as indicated by potassium-argon dating. Geol. Soc. Am. Bull. 81:2329–52 [Google Scholar]
  74. Lube G, Breard ECP, Cronin S, Jones J. 2015. Synthesizing large-scale pyroclastic flows: experimental design, scaling, and first results from PELE. J. Geophys. Res. Solid Earth 120:1487–502 [Google Scholar]
  75. Lube G, Cronin SJ, Platz T, Freundt A, Procter JN. et al. 2007. Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand. J. Volcanol. Geotherm. Res. 161:165–86 [Google Scholar]
  76. Lun CKK, Savage SB, Jeffrey DJ, Chepuniy N. 1984. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140:223–56 [Google Scholar]
  77. Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A. 2010. Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115:F03040 [Google Scholar]
  78. Mansfield GR, Ross CS. 1935. Welded rhyolitic tuffs in southeastern Idaho. Eos Trans. AGU 16:308–21 [Google Scholar]
  79. Marshall P. 1935. Acid rocks of Taupo-Roturua volcanic district. R. Soc. N. Z. Trans. 64:323–66 [Google Scholar]
  80. Miller CF, Wark DA. 2008. Supervolcanoes and their explosive supereruptions. Elements 4:11–15 [Google Scholar]
  81. Miller TP, Smith RL. 1977. Spectacular mobility of ash flows around Aniakchak and Fisher calderas, Alaska. Geology 5:173–76 [Google Scholar]
  82. Necker F, Hartel C, Kleiser L, Meiburg E. 2002. High-resolution simulations of particle-driven gravity currents. Int. J. Heat Mass Transf. 28:279–300 [Google Scholar]
  83. Neri A, Di Muro A, Rosi M. 2002. Mass partition during collapsing and transitional columns by using numerical simulations. J. Volcanol. Geotherm. Res. 115:1–18 [Google Scholar]
  84. Neri A, Macedonio G. 1996. Numerical simulation of collapsing volcanic columns with particles of two sizes. J. Geophys. Res. 101:8153–74 [Google Scholar]
  85. Neri A, Ongaro TE, Macedonio G, Gidaspow D. 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flow. J. Geophys. Res. 108:2202 [Google Scholar]
  86. Neri A, Ongaro TE, Menconi G, Vitturi MD, Cavazzoni C. et al. 2007. 4D simulation of explosive eruption dynamics at Vesuvius. Geophys. Res. Lett. 34:L04309 [Google Scholar]
  87. Newhall CG, Self S. 1982. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87:1231–38 [Google Scholar]
  88. Ongaro TE, Neri A, Menconi G, Vitturi MD, Marianelli P. et al. 2008. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J. Volcanol. Geotherm. Res. 178:378–96 [Google Scholar]
  89. Parker G, Garcia M, Fukushima Y, Yu W. 1987. Experiments on turbidity currents over an erodible bed. J. Hydraulic Res. 25:123–47 [Google Scholar]
  90. Parsons JD, Garcia MH. 1998. Similarity of gravity current fronts. Phys. Fluids 10:3209–13 [Google Scholar]
  91. Pe-Piper G, Piper DJW, Perissoratis C. 2005. Neotectonics and the Kos Plateau Tuff eruption of 161 ka, South Aegean arc. J. Volcanol. Geotherm. Res. 139:315–38 [Google Scholar]
  92. Pitman E, Nichita C, Patra A, Bauer A, Sheridan M, Bursik M. 2003. Computing granular avalanches and landslides. Phys. Fluids 15:3638–46 [Google Scholar]
  93. Pittari A, Cas RAF, Edgar CJ, Nichols HJ, Wolff JA, Marti J. 2006. The influence of palaeotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting: the Abrigo ignimbrite, Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 152:273–315 [Google Scholar]
  94. Princevac M, Fernando HJS, Whiteman CD. 2005. Turbulent entrainment into natural gravity-driven flows. J. Fluid Mech. 533:259–68 [Google Scholar]
  95. Rader E, Geist D, Geissman J, Dufek J, Harpp K. 2015. Hot clasts and cold blasts: thermal heterogeneity in boiling-over pyroclastic density currents. Geol. Soc. Lond. Spec. Publ. 396:67–86 [Google Scholar]
  96. Rivard WC, Torrey MD. 1977. K-FIX: a computer program for transient, two-dimensional, two-fluid flow Rep., Los Alamos Natl. Lab., Los Alamos, NM [Google Scholar]
  97. Roche O. 2012. Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74:1807–20 [Google Scholar]
  98. Roche O, Gilbertson MA, Phillips JC, Sparks S. 2004. Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement. J. Geophys. Res. 109:B10201 [Google Scholar]
  99. Roche O, Montserrat S, Nino Y, Tamburrino A. 2010. Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: insights into the emplacement dynamics of pyroclastic flows. J. Geophys. Res. 115:B09206 [Google Scholar]
  100. Roche O, Nino Y, Mangeney A, Brand B, Pollock N, Valentine GA. 2013. Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology 41:1107–10 [Google Scholar]
  101. Savage SB. 1998. Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377:1–26 [Google Scholar]
  102. Sequeiros OE, Naruse H, Endo N, Garcia MH, Parker G. 2009. Experimental study on self-accelerating turbidity currents. J. Geophys. Res. 114:C05025 [Google Scholar]
  103. Sheridan MF. 1979. Emplacement of pyroclastic flows: a review. GSA Spec. Pap. 180:125–36 [Google Scholar]
  104. Sheridan MF, Patra AK, Dalbey K, Hubbard B. 2010. Probabilistic digital hazard maps for avalanches and massive pyroclastic flows using TITAN2D. GSA Spec. Pap. 464:281–91 [Google Scholar]
  105. Sheridan MF, Wang YP. 2005. Cooling and welding history of the Bishop Tuff in Adobe Valley and Chidago Canyon, California. J. Volcanol. Geotherm. Res. 142:119–44 [Google Scholar]
  106. Sigurdsson H, Cashdollar S, Sparks RSJ. 1982. The eruption of Vesuvius in A.D. 79: reconstruction from historical and volcanological evidence. Am. J. Archeol. 86:39–51 [Google Scholar]
  107. Simpson JE. 1972. Effects of lower boundary on head of a gravity current. J. Fluid Mech. 53:759–68 [Google Scholar]
  108. Smith RL. 1960. Ash flows. Geol. Soc. Am. Bull. 71:795–842 [Google Scholar]
  109. Sparks RSJ. 1983. Mont Pelée, Martinique: May 8 and 20, 1902, pyroclastic flows and surges—discussion. J. Volcanol. Geotherm. Res. 19:175–80 [Google Scholar]
  110. Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ. 1997. Erosion by pyroclastic flows on Lascar Volcano, Chile. Bull. Volcanol. 58:557–65 [Google Scholar]
  111. Sparks RSJ, Wilson L. 1976. A model for the formation of ignimbrite by gravitational column collapse. J. Geol. Soc. 132:441–51 [Google Scholar]
  112. Sparks RSJ, Wilson L, Hulme G. 1978. Theoretical modeling of generation, movement, and emplacement of pyroclastic flows by column collapse. J. Geophys. Res. 83:1727–39 [Google Scholar]
  113. Streck MJ, Grunder AL. 1995. Crystallization and welding variations in a widespread ignimbrite sheet: the Rattlesnake Tuff, eastern Oregon, USA. Bull. Volcanol. 57:151–69 [Google Scholar]
  114. Syamlal M. 1987. A review of granular stress constitutive relations. Rep. DOE/MC/21353-2372, US Dep. Energy, Springfield, VA [Google Scholar]
  115. Syamlal M, Rogers W, O'Brien TJ. 1993. MFIX documentation: theory guide. Rep. DOE/METC-94/1004, US Dep. Energy, Morgantown, WV [Google Scholar]
  116. Telling J, Dufek J. 2012. An experimental evaluation of the role of water vapor and collisional energy on ash aggregation in explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 209–210:1–8 [Google Scholar]
  117. Telling J, Dufek J, Shaikh A. 2013. Ash aggregation in explosive volcanic eruptions. Geophys. Res. Lett. 40:2355–60 [Google Scholar]
  118. Timmermans MLE, Lister JR, Huppert HE. 2001. Compressible particle-driven gravity currents. J. Fluid Mech. 445:305–25 [Google Scholar]
  119. Valentine GA. 1987. Stratified flow in pyroclastic surges. Bull. Volcanol. 49:616–30 [Google Scholar]
  120. Valentine GA. 1998. Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. J. Volcanol. Geotherm. Res. 87:117–40 [Google Scholar]
  121. Valentine GA, Wohletz KH. 1989. Numerical models of Plinian eruption columns and pyroclastic flows. J. Geophys. Res. 94:1867–87 [Google Scholar]
  122. Wadge G, Voight B, Sparks RSJ, Cole PD, Loughlin SC, Robertson REA. 2014. An overview of the eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010. Eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010 G Wadge, REA Robertson, B Voight 1–39 London: Geol. Soc. [Google Scholar]
  123. Walker GPL, Heming RF, Wilson CJN. 1980. Low-aspect ratio ignimbrites. Nature 283:286–87 [Google Scholar]
  124. Wallace PJ, Dufek JD, Anderson AT, Zhang XY. 2003. Cooling rates of Plinian-fall and pyroclastic-flow deposits in the Bishop Tuff: inferences from water speciation in quartz-hosted glass inclusion. Bull. Volcanol. 65:105–23 [Google Scholar]
  125. Wilson CJN, Houghton BF, Kamp PJJ, McWilliams MO. 1995. An exceptionally widespread ignimbrite with implications for pyroclastic flow emplacement. Nature 378:605–7 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error