1932

Abstract

Cellular agriculture is the controlled and sustainable manufacture of agricultural products with cells and tissues without plant or animal involvement. Today, microorganisms cultivated in bioreactors already produce egg and milk proteins, sweeteners, and flavors for human nutrition as well as leather and fibers for shoes, bags, and textiles. Furthermore, plant cell and tissue cultures provide ingredients that stimulate the immune system and improve skin texture, with another precommercial cellular agriculture product, in vitro meat, currently receiving a great deal of attention. All these approaches could assist traditional agriculture in continuing to provide for the dietary requirements of a growing world population while freeing up important resources such as arable land. Despite early successes, challenges remain and are discussed in this review, with a focus on production processes involving plant and animal cell and tissue cultures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-063020-123940
2021-03-25
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-063020-123940.html?itemId=/content/journals/10.1146/annurev-food-063020-123940&mimeType=html&fmt=ahah

Literature Cited

  1. Aiba S, Humphrey AE, Millis NF. 1965. Biochemical Engineering New York: Academic
    [Google Scholar]
  2. Allan SJ, De Bank PA, Ellis MJ. 2019. Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Front. Sustain. Food Syst. 3:44
    [Google Scholar]
  3. Amit M, Carpenter MK, Inokuma MS, Chiu C-P, Harris CP et al. 2000. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227:2271–78
    [Google Scholar]
  4. Asakura A, Rudnicki MA, Komaki M. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:4–5245–53
    [Google Scholar]
  5. Bach AD, Stern-Straeter J, Beier JP, Bannasch H, Stark GB. 2003. Engineering of muscle tissue. Clin. Plast. Surg. 30:4589–99
    [Google Scholar]
  6. Barbulova A, Apone F, Colucci G. 2014. Plant cell cultures as source of cosmetic active ingredients. Cosmetics 1:294–104
    [Google Scholar]
  7. Benjaminson MA, Gilchriest JA, Lorenz M. 2002. In vitro edible muscle protein production system (MPPS): stage 1, fish. Acta Astronaut 51:12879–89
    [Google Scholar]
  8. Bettahalli NMS, Steg H, Wessling M, Stamatialis D. 2011. Development of poly(l-lactic acid) hollow fiber membranes for artificial vasculature in tissue engineering scaffolds. J. Membr. Sci. 371:117–26
    [Google Scholar]
  9. Bhat ZF, Kumar S, Bhat HF. 2017. In vitro meat: a future animal-free harvest. Crit. Rev. Food Sci. Nutr. 57:4782–89
    [Google Scholar]
  10. Bhat ZF, Morton JD, Mason SL, Bekhit AEA, Bhat HF. 2019. Technological, regulatory, and ethical aspects of in vitro meat: a future slaughter-free harvest. Compr. Rev. Food Sci. Food Saf. 18:41192–208
    [Google Scholar]
  11. Blum P, Schurch C, Schmid D, Zülli F. 2013. Cosmetic preparation and method for preparing the same US Patent 8580320B2
    [Google Scholar]
  12. Bodiou V, Moutsatsou P, Post MJ. 2020. Microcarriers for upscaling cultured meat production. Front. Nutr. 7:10
    [Google Scholar]
  13. Böhm I, Ferrari A, Woll S. 2017. In-vitro-fleisch: Eine technische vision zur lösung der probleme der heutigen fleischproduktion und des fleischkonsums. ? Inst. Technikfolgenabschätzung Systemanalyse https://doi.org/10.5445/IR/1000076735
    [Crossref] [Google Scholar]
  14. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. 2003. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat. Rec. 272A:2497–502
    [Google Scholar]
  15. Brehm-Curtis B. 2015. Nutrition: Science, Issues, and Applications Santa Barbara, CA: Greenwood Publ.
    [Google Scholar]
  16. Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G. 2010. Serum-free cell culture: the serum-free media interactive online database. ALTEX 27:53–62
    [Google Scholar]
  17. Burattini S, Ferri P, Battistelli M, Curci R, Luchetti F, Falcieri E. 2004. C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur. J. Histochem. 48:3223–33
    [Google Scholar]
  18. Campuzano S, Pelling AE. 2019. Scaffolds for 3D cell culture and cellular agriculture applications derived from non-animal sources. Front. Sustain. Food Syst. 3:38
    [Google Scholar]
  19. Carola A, Tito A, Bimonte M, Mustilli A, Cucchiara M et al. 2012. Liposoluble extracts of Vitis vinifera grape marc and cell cultures with synergistic anti-ageing effects. Househ. Pers. Care Today 7:342–47
    [Google Scholar]
  20. Carrel A. 1912. On the permanent life of tissues outside of the organism. J. Exp. Med. 15:5516–28
    [Google Scholar]
  21. Catts O, Zurr I 2008. The ethics of experiential engagement with the manipulation of life. Tactical Biopolitics: Art, Activism, and Technoscience B da Costa, P Kavita 125–42 Cambridge: MIT Press
    [Google Scholar]
  22. Cesarz Z, Tamama K. 2016. Spheroid culture of mesenchymal stem cells. Stem Cells Int 2016.9176357
    [Google Scholar]
  23. Chiron S, Tomczak C, Duperray A, Lainé J, Bonne G et al. 2012. Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix. PLOS ONE 7:4e36173
    [Google Scholar]
  24. Cohen SN, Chang ACY, Boyer HW, Helling RB 1973. Construction of biologically functional bacterial plasmids in vitro. PNAS 70:113240–44
    [Google Scholar]
  25. Crosser N, Bushnell C, Derbes E, Friedrich B, Gaan K et al. 2020a. 2019 U.S. state of the industry report: plant-based meat, eggs, and dairy Rep., Good Food Inst Washington, DC: https://www.gfi.org/files/soti/INN-PBMED-SOTIR-2020-0507.pdf?utm_source=form&utm_medium=email&utm_campaign=SOTIR2019
    [Google Scholar]
  26. Crosser N, Bushnell C, Derbes E, Friedrich B, Lamy J et al. 2020b. 2019 state of the industry report: cultivated meat Rep., Good Food Inst Washington, DC: https://www.gfi.org/files/soti/INN-CM-SOTIR-2020-0512.pdf?utm_source=form&utm_medium=email&utm_campaign=SOTIR2019
    [Google Scholar]
  27. Dal Toso R, Melandri F. 2010. Plant cell culture technology: a new ingredient source. Pers. Care 28:35–38
    [Google Scholar]
  28. Dal Toso R, Melandri F. 2011a. Echinacea angustifolia cell culture extract: added value for sport and fitness. Nutrafoods 10:119–24
    [Google Scholar]
  29. Dal Toso R, Melandri F. 2011b. Sustainable sourcing of natural food ingredients by plant cell cultures. Agro Food Ind. Hi-Tech 22:230–33
    [Google Scholar]
  30. Danoviz ME, Yablonka-Reuveni Z 2012. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Myogenesis Methods and Protocols 798 JX DiMario 21–52 Totowa, NJ: Humana Press
    [Google Scholar]
  31. Datar I, Betti M 2010. Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol. 11:113–22
    [Google Scholar]
  32. Datar I, d'Origny G, Kim E 2016. New harvest: building the cellular agriculture economy. The Future of Meat Without Animals B Donaldson, C Carter 121–31 Lanham, MD: Rowman & Littlefield Int.
    [Google Scholar]
  33. Deus-Neumann B, Zenk M. 1984. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50:05427–31
    [Google Scholar]
  34. Ding S, Swennen GNM, Messmer T, Gagliardi M, Molin DGM et al. 2018. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8:110808
    [Google Scholar]
  35. Dodson MV, Martin EL, Brannon MA, Mathison BA, McFarland DC. 1987. Optimization of bovine satellite cell-derived myotube formation in vitro. Tissue Cell 19:2159–66
    [Google Scholar]
  36. Dodson MV, McFarland DC, Grant AL, Doumit ME, Velleman SG. 1996. Extrinsic regulation of domestic animal-derived satellite cells. Domest. Anim. Endocrinol. 13:2107–26
    [Google Scholar]
  37. Dodson MV, McFarland DC, Martin EL, Brannon MA 1986. Isolation of satellite cells from ovine skeletal muscles. J. Tissue Cult. Methods 10:4233–37
    [Google Scholar]
  38. Doran PM. 1997. Hairy Roots Amsterdam: Harwood Acad. Publ. , 1st ed..
    [Google Scholar]
  39. du Puy L, Chuva de Sousa Lopes SM, Haagsman HP, Roelen BAJ. 2010. Differentiation of porcine inner cell mass cells into proliferating neural cells. Stem Cells Dev 19:161–70
    [Google Scholar]
  40. Edelman PD, McFarland DC, Mironov VA, Matheny JG. 2005. Commentary: in vitro–cultured meat production. Tissue Eng 11:5–6659–62
    [Google Scholar]
  41. Egger D, Tripisciano C, Weber V, Dominici M, Kasper C. 2018. Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering 5:248
    [Google Scholar]
  42. Eibl R, Eibl D. 2008. Design of bioreactors suitable for plant cell and tissue cultures. Phytochem. Rev. 7:3593–98
    [Google Scholar]
  43. Eibl R, Eibl D 2009. Plant cell-based bioprocessing. Cell and Tissue Reaction Engineering R Eibl, D Eibl, R Pörtner, G Catapano, P Czermak 315–56 Berlin: Springer-Verlag. , 1st ed..
    [Google Scholar]
  44. Eibl R, Meier P, Stutz I, Schildberger D, Hühn T, Eibl D. 2018. Plant cell culture technology in the cosmetics and food industries: current state and future trends. Appl. Microbiol. Biotechnol. 102:208661–75
    [Google Scholar]
  45. Eibl R, Werner S, Eibl D 2009. Bag bioreactor based on wave-induced motion: characteristics and applications. Disposable Bioreactors 115: R Eibl, D Eibl 55–87 Berlin: Springer-Verlag
    [Google Scholar]
  46. Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE. 2004. Myotubes differentiate optimally on substrates with tissue-like stiffness. Int. J. Cell Biol. 166:6877–87
    [Google Scholar]
  47. Evans DE, Coleman JOD, Kearns A. 2003. Plant Cell Culture London: BIOS Sci. Publ.
    [Google Scholar]
  48. Evans MJ, Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–56
    [Google Scholar]
  49. Ferranti P, Berry E, Anderson JR. 2019. Encyclopedia of Food Security and Sustainability Oxford, UK: Elsevier. , 1st ed..
    [Google Scholar]
  50. Fierascu RC, Fierascu I, Ortan A, Georgiev MI, Sieniawska E. 2020. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules 25:2309
    [Google Scholar]
  51. Fremont M. 2017. Cell culture: an innovative approach for production of plant actives. New Food https://www.newfoodmagazine.com/article/33682/cell-culture-plant-actives/
    [Google Scholar]
  52. García C, Prieto MA. 2019. Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microb. Biotechnol. 12:4582–85
    [Google Scholar]
  53. Gaydhane MK, Mahanta U, Sharma CS, Khandelwal M, Ramakrishna S. 2018. Cultured meat: state of the art and future. Biomanuf. Rev. 3:1
    [Google Scholar]
  54. Genovese NJ, Domeier TL, Telugu BPVL, Roberts RM. 2017. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci. Rep. 7:141833
    [Google Scholar]
  55. Georgiev MI, Eibl R, Zhong J-J. 2013. Hosting the plant cells in vitro: recent trends in bioreactors. Appl. Microbiol. Biotechnol. 97:93787–800
    [Google Scholar]
  56. Georgiev V, Slavov A, Vasileva I, Pavlov A. 2018. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci 18:11779–98
    [Google Scholar]
  57. Gey GO. 1958. Normal and malignant cells in tissue culture. Ann. N. Y. Acad. Sci 76:3547–49
    [Google Scholar]
  58. Gillispie GJ, Park J, Copus JS, Pallickaveedu Rajan Asari AK, Yoo JJ et al. 2019. Three-dimensional tissue and organ printing in regenerative medicine. Principles of Regenerative Medicine A Atala, R Lanza, T Mikos, R Nerem 831–52 Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  59. Haack-Sørensen M, Follin B, Juhl M, Brorsen SK, Søndergaard RH et al. 2016. Culture expansion of adipose derived stromal cells. A closed automated quantum cell expansion system compared with manual flask-based culture. J. Transl. Med. 14:319
    [Google Scholar]
  60. Haberlandt G. 1902. Kulturversuche mit isolierten Pflanzenzellen. Math.-Naturwiss. Kl. Abt I 111:69–92
    [Google Scholar]
  61. Halder M, Sarkar S, Jha S. 2019. Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 19:12880–95
    [Google Scholar]
  62. Hoogenkamp H. 2016. Cellular agriculture shows future potential. FleischWirtschaft Int 3:46–49
    [Google Scholar]
  63. Imseng N, Schillberg S, Schürch C, Schmid D, Schütte K et al. 2014. Suspension culture of plant cells under heterotrophic conditions. Industrial Scale Suspension Culture of Living Cells H-P Meyer, DR Schmidhalter 224–58 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  64. Iram D, Riaz RA, Iqbal RK. 2019. 3D bioprinting: an attractive alternative to traditional organ transplantation. Biomed. Sci. Eng. 5:17–18
    [Google Scholar]
  65. Jalving M, Schepers H. 2009. Induced pluripotent stem cells: Will they be safe?. Curr. Opin. Mol. Ther. 11:4383–93
    [Google Scholar]
  66. Jossen V, Eibl R, Eibl D 2019. Single-use bioreactors: an overview. Single-Use Technology in Biopharmaceutical Manufacture R Eibl, D Eibl 37–52 Hoboken, NJ: Wiley. , 1st ed..
    [Google Scholar]
  67. Jossen V, Kaiser SC, Schirmaier C, Herrmann J, Tappe A et al. 2014a. Modification and qualification of a stirred single-use bioreactor for the improved expansion of human mesenchymal stem cells at benchtop scale. Pharm. Bioprocess. 2:4311–22
    [Google Scholar]
  68. Jossen V, Pörtner R, Kaiser SC, Kraume M, Eibl D, Eibl R 2014b. Mass production of mesenchymal stem cells: impact of bioreactor design and flow conditions on proliferation and differentiation. Cells and Biomaterials in Regenerative Medicine D Eberli 119–74 London: InTech
    [Google Scholar]
  69. Jossen V, Schirmer C, Mostafa Sindi D, Eibl R, Kraume M et al. 2016. Theoretical and practical issues that are relevant when scaling up hMSC microcarrier production processes. Stem Cells Int 2016.4760414
    [Google Scholar]
  70. Jossen V, van den Bos C, Eibl R, Eibl D. 2018. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl. Microbiol. Biotechnol. 102:93981–94
    [Google Scholar]
  71. Keefer CL, Pant D, Blomberg L, Talbot NC. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98:1–2147–68
    [Google Scholar]
  72. Kim M, Choi YS, Yang SH, Hong HN, Cho SW et al. 2006. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem. Biophys. Res. Commun. 348:2386–92
    [Google Scholar]
  73. Kreis W. 2019. Exploiting plant cell culture for natural product formation. J. Appl. Bot. Food Qual. 92:216–25
    [Google Scholar]
  74. Kropp C, Massai D, Zweigerdt R. 2017. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem 59:244–54
    [Google Scholar]
  75. Lange BM 2018. Commercial-scale tissue culture for the production of plant natural products: successes, failures and outlook. Biotechnology of Natural Products W Schwab, BM Lange, M Wüst 189–218 Cham, Switz: Springer
    [Google Scholar]
  76. Langer R. 1997. Tissue engineering: a new field and its challenges. Pharm. Res. 14:7840–41
    [Google Scholar]
  77. Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA et al. 2017. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem. Eng. J. 120:49–62
    [Google Scholar]
  78. Lazennec G, Jorgensen C. 2008. Concise review: adult multipotent stromal cells and cancer: risk or benefit?. Stem Cells 26:61387–94
    [Google Scholar]
  79. Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P. 2017. Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 59:255–65
    [Google Scholar]
  80. Lechanteur C. 2014. Large-scale clinical expansion of mesenchymal stem cells in the GMP-compliant, closed automated Quantum® cell expansion system: comparison with expansion in traditional T-flasks. J. Stem Cell Res. Ther. 4:81000222
    [Google Scholar]
  81. Lee EK, Jin YW, Park JH, Yoo YM, Hong SM et al. 2010. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 28:111213–17
    [Google Scholar]
  82. Lehmann N, Dittler I, Lämsä M, Ritala A, Rischer H et al. 2014. Disposable bioreactors for cultivation of plant cell cultures. Production of Biomass and Bioactive Compounds Using Bioreactor Technology KY Paek, HN Murthy, JJ Zhong 17–46 Dordrecht, Neth: Springer
    [Google Scholar]
  83. [Google Scholar]
  84. Malik S, Bhushan S, Sharma M, Ahuja PS. 2016. Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit. Rev. Biotechnol. 36:2327–40
    [Google Scholar]
  85. Martin C, Piccini A, Chevalot I, Olmos E, Guedon E, Marc A 2015. Serum-free media for mesenchymal stem cells expansion on microcarriers. BMC Proc 9:Suppl. 9P70
    [Google Scholar]
  86. McFarland DC, Doumit ME, Minshall RD. 1988. The turkey myogenic satellite cell: optimization of in vitro proliferation and differentiation. Tissue Cell 20:6899–908
    [Google Scholar]
  87. McFarland DC, Pesall JE, Norberg JM, Dvoracek MA. 1991. Proliferation of the turkey myogenic satellite cell in a serum-free medium. Comp. Biochem. Physiol. Part A 99:1–2163–67
    [Google Scholar]
  88. Misawa M 1977. Production of natural substances by plant cell cultures described in Japanese patents. Plant Tissue Culture and its Bio-Technological Application W Barz, E Reinhard, MH Zenk 17–26 Berlin: Springer-Verlag. , 1st ed..
    [Google Scholar]
  89. Mizukami A, Orellana MD, Caruso SR, de Lima Prata K, Covas DT, Swiech K. 2013. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system. Biotechnol. Prog. 29:2568–72
    [Google Scholar]
  90. Molnar G, Schroedl NA, Gonda SR, Hartzell CR. 1997. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 33:5386–91
    [Google Scholar]
  91. Moritz MSM, Verbruggen SEL, Post MJ. 2015. Alternatives for large-scale production of cultured beef: a review. J. Integr. Agric. 14:2208–16
    [Google Scholar]
  92. Morus M, Baran M, Rost-Roszkowska M, Skotnicka-Graca U. 2014. Plant stem cells as innovation in cosmetics. Acta Pol. Pharm. 71:5701–7
    [Google Scholar]
  93. Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ et al. 2014a. Ginsenosides: prospective for sustainable biotechnological production. Appl. Microbiol. Biotechnol. 98:146243–54
    [Google Scholar]
  94. Murthy HN, Georgiev MI, Park SY, Dandin VS, Paek KY. 2015. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: a review. Food Chem 176:426–32
    [Google Scholar]
  95. Murthy HN, Kim YS, Jeong CS, Kim SJ, Zhong JJ, Paek KY 2014b. Production of ginsenosides from adventitious root cultures of Panax ginseng. Production of Biomass and Bioactive Compounds Using Bioreactor Technology KY Paek, HN Murthy, JJ Zhong 625–51 Dordrecht, Neth: Springer. , 1st ed..
    [Google Scholar]
  96. Murthy HN, Paek K, Park S, Dandin V 2016. Safety issues of food ingredients from plant cell, tissue, and organ cultures: an explication. Food Toxicology B Debasis, S Anand, S Stohs 151–68 Boca Raton, FL: CRC Press
    [Google Scholar]
  97. Neumann A, Lavrentieva A, Heilkenbrinker A, Loenne M, Kasper C. 2014. Characterization and application of a disposable rotating bed bioreactor for mesenchymal stem cell expansion. Bioengineering 1:231–45
    [Google Scholar]
  98. Nogueira DES, Rodrigues CAV, Carvalho MS, Miranda CC, Hashimura Y et al. 2019. Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheel™ bioreactors. J. Biol. Eng. 13:174
    [Google Scholar]
  99. Nordlund E, Lille M, Silventoinen P, Nygren H, Seppänen-Laakso T et al. 2018. Plant cells as food: a concept taking shape. Food Res. Int. 107:297–305
    [Google Scholar]
  100. Ochoa-Villarreal M, Howat S, Jang MO, Kim IS, Jin YW et al. 2015. Cambial meristematic cells: a platform for the production of plant natural products. New Biotechnol 32:6581–87
    [Google Scholar]
  101. Paek KY, Chakrabarty D, Hahn EJ. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Org 81:3287–300
    [Google Scholar]
  102. Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM, Piñol MT. 2003. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:4344–49
    [Google Scholar]
  103. Post MJ. 2012. Cultured meat from stem cells: challenges and prospects. Meat Sci 92:3297–301
    [Google Scholar]
  104. Post MJ. 2014. Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94:61039–41
    [Google Scholar]
  105. Powell RL, Dodson MV, Cloud JG. 1989. Cultivation and differentiation of satellite cells from skeletal muscle of the rainbow trout Salmo gairdneri. J. Exp. Zool. 250:3333–38
    [Google Scholar]
  106. Qu J, Zhang W, Yu X, Jin M 2005. Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Fréaux suspension cultures. Biotechnol. Bioprocess Eng. 10:2155–61
    [Google Scholar]
  107. Rafiq QA, Brosnan KM, Coopman K, Nienow AW, Hewitt CJ. 2013. Culture of human mesenchymal stem cells on microcarriers in a 5 liter stirred-tank bioreactor. Biotechnol. Lett. 35:81233–45
    [Google Scholar]
  108. Rafiq QA, Ruck S, Hanga MP, Heathman TRJ, Coopman K et al. 2018. Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers: utilising the phenomenon to improve culture performance. Biochem. Eng. J. 135:11–21
    [Google Scholar]
  109. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M et al. 2016. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:2182
    [Google Scholar]
  110. Rasche S, Herwartz D, Schuster F, Jablonka N, Weber A et al. 2016. More for less: improving the biomass yield of a pear cell suspension culture by design of experiments. Sci. Rep. 6:123371
    [Google Scholar]
  111. Räty N. 2017. Home bioreactor: local food from plant cell cultures Master's Thesis, Aalto Univ. Espoo, Finl:.
    [Google Scholar]
  112. Rischer H, Szilvay GR, Oksman-Caldentey K-M. 2020. Cellular agriculture—industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 61:128–34
    [Google Scholar]
  113. Ritacco FV, Wu Y, Khetan A. 2018. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol. Prog. 34:61407–26
    [Google Scholar]
  114. Ritala A, Häkkinen ST, Toivari M, Wiebe MG. 2017. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 8:2009
    [Google Scholar]
  115. Röös E, Bajželj B, Smith P, Patel M, Little D, Garnett T. 2017. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47:1–12
    [Google Scholar]
  116. Rubio N, Datar I, Stachura D, Kaplan D, Krueger K. 2019. Cell-based fish: a novel approach to seafood production and an opportunity for cellular agriculture. Front. Sustain. Food Syst. 3:43
    [Google Scholar]
  117. Ryu N-E, Lee S-H, Park H. 2019. Spheroid culture system methods and applications for mesenchymal stem cells. Cells 8:121620
    [Google Scholar]
  118. Sagaradze G, Grigorieva O, Nimiritsky P, Basalova N, Kalinina N et al. 2019. Conditioned medium from human mesenchymal stromal cells: towards the clinical translation. Int. J. Mol. Sci. 20:71656
    [Google Scholar]
  119. Schirmaier C, Jossen V, Kaiser SC, Jüngerkes F, Brill S et al. 2014. Scale-up of adipose tissue-derived mesenchymal stem cell production in stirred single-use bioreactors under low-serum conditions. Eng. Life Sci. 14:3292–303
    [Google Scholar]
  120. Schmitz C, Fritsch L, Fischer R, Schillberg S, Rasche S. 2016. Statistical experimental designs for the production of secondary metabolites in plant cell suspension cultures. Biotechnol. Lett. 38:122007–14
    [Google Scholar]
  121. Schumacher HM, Westphal M, Heine-Dobbernack E 2015. Cryopreservation of plant cell lines. Cryopreservation and Freeze-Drying Protocols WF Wolkers, H Oldenhof 423–29 New York: Springer-Verlag. , 2nd ed..
    [Google Scholar]
  122. Scott A. 2017. Delivering on spider silk's promise. Chem. Eng. News 95:818–20
    [Google Scholar]
  123. Shekaran A, Lam A, Sim E, Jialing L, Jian L et al. 2016. Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation. Cytotherapy 18:101332–44
    [Google Scholar]
  124. Specht L. 2019. An analysis of culture medium costs and production volumes for cell-based meat Rep., Good Food Inst Washington, DC: https://www.gfi.org/files/sci-tech/clean-meat-production-volume-and-medium-cost.pdf
    [Google Scholar]
  125. Stanton MM, Tzatzalos E, Donne M, Kolundzic N, Helgason I, Ilic D. 2019. Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection: wildlife conservation from a different perspective. Stem Cells Transl. Med. 8:17–13
    [Google Scholar]
  126. Stephens N, Di Silvio L, Dunsford I, Ellis M, Glencross A, Sexton A. 2018. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78:155–66
    [Google Scholar]
  127. Stephens N, Ellis M. 2020. Cellular agriculture in the UK: a review. Wellcome Open Res 5:12
    [Google Scholar]
  128. Stiles AR, Liu C-Z. 2013. Hairy root culture: bioreactor design and process intensification. Biotechnology of Hairy Root Systems PM Doran 91–114 Berlin: Springer-Verlag. , 1st ed..
    [Google Scholar]
  129. Tassoni A, Durante L, Ferri M. 2012. Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J. Plant Physiol. 169:8775–81
    [Google Scholar]
  130. Trump BD 2020. Synthetic biology, GMO, and risk: What is new, and what is different?. Synthetic Biology 2020: Frontiers in Risk Analysis and Governance BD Trump, CL Cummings, J Kuzma, I Linkov 85–105 Cham, Switz: Springer. , 1st ed..
    [Google Scholar]
  131. Ushiyama K 1991. Large scale cultivation of ginseng. Plant Cell Culture in Japan: Progress in Production of Useful Plant Metabolites by Japanese Enterprises Using Plant Cell Culture Technology A Komamine, M Misawa, F DiCosmo 92–98 Tokyo: CMC
    [Google Scholar]
  132. Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M et al. 2019. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit. Rev. Biotechnol. 39:120–34
    [Google Scholar]
  133. Van Eelen WF, Van Kooten WJ, Westerhof W. 1999. Industrial scale production of meat from in vitro cell cultures WO Patent 9931222A 1
    [Google Scholar]
  134. Varley MC, Markaki AE, Brooks RA. 2017. Effect of rotation on scaffold motion and cell growth in rotating bioreactors. Tissue Eng. Part A 23:11–12522–34
    [Google Scholar]
  135. Verbruggen S, Luining D, van Essen A, Post MJ. 2018. Bovine myoblast cell production in a microcarriers-based system. Cytotechnology 70:2503–12
    [Google Scholar]
  136. Wang Y, Cheng L, Gerecht S. 2014. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann. Biomed. Eng. 42:71357–72
    [Google Scholar]
  137. Weber C, Freimark D, Pörtner R, Pino-Grace P, Pohl S et al. 2010. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier—part A: inoculation, cultivation, and cell harvest procedures. Artif. Organs 33:8512–25
    [Google Scholar]
  138. Werner S, Maschke RW, Eibl D, Eibl R 2018. Bioreactor technology for sustainable production of plant cell-derived products. Bioprocessing of Plant In Vitro Systems A Pavlov, T Bley 413–32 Cham, Switz: Springer
    [Google Scholar]
  139. Wiebe M. 2002. Myco-protein from Fusarium venenatum: a well-established product for human consumption. Appl. Microbiol. Biotechnol. 58:4421–27
    [Google Scholar]
  140. Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman HP, Roelen BAJ. 2008. Isolation and characterization of porcine adult muscle-derived progenitor cells. J. Cell. Biochem. 105:51228–39
    [Google Scholar]
  141. Young JF, Skrivergaard S. 2020. Cultured meat on a plant-based frame. Nat. Food 1:4195
    [Google Scholar]
  142. Yue W, Ming Q, Lin B, Rahman K, Zheng C-J et al. 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 36:2215–32
    [Google Scholar]
  143. Zappelli C, Barbulova A, Apone F, Colucci G. 2016. Effective active ingredients obtained through biotechnology. Cosmetics 3:439
    [Google Scholar]
/content/journals/10.1146/annurev-food-063020-123940
Loading
/content/journals/10.1146/annurev-food-063020-123940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error