1932

Abstract

Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4--methyl--glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-121443
2021-03-25
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-032818-121443.html?itemId=/content/journals/10.1146/annurev-food-032818-121443&mimeType=html&fmt=ahah

Literature Cited

  1. Agger J, Viksø-Nielsen A, Meyer AS. 2010. Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. J. Agric. Food Chem. 58:106141–48
    [Google Scholar]
  2. Aguedo M, Fougnies C, Dermience M, Richel A. 2014. Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydr. Polym. 105:1317–24
    [Google Scholar]
  3. Allerdings E, Ralph J, Schatz PF, Gniechwitz D, Steinhart H, Bunzel M. 2005. Isolation and structural identification of diarabinosyl 8-O-4-dehydrodiferulate from maize bran insoluble fibre. Phytochemistry 66:1113–24
    [Google Scholar]
  4. Allerdings E, Ralph J, Steinhart H, Bunzel M. 2006. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry 67:121276–86
    [Google Scholar]
  5. Appeldoorn MM, de Waard P, Kabel MA, Gruppen H, Schols HA. 2013. Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation. Carbohydr. Res. 381:33–42
    [Google Scholar]
  6. Arai T, Biely P, Uhliariková I, Sato N, Makishima S et al. 2019. Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J. Biosci. Bioeng. 127:2222–30
    [Google Scholar]
  7. Biely P, Puchart V, Stringer MA, Krogh KBRM. 2014. Trichoderma reesei XYN VI: a novel appendage-dependent eukaryotic glucuronoxylan hydrolase. FEBS J 281:173894–903
    [Google Scholar]
  8. Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM et al. 2012. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer. 107:81337–44
    [Google Scholar]
  9. Bunzel M, Allerdings E, Ralph J, Steinhart H 2008. Cross-linking of arabinoxylans via 8–8-coupled diferulates as demonstrated by isolation and identification of diarabinosyl 8–8(cyclic)-dehydrodiferulate from maize bran. J. Cereal Sci. 47:129–40
    [Google Scholar]
  10. Burr SJ, Fry SC. 2009a. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds. Plant J 58:4554–67
    [Google Scholar]
  11. Burr SJ, Fry SC. 2009b. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase. Mol. Plant 2:5883–92
    [Google Scholar]
  12. Cao S-Y, Zhao C-N, Xu X-Y, Tang G-Y, Corke H et al. 2019. Dietary plants, gut microbiota, and obesity: effects and mechanisms. Trends Food Sci. Technol. 92:194–204
    [Google Scholar]
  13. Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L. 2012. Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. J. Agric. Food Chem. 60:5112516–24
    [Google Scholar]
  14. Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y et al. 2011. Structure and function of an arabinoxylan-specific xylanase. J. Biol. Chem. 286:2522510–20
    [Google Scholar]
  15. de Paulo Farias D, de Araújo FF, Neri-Numa IA, Pastore GM 2019. Prebiotics: trends in food, health and technological applications. Trends Food Sci. Technol. 93:23–35
    [Google Scholar]
  16. Debyser W, Derdelinckx G, Delcour JA. 1997. Arabinoxylan solubilization and inhibition of the barley malt xylanolytic system by wheat during mashing with wheat wholemeal adjunct: evidence for a new class of enzyme inhibitors in wheat. J. Am. Soc. Brew. Chem. 55:153–56
    [Google Scholar]
  17. Dilokpimol A, Mäkelä MR, Mansouri S, Belova O, Waterstraat M et al. 2017. Expanding the feruloyl esterase gene family of Aspergillusniger by characterization of a feruloyl esterase. FaeC. New Biotechnol. 37:200–9
    [Google Scholar]
  18. Falck P, Linares-Pastén JA, Karlsson EN, Adlercreutz P. 2018. Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chem 242:579–84
    [Google Scholar]
  19. Fang H-Y, Chen Y-K, Chen H-H, Lin S-Y, Fang Y-T. 2012. Immunomodulatory effects of feruloylated oligosaccharides from rice bran. Food Chem 134:2836–40
    [Google Scholar]
  20. Fujimoto Z, Kaneko S, Kuno A, Kobayashi H, Kusakabe I, Mizuno H. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279:109606–14
    [Google Scholar]
  21. Gong L, Wang H, Wang T, Liu Y, Wang J, Sun B 2019. Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. J. Funct. Foods. 60:103453
    [Google Scholar]
  22. Gong Y-Y, Yin X, Zhang H-M, Wu M-C, Tang C-D et al. 2013. Cloning, expression of a feruloyl esterase from Aspergillus usamii E001 and its applicability in generating ferulic acid from wheat bran. J. Ind. Microbiol. Biotechnol. 40:121433–41
    [Google Scholar]
  23. Hagiwara Y, Mihara Y, Sakagami K, Sagara R, Bat-Erdene U et al. 2020. Isolation of four xylanases capable of hydrolyzing corn fiber xylan from Paenibacillus sp. H2C. Biosci. Biotechnol. Biochem. 84:3640–50
    [Google Scholar]
  24. Han Y, Xiao H 2020. Whole food-based approaches to modulating gut microbiota and associated diseases. Annu. Rev. Food Sci. Technol. 11:119–43
    [Google Scholar]
  25. Huang J, Wang X, Tao G, Song Y, Ho C et al. 2018. Feruloylated oligosaccharides from maize bran alleviate the symptoms of diabetes in streptozotocin-induced type 2 diabetic rats. Food Funct 9:31779–89
    [Google Scholar]
  26. Ishii T. 1991. Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr. Res. 219:15–22
    [Google Scholar]
  27. Ishii T, Hiroi T. 1990. Isolation and characterization of feruloylated arabinoxylan oligosaccharides from bamboo shoot cell-walls. Carbohydr. Res. 196:175–83
    [Google Scholar]
  28. Jia Y, He Y, Lu F. 2018. The structure-antioxidant activity relationship of dehydrodiferulates. Food Chem 269:480–85
    [Google Scholar]
  29. Katapodis P, Christakopoulos P. 2008. Enzymic production of feruloyl xylo-oligosaccharides from corn cobs by a family 10 xylanase from Thermoascus aurantiacus. LWT Food Sci. Technol. 41:71239–43
    [Google Scholar]
  30. Katapodis P, Vardakou M, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P. 2003a. Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. Eur. J. Nutr. 42:155–60
    [Google Scholar]
  31. Katapodis P, Vršanská M, Kekos D, Nerinckx W, Biely P et al. 2003b. Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr. Res. 338:181881–90
    [Google Scholar]
  32. Katsimpouras C, Dedes G, Thomaidis NS, Topakas E. 2019. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. Biotechnol. Biofuels. 12:1120
    [Google Scholar]
  33. Lequart C, Nuzillard J-M, Kurek B, Debeire P. 1999. Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carbohydr. Res. 319:1–4102–11
    [Google Scholar]
  34. Lin C, Chen H, Chen Y, Chang H, Lin P et al. 2014. Rice bran feruloylated oligosaccharides activate dendritic cells via Toll-like receptor 2 and 4 signaling. Molecules 19:45325–47
    [Google Scholar]
  35. Lin HV, Frassetto A, Kowalik EJ Jr., Nawrocki AR, Lu MM et al. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLOS ONE 7:4e35240
    [Google Scholar]
  36. Lin Q, Ou S, Wen Q. 2014. In vitro antioxidant activity of feruloyl arabinose isolated from maize bran by acid hydrolysis. J. Food Sci. Technol. 51:71356–62
    [Google Scholar]
  37. Long L, Xu M, Shi Y, Lin Q, Wang J, Ding S 2018. Characterization of two new endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and their applications for production of feruloylated oligosaccharides. Appl. Biochem. Biotechnol. 186:4816–33
    [Google Scholar]
  38. Ma X, Wang L, Wei H, Huo X, Wang C et al. 2016. Adjuvant properties of water extractable arabinoxylans with different structural features from wheat flour against model antigen ovalbumin. Food Funct 7:31537–43
    [Google Scholar]
  39. Maehara T, Yagi H, Sato T, Ohnishi-Kameyama M, Fujimoto Z et al. 2017. GH30 glucuronoxylan-specific xylanase from Streptomyces turgidiscabies C56. Appl. Environ. Microbiol. 84:4e01850–17
    [Google Scholar]
  40. Malunga LN, Beta T. 2015. Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chem 167:311–19
    [Google Scholar]
  41. Malunga LN, Eck P, Beta T. 2016. Inhibition of intestinal α-glucosidase and glucose absorption by feruloylated arabinoxylan mono- and oligosaccharides from corn bran and wheat aleurone. J. Nutr. Metab. 2016.1932532
    [Google Scholar]
  42. Mastrangelo LI, Lenucci MS, Piro G, Dalessandro G. 2009. Evidence for intra- and extra-protoplasmic feruloylation and cross-linking in wheat seedling roots. Planta 229:2343–55
    [Google Scholar]
  43. Mendis M, Leclerc E, Simsek S. 2016. Arabinoxylans, gut microbiota and immunity. Carbohydr. Polym. 139:159–66
    [Google Scholar]
  44. Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C et al. 2020. Phenolic cross-links: building and deconstructing the plant cell wall. Nat. Prod. Rep. 37:919–61
    [Google Scholar]
  45. Munk L, Muschiol J, Li K, Liu M, Perzon A et al. 2020. Selective enzymatic release and gel formation by cross-linking of feruloylated glucurono-arabinoxylan from corn bran. ACS Sustain. Chem. Eng. 8:228164–74
    [Google Scholar]
  46. Nakamichi Y, Fouquet T, Ito S, Watanabe M, Matsushika A, Inoue H. 2019a. Structural and functional characterization of a bifunctional GH30-7 xylanase B from the filamentous fungus Talaromyces cellulolyticus. J. Biol. Chem. 294:114065–78
    [Google Scholar]
  47. Nakamichi Y, Fujii T, Fouquet T, Matsushika A, Inoue H. 2019b. GH30-7 endoxylanase C from the filamentous fungus Talaromyces cellulolyticus. Appl. Environ. Microbiol. 85:22e01442–19
    [Google Scholar]
  48. Niño-Medina G, Carvajal-Millán E, Rascon-Chu A, Marqueez-Escalante JA, Guerrero V, Salas-Muñoz E. 2010. Feruloylated arabinoxylans and arabinoxylan gels: structure, sources and applications. Phytochem. Rev. 9:111–20
    [Google Scholar]
  49. Nordberg Karlsson E, Schmitz E, Linares-Pastén JA, Adlercreutz P. 2018. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl. Microbiol. Biotechnol. 102:219081–88
    [Google Scholar]
  50. Ou J, Huang J, Song Y, Yao S, Peng X et al. 2016. Feruloylated oligosaccharides from maize bran modulated the gut microbiota in rats. Plant Foods Hum. Nutr. 71:2123–28
    [Google Scholar]
  51. Ou S-Y, Jackson GM, Jiao X, Chen J, Wu J-Z, Huang X-S. 2007. Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides. J. Agric. Food Chem. 55:83191–95
    [Google Scholar]
  52. Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M. 2009. In vitro fermentation of arabinoxylan-derived carbohydrates by Bifidobacteria and mixed fecal microbiota. J. Agric. Food Chem. 57:8598–606
    [Google Scholar]
  53. Pauchet Y, Ruprecht C, Pfrengle F. 2020. Analyzing the substrate specificity of a class of long-horned-beetle-derived xylanases by using synthetic arabinoxylan oligo- and polysaccharides. ChemBioChem 21:101517–25
    [Google Scholar]
  54. Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CMGA et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279:109597–605
    [Google Scholar]
  55. Pham T, Teoh K, Savary B, Chen M-H, McClung A, Lee S-O. 2017. In vitro fermentation patterns of rice bran components by human gut microbiota. Nutrients 9:111237
    [Google Scholar]
  56. Pollet A, Delcour JA, Courtin CM. 2010a. Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit. Rev. Biotechnol. 30:3176–91
    [Google Scholar]
  57. Rakotoarivonina H, Hermant B, Chabbert B, Touzel J-P, Remond C. 2011. A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl. Microbiol. Biotechnol. 90:2541–52
    [Google Scholar]
  58. Rasmussen LE, Sørensen JF, Meyer AS. 2010. Kinetics and substrate selectivity of a Triticum aestivum xylanase inhibitor (TAXI) resistant D11F/R122D variant of Bacillus subtilis XynA xylanase. J. Biotechnol. 146:207–14
    [Google Scholar]
  59. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7:979
    [Google Scholar]
  60. Ruthes AC, Martínez-Abad A, Tan H-T, Bulone V, Vilaplana F. 2017. Sequential fractionation of feruloylated hemicelluloses and oligosaccharides from wheat bran using subcritical water and xylanolytic enzymes. Green Chem 19:81919–31
    [Google Scholar]
  61. Sakka M, Tachino S, Katsuzaki H, van Dyk JS, Pletschke BI et al. 2012. Characterization of Xyn30A and Axh43A of Bacillus licheniformis SVD1 identified by its genomic analysis. Enzyme Microb. Technol. 51:4193–99
    [Google Scholar]
  62. Saulnier L, Crépeau M-J, Lahaye M, Thibault J-F, Garcia-Conesa MT et al. 1999. Isolation and structural determination of two 5,5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr. Res. 320:1–282–92
    [Google Scholar]
  63. Saulnier L, Vigouroux J, Thibault J-FF. 1995. Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr. Res. 272:2241–53
    [Google Scholar]
  64. Schendel RR, Becker A, Tyl CE, Bunzel M. 2015. Isolation and characterization of feruloylated arabinoxylan oligosaccharides from the perennial cereal grain intermediate wheat grass (Thinopyrum intermedium). Carbohydr. Res. 407:16–25
    [Google Scholar]
  65. Schendel RR, Meyer MR, Bunzel M. 2016a. Quantitative profiling of feruloylated arabinoxylan side-chains from graminaceous cell walls. Front. Plant Sci 6:1249
    [Google Scholar]
  66. Schendel RR, Puchbauer A-K, Britscho N, Bunzel M. 2016b. Feruloylated wheat bran arabinoxylans: isolation and characterization of acetylated and O-2-monosubstituted structures. Cereal Chem. J. 93:5493–501
    [Google Scholar]
  67. Smith BG, Harris PJ. 2001. Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls. Phytochemistry 56:5513–19
    [Google Scholar]
  68. Snelders J, Dornez E, Delcour JA, Courtin CM. 2013. Ferulic acid content and appearance determine the antioxidant capacity of arabinoxylanoligosaccharides. J. Agric. Food Chem. 61:4210173–82
    [Google Scholar]
  69. Snelders J, Olaerts H, Dornez E, Van de Wiele T, Aura A-M et al. 2014. Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. J. Funct. Foods. 10:1–12
    [Google Scholar]
  70. Song Y, Wu M, Tao G, Lu M, Lin J, Huang J. 2020. Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Res. Int. 137:109410
    [Google Scholar]
  71. St. John FJ, Dietrich D, Crooks C, Balogun P, de Serrano V et al. 2018. A plasmid borne, functionally novel glycoside hydrolase family 30 subfamily 8 endoxylanase from solventogenic Clostridium. Biochem. J. 475:91533–51
    [Google Scholar]
  72. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:71221027–31
    [Google Scholar]
  73. USDA (U.S. Dep. Agric.) 2020. Grain: world markets and trade World Prod. Mark. Trade Rep., Foreign Agric. Serv. Washington, DC: https://www.fas.usda.gov/data/grain-world-markets-and-trade
  74. Van Craeyveld V, Swennen K, Dornez E, Van de Wiele T, Marzorati M et al. 2008. Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J. Nutr. 138:122348–55
    [Google Scholar]
  75. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP et al. 2008. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J. Mol. Biol. 375:51293–305
    [Google Scholar]
  76. Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW. 2005. A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J. Mol. Biol. 352:51060–67
    [Google Scholar]
  77. Vardakou M, Katapodis P, Samiotaki M, Kekos D, Panayotou G, Christakopoulos P. 2003. Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan. Int. J. Biol. Macromol. 33:1–3129–34
    [Google Scholar]
  78. Vardakou M, Katapodis P, Topakas E, Kekos D, Macris BJ, Christakopoulos P. 2004. Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innov. Food Sci. Emerg. Technol. 5:1107–12
    [Google Scholar]
  79. Wang J, Bai J, Fan M, Li T, Li Y et al. 2020. Cereal-derived arabinoxylans: structural features and structure-activity correlations. Trends Food Sci. Technol. 96:157–65
    [Google Scholar]
  80. Wang J, Sun B, Cao Y, Tian Y. 2009a. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food Chem. Toxicol. 47:71591–99
    [Google Scholar]
  81. Wang J, Sun B, Cao Y, Wang C 2010. Wheat bran feruloyl oligosaccharides enhance the antioxidant activity of rat plasma. Food Chem 123:2472–76
    [Google Scholar]
  82. Wang J, Yuan X, Sun B, Cao Y, Tian Y, Wang C. 2009b. On-line separation and structural characterisation of feruloylated oligosaccharides from wheat bran using HPLC-ESI-MSn. Food Chem 115:41529–41
    [Google Scholar]
  83. Wong DWS, Chan VJ, Liao H. 2019. Metagenomic discovery of feruloyl esterases from rumen microflora. Appl. Microbiol. Biotechnol. 103:208449–57
    [Google Scholar]
  84. Wu H, Li H, Xue Y, Luo G, Gan L et al. 2017. High efficiency co-production of ferulic acid and xylooligosaccharides from wheat bran by recombinant xylanase and feruloyl esterase. Biochem. Eng. J. 120:41–48
    [Google Scholar]
  85. Xia X, Zhu L, Lei Z, Song Y, Tang F et al. 2019. Feruloylated oligosaccharides alleviate dextran sulfate sodium-induced colitis in vivo. J. Agric. Food Chem. 67:349522–31
    [Google Scholar]
  86. Yang J, Bindels LB, Segura Munoz RR, Martínez I, Walter J et al. 2016. Disparate metabolic responses in mice fed a high-fat diet supplemented with maize-derived non-digestible feruloylated oligo- and polysaccharides are linked to changes in the gut microbiota. PLOS ONE 11:1e0146144
    [Google Scholar]
  87. Yang J, Maldonado-Gómez MX, Hutkins RW, Rose DJ. 2014. Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans. J. Agric. Food Chem. 62:1159–66
    [Google Scholar]
  88. Yao S, Wen X, Huang R, He R, Ou S et al. 2014. Protection of feruloylated oligosaccharides from corn bran against oxidative stress in PC 12 cells. J. Agric. Food Chem. 62:668–74
    [Google Scholar]
  89. Yu X, Gu Z. 2013. Aureobasidium pullulans fermented feruloyl oligosaccharide: optimization of production, preliminary characterization, and antioxidant activity. BioResources 9:1241–55
    [Google Scholar]
  90. Yu X, Yang R, Gu Z, Lai S, Yang H 2014. Anti-tumor and immunostimulatory functions of two feruloyl oligosaccharides produced from wheat bran and fermented by Aureobasidium pullulans. BioResources 9:46778–90
    [Google Scholar]
  91. Yu X, Zhu X, Gu Z, Lai S 2015. Antioxidant activity in vivo and in vitro of two feruloyl oligosaccharides preparations produced from wheat bran and fermented by Aureobasidium pullulans. BioResources 10:22167–76
    [Google Scholar]
  92. Yuan X, Wang J, Yao H. 2006. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis. Food Chem 95:3484–92
    [Google Scholar]
  93. Yuan X, Wang J, Yao H, Chen F 2005. Free radical-scavenging capacity and inhibitory activity on rat erythrocyte hemolysis of feruloyl oligosaccharides from wheat bran insoluble dietary fiber. LWT Food Sci. Technol. 38:8877–83
    [Google Scholar]
  94. Zeng Y, Yin X, Wu M-C, Yu T, Feng F et al. 2014. Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. J. Mol. Catal. B 110:140–46
    [Google Scholar]
  95. Zhang H, Wang J, Liu Y, Gong L, Sun B. 2016. Wheat bran feruloyl oligosaccharides ameliorate AAPH-induced oxidative stress in HepG2 cells via Nrf2 signalling. J. Funct. Foods. 25:333–40
    [Google Scholar]
  96. Zhang H, Wang J, Liu Y, Sun B. 2015. Wheat bran feruloyl oligosaccharides modulate the phase II detoxifying/antioxidant enzymes via Nrf2 signaling. Int. J. Biol. Macromol. 74:150–54
    [Google Scholar]
  97. Zhang H, Zhang S, Wang J, Sun B 2017. Wheat bran feruloyl oligosaccharides protect against AAPH-induced oxidative injury via p38MAPK/PI3K-Nrf2/Keap1-MafK pathway. J. Funct. Foods. 29:53–59
    [Google Scholar]
  98. Zhang S-B, Zhai H-C, Wang L, Yu G-H. 2013. Expression, purification and characterization of a feruloyl esterase A from Aspergillus flavus. . Protein Expr. Purif. 92:136–40
    [Google Scholar]
  99. Zhang X, Chen T, Lim J, Xie J, Zhang B et al. 2019. Fabrication of a soluble crosslinked corn bran arabinoxylan matrix supports a shift to butyrogenic gut bacteria. Food Funct 10:84497–504
    [Google Scholar]
  100. Zhao W, Chen H, Wu L, Ma W, Xie Y. 2018. Antioxidant properties of feruloylated oligosaccharides of different degrees of polymerization from wheat bran. Glycoconj. J. 35:6547–59
    [Google Scholar]
  101. Zhao Z, Moghadasian MH. 2008. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-121443
Loading
/content/journals/10.1146/annurev-food-032818-121443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error