1932

Abstract

Glucosinolates (GSLs) are a class of sulfur-containing compounds found predominantly in the genus of the Brassicaceae family. Certain edible plants in , known as vegetables, are among the most commonly consumed vegetables in the world. Over the last three decades, mounting evidence has suggested an inverse association between consumption of vegetables and the risk of various types of cancer. The biological activities of vegetables have been largely attributed to the hydrolytic products of GSLs. GSLs can be hydrolyzed by enzymes; thermal or chemical degradation also breaks down GSLs. There is considerable variation of GSLs in spp., which are caused by genetic and environmental factors. Most vegetables are consumed after cooking; common cooking methods have a complex influence on the levels of GSLs. The variationof GSLs in vegetables and the influence of cooking and processing methods ultimately affect their intake and health-promoting properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-070620-025744
2021-03-25
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-070620-025744.html?itemId=/content/journals/10.1146/annurev-food-070620-025744&mimeType=html&fmt=ahah

Literature Cited

  1. Agerbirk N, Olsen CE. 2012. Glucosinolate structures in evolution. Phytochemistry 77:16–45. Corrigendum 2013. Phytochemistry 96:466–67
    [Google Scholar]
  2. Agudo A, Ibanez R, Amiano P, Ardanaz E, Barricarte A et al. 2008. Consumption of cruciferous vegetables and glucosinolates in a Spanish adult population. Eur. J. Clin. Nutr. 62:324–31
    [Google Scholar]
  3. Aires A, Carvalho R. 2017. Rapid separation of indole glucosinolates in roots of Chinese cabbage (Brassicarapa subsp. Pekinensis) by high-performance liquid chromatography with diode array detection. Int. J. Anal. Chem. 2017.5125329
    [Google Scholar]
  4. Aires A, Rosa E, Carvalho R 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agric. 86:1512–16
    [Google Scholar]
  5. Alvarez-Jubete L, Valverde J, Patras A, Mullen AM, Marcos B 2014. Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitataalba). Food Bioprocess Technol 7:682–92
    [Google Scholar]
  6. Al-Zalabani AH, Stewart KF, Wesselius A, Schols AM, Zeegers MP. 2016. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. Eur. J. Epidemiol. 31:811–51
    [Google Scholar]
  7. Angelino D, Dosz EB, Sun J, Hoeflinger JL, Van Tassell ML et al. 2015. Myrosinase-dependent and -independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front. Plant Sci. 6:831
    [Google Scholar]
  8. Ares AM, Bernal J, Nozal MJ, Turner C, Plaza M. 2015. Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res. Int. 76:498–505
    [Google Scholar]
  9. Baenas N, Marhuenda J, García-Viguera C, Zafrilla P, Moreno DA. 2019. Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods 8:257
    [Google Scholar]
  10. Baik HY, Juvik JA, Jeffery EH, Wallig MA, Kushad M, Klein BP. 2003. Relating glucosinolate content and flavor of broccoli cultivars. J. Food Sci. 68:1043–50
    [Google Scholar]
  11. Bell L, Wagstaff C. 2017. Enhancement of glucosinolate and isothiocyanate profiles in Brassicaceae crops: addressing challenges in breeding for cultivation, storage, and consumer-related traits. J. Agric. Food Chem. 65:9379–403
    [Google Scholar]
  12. Bertelsen F, Gissel-Nielsen G, Kiær A, Skrydstrup T. 1988. Selenoglucosinolates in nature: fact or myth?. Phytochemistry 27:3743–49
    [Google Scholar]
  13. Betz JM, Fox WD 1994. High-performance liquid chromatographic determination of glucosinolates in Brassica vegetables. Food Phytochemicals for Cancer Prevention I: Fruits and Vegetables M-T Huang, T Osawa, C-T Ho, RT Rosen 181–96 ACS Symp. Ser Washington, DC: ACS Publ.
    [Google Scholar]
  14. Blažević I, Montaut S, Burčul F, Olsen CE, Burow M et al. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100
    [Google Scholar]
  15. Boeing H. 2013. Nutritional epidemiology: new perspectives for understanding the diet-disease relationship?. Eur. J. Clin. Nutr. 67:424–29
    [Google Scholar]
  16. Bohinc T, Trdan S. 2012. Environmental factors affecting the glucosinolate content in Brassicaceae. J. Food Agric. Environ. 10:357–60
    [Google Scholar]
  17. Botting CH, Davidson NE, Griffiths DW, Bennett RN, Botting NP. 2002. Analysis of intact glucosinolates by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 50:983–88
    [Google Scholar]
  18. Brown AF, Yousef GG, Jeffery EH, Klein BP, Wallig MA et al. 2002. Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J. Am. Soc. Hortic. Sci. 127:807–13
    [Google Scholar]
  19. Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B. 2000. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J. Biol. Chem. 275:39385–93
    [Google Scholar]
  20. Burow M, Wittstock U. 2009. Regulation and function of specifier proteins in plants. Phytochem. Rev. 8:87–99
    [Google Scholar]
  21. Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S et al. 2018. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta 179:792–802
    [Google Scholar]
  22. Charron CS, Sams CE, Canaday CH. 2002. Impact of glucosinolate content in broccoli (Brassica oleracea (Italica group)) on growth of Pseudomonas marginalis, a causal agent of bacterial soft rot. Plant Dis 86:629–32
    [Google Scholar]
  23. Charron CS, Saxton AM, Sams CE. 2005. Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J. Sci. Food Agric. 85:671–81
    [Google Scholar]
  24. Choi S-H, Park S, Lim YP, Kim S-J, Park J-T, An G 2014. Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Hortic. Environ. Biotechnol. 55:237–47
    [Google Scholar]
  25. Cieślik E, Leszczyńska T, Filipiak-Florkiewicz A, Sikora E, Pisulewski PM. 2007. Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–81
    [Google Scholar]
  26. Ciska E, Martyniak-Przybyszewska B, Kozlowska H. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 48:2862–67
    [Google Scholar]
  27. Ciska E, Pathak DR. 2004. Glucosinolate derivatives in stored fermented cabbage. J. Agric. Food Chem. 52:7938–43
    [Google Scholar]
  28. Clarke DB. 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2:310–25
    [Google Scholar]
  29. Dinkova-Kostova AT, Kostov RV 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med. 18:337–47
    [Google Scholar]
  30. Dixon RA. 2001. Natural products and plant disease resistance. Nature 411:843–47
    [Google Scholar]
  31. Engelen-Eigles G, Holden G, Cohen JD, Gardner G. 2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem 54:328–34
    [Google Scholar]
  32. Ettlinger MG, Kjær A. 1968. Sulfur compounds in plants. Recent Adv. Phytochem. 1:59–144
    [Google Scholar]
  33. Ettlinger MG, Lundeen AJ. 1956. The structures of sinigrin and sinalbin; an enzymatic rearrangement. J. Am. Chem. Soc. 78:4172–73
    [Google Scholar]
  34. Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and iso-thiocyanates among plants. Phytochemistry 56:5–51
    [Google Scholar]
  35. Falk KL, Tokuhisa JG, Gershenzon J. 2007. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–81
    [Google Scholar]
  36. Fenwick GR, Heaney RK, Mullin WJ. 1983. Glucosinolates and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr. 18:123–201
    [Google Scholar]
  37. Francisco M, Tortosa M, Martínez-Ballesta MDC, Velasco P, García-Viguera C, Moreno DA. 2017. Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Ann. Appl. Biol. 170:273–85
    [Google Scholar]
  38. Francisco M, Velasco P, Moreno DA, García-Viguera C, Cartea ME. 2010. Cooking methods of Brassicarapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int. 43:1455–63
    [Google Scholar]
  39. Frandsen HB, Markedal KE, Martin-Belloso O, Sanchez-Vega R, Soliva-Fortuny R et al. 2014. Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli. Pol. J. Food Nutr. Sci. 64:17–25
    [Google Scholar]
  40. Geilfus C-M, Hasler K, Witzel K, Gerendás J, Mühling KH. 2016. Interactive effects of genotype and N/S-supply on glucosinolates and glucosinolate breakdown products in Chinese cabbage (Brassicarapa L. ssp. pekinensis). J. Appl. Bot. Food Qual. 89:279–86
    [Google Scholar]
  41. Goodrich RM, Parker RS, Lisk DJ, Stoewsand GS. 1988. Glucosinolate, carotene and cadmium content of Brassica oleracea grown on municipal sewage sludge. Food Chem 27:141–50
    [Google Scholar]
  42. Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–33
    [Google Scholar]
  43. Hanschen FS, Bauer A, Mewis I, Keil C, Schreiner M et al. 2012a. Thermally induced degradation of aliphatic glucosinolates: identification of intermediary breakdown products and proposed degradation pathways. J. Agric. Food Chem. 60:9890–99
    [Google Scholar]
  44. Hanschen FS, Lamy E, Schreiner M, Rohn S. 2014. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew. Chem. Int. Ed. 53:11430–50
    [Google Scholar]
  45. Hanschen FS, Rohn S, Mewis I, Schreiner M, Kroh LW. 2012b. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem 130:1–8
    [Google Scholar]
  46. Hansen M, Møller P, Sørensen H, de Trejo MC. 1995. Glucosinolates in broccoli stored under controlled atmosphere. J. Am. Soc. Hortic. Sci. 120:1069–74
    [Google Scholar]
  47. Holst B, Williamson G. 2004. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep. 21:425–47
    [Google Scholar]
  48. Hopkins RJ, van Dam NM, van Loon JJA. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54:57–83
    [Google Scholar]
  49. Hwang E-S, Jang M-R, Kim G-H. 2012. Effects of storage condition on the bioactive compound contents of Korean cabbage. Food Sci. Biotechnol. 21:1655–61
    [Google Scholar]
  50. Hwang IM, Park B, Dang YM, SY Kim, Seo HY. 2019. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chem 282:127–33
    [Google Scholar]
  51. ISO (Int. Organ. Stand.) 1992. Rapeseed—Determination of glucosinolates content—Part 1: method using high-performance liquid chromatography. ISO9167–1 1992. Paris: ISO
    [Google Scholar]
  52. IUPAC CNOC (Int. Union Pure App. Chem. Comm. Nomencl. Org. Chem.) 1978. Nomenclature of organic chemistry. Section F: natural products and related compounds. Eur. J. Biochem. 86:1–8
    [Google Scholar]
  53. Johnson TL, Dinkova-Kostova AT, Fahey JW 2016. Glucosinolates from the Brassica vegetables and their health effects. Encyclopedia of Food and Health B Caballero, P Finglas, F Toldra 248–55 Oxford, UK: Acad. Press
    [Google Scholar]
  54. Jones RB, Frisina CL, Winkler S, Imsic M, Tomkins RB. 2010. Cooking method significantly effects gluco-sinolate content and sulforaphane production in broccoli florets. Food Chem 123:237–42
    [Google Scholar]
  55. Justen VL, Fritz VA. 2013. Temperature-induced glucosinolate accumulation is associated with expression of BrMYB transcription factors. HortScience 48:47–52
    [Google Scholar]
  56. Kestwal RM, Lin JC, Bagal-Kestwal D, Chiang BH. 2011. Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food Chem 126:1164–71
    [Google Scholar]
  57. Kim HS, Juvik JA. 2011. Effect of selenium fertilization and methyl jasmonate treatment on glucosinolate accumulation in broccoli florets. J. Am. Soc. Hortic. Sci. 136:239–46
    [Google Scholar]
  58. Kissen R, Eberl F, Winge P, Uleberg E, Martinussen I, Bones AM. 2016. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry 130:106–18
    [Google Scholar]
  59. Kopsell DA, Barickman TC, Sams CE, McElroy JS. 2007. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem 55:10628–34
    [Google Scholar]
  60. Kopsell DE, Kopsell DA, Randle WM, Coolong TW, Sams CE, Curran-Celentano J. 2003. Kale carotenoids remain stable while flavor compounds respond to changes in sulfur fertility. J. Agric. Food Chem. 51:5319–25
    [Google Scholar]
  61. Korus A, Słupski J, Gębczyński P, Banaś A. 2014. Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. LWT Food Sci. Technol. 59:1003–8
    [Google Scholar]
  62. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP et al. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 47:1541–48
    [Google Scholar]
  63. Lam TK, Gallicchio L, Lindsley K, Shiels M, Hammond E et al. 2009. Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiol. Biomark. Prev. 18:184–95
    [Google Scholar]
  64. Lee J-E, Wang P, Kim G-Y, Kim S-H, Park S-H et al. 2010. Effects of soil pH on nutritional and functional components of Chinese cabbage (Brassicarapa ssp. campestris). Korean J. Hortic. Sci. Technol. 28:353–62
    [Google Scholar]
  65. Lee KC, Chan W, Liang Z, Liu N, Zhao Z et al. 2008. Rapid screening method for intact glucosinolates in Chinese medicinal herbs by using liquid chromatography coupled with electrospray ionization ion trap mass spectrometry in negative ion mode. Rapid Commun. Mass Spectrom. 22:2825–34
    [Google Scholar]
  66. Li S, Schonhof I, Krumbein A, Li L, Stutzel H, Schreiner M. 2007. Glucosinolate concentration in turnip (Brassicarapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J. Agric. Food Chem. 55:8452–57
    [Google Scholar]
  67. Liu B, Mao Q, Cao M, Xie L. 2012. Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int. J. Urol. 19:134–41
    [Google Scholar]
  68. Liu X, Lv K. 2013. Cruciferous vegetables intake is inversely associated with risk of breast cancer: a meta-analysis. Breast 22:309–13
    [Google Scholar]
  69. López-Berenguer C, Carvajal M, Moreno DA, García-Viguera C. 2007. Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J. Agric. Food Chem. 55:10001–7
    [Google Scholar]
  70. Ma L, Liu G, Sampson L, Willett WC, Hu FB, Sun Q. 2018. Dietary glucosinolates and risk of type 2 diabetes in 3 prospective cohort studies. Am. J. Clin. Nutr. 107:617–25
    [Google Scholar]
  71. MacLeod AJ, Panesar SS, Gil V. 1981. Thermal degradation of glucosinolates. Phytochemistry 20:977–80
    [Google Scholar]
  72. Martinez-Villaluenga C, Peñas E, Frias J, Ciska E, Honke J et al. 2009. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J. Food Sci. 74:C62–67
    [Google Scholar]
  73. Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK et al. 2012. Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–52
    [Google Scholar]
  74. McNaughton SA, Marks GC. 2003. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br. J. Nutr. 90:687–97
    [Google Scholar]
  75. Meyer M, Adam ST. 2008. Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. Eur. Food Res. Technol. 226:1429–37
    [Google Scholar]
  76. Miao H, Lin J, Zeng W, Wang M, Yao L, Wang Q. 2019. Main health-promoting compounds response to long-term freezer storage and different thawing methods in frozen broccoli florets. Foods 8:375
    [Google Scholar]
  77. Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N. 2008. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 56:139–47
    [Google Scholar]
  78. Miranda Rossetto MR, Shiga TM, Vianello F, Pereira Lima GP 2013. Analysis of total glucosinolates and chromatographically purified benzylglucosinolate in organic and conventional vegetables. LWT Food Sci. Technol. 50:247–52
    [Google Scholar]
  79. Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 80:967–84
    [Google Scholar]
  80. Narbad A, Rossiter JT. 2018. Gut glucosinolate metabolism and isothiocyanate production. Mol. Nutr. Food Res. 62:1700991
    [Google Scholar]
  81. Niu Y, Rogiewicz A, Wan C, Guo M, Huang F, Slominski BA. 2015. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds. J. Agric. Food Chem. 63:3078–84
    [Google Scholar]
  82. Nugrahedi PY, Oliviero T, Heising JK, Dekker M, Verkerk R. 2017. Stir-frying of Chinese cabbage and pakchoi retains health-promoting glucosinolates. Plant Foods Hum. Nutr. 72:439–44
    [Google Scholar]
  83. Nugrahedi PY, Verkerk R, Widianarko B, Dekker M. 2015a. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Crit. Rev. Food Sci. Nutr. 55:823–38
    [Google Scholar]
  84. Nugrahedi PY, Widianarko B, Dekker M, Verkerk R, Oliviero T. 2015b. Retention of glucosinolates during fermentation of Brassica juncea: a case study on production of sayur asin. Eur. Food Res. Technol. 240:559–65
    [Google Scholar]
  85. Oliviero T, Verkerk R, Dekker M. 2018. Reply to “Dietary glucosinolates and risk of type 2 diabetes in 3 prospective cohort studies.. Am. J. Clin. Nutr. 108:425
    [Google Scholar]
  86. Øvsthus I, Breland TA, Hagen SF, Brandt K, Wold AB et al. 2015. Effects of organic and waste-derived fertilizers on yield, nitrogen and glucosinolate contents, and sensory quality of broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 63:10757–67
    [Google Scholar]
  87. Palermo M, Pellegrini N, Fogliano V. 2014. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 94:1057–70
    [Google Scholar]
  88. Pellegrini N, Chiavaro E, Gardana C, Mazzeo T, Contino D et al. 2010. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J. Agric. Food Chem. 58:4310–21
    [Google Scholar]
  89. Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F. 2016. Glucosinolates in food. Glucosinolates J-M Mérillon, KG Ramawat. Ref. Ser. Phytochem Cham, Switz: Springer Int. Publ https://doi.org/10.1007/978-3-319-26479-0_4-1
    [Crossref] [Google Scholar]
  90. Prieto MA, Lopez CJ, Simal-Gandara J. 2019. Glucosinolates: molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv. Food Nutr. Res. 90:305–50
    [Google Scholar]
  91. Radovich TJK, Kleinhenz MD, Streeter JG. 2005. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J. Am. Soc. Hortic. Sci. 130:943–49
    [Google Scholar]
  92. Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E et al. 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–71
    [Google Scholar]
  93. Renaud EN, Van Bueren ETL, Myers JR, Paulo MJ, Van Eeuwijk FA et al. 2014. Variation in broccoli cultivar phytochemical content under organic and conventional management systems: implications in breeding for nutrition. PLOS ONE 9:e95683
    [Google Scholar]
  94. Robbins RJ, Keck A-S, Banuelos G, Finley JW. 2005. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. J. Med. Food. 8:204–14
    [Google Scholar]
  95. Rosa EAS, Heaney RK, Portas CAM, Fenwick GR. 1996. Changes in glucosinolate concentrations in Brassica crops (Boleracea and Bnapus) throughout growing seasons. J. Sci. Food Agric. 71:237–44
    [Google Scholar]
  96. Rosen CJ, Fritz VA, Gardner GM, Hecht SS, Carmella SG, Kenney PM. 2005. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. HortScience 40:1493–98
    [Google Scholar]
  97. Rouzaud G, Rabot S, Ratcliffe B, Duncan AJ. 2003. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. Br. J. Nutr. 90:395–404
    [Google Scholar]
  98. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. 2006. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J. Agric. Food Chem. 54:7628–34
    [Google Scholar]
  99. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. 2007. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc. Nutr. Soc. 66:69–81
    [Google Scholar]
  100. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. 2008. Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. Eur. Food Res. Technol. 227:37–44
    [Google Scholar]
  101. Sarvan I, Valerio F, Lonigro SL, de Candia S, Verkerk R et al. 2013. Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Res. Int. 54:706–10
    [Google Scholar]
  102. Sarvan I, Verkerk R, Dekker M. 2012. Modelling the fate of glucosinolates during thermal processing of Brassica vegetables. LWT Food Sci. Technol. 49:178–83
    [Google Scholar]
  103. Satija A, Yu E, Willett WC, Hu FB. 2015. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 6:5–18
    [Google Scholar]
  104. Schonhof I, Blankenburg D, Müller S, Krumbein A. 2007a. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J. Plant Nutr. Soil Sci. 170:65–72
    [Google Scholar]
  105. Schonhof I, Kläring HP, Krumbein A, Schreiner M. 2007b. Interaction between atmospheric CO2 and glucosinolates in broccoli. J. Chem. Ecol. 33:105–14
    [Google Scholar]
  106. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. 1998. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol. Biomark. Prev. 7:1091–100
    [Google Scholar]
  107. Soares A, Carrascosa C, Raposo A. 2017. Influence of different cooking methods on the concentration of glucosinolates and vitamin C in broccoli. Food Bioprocess Technol 10:1387–411
    [Google Scholar]
  108. Sones K, Heaney RK, Fenwick GR. 1984. An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK. J. Sci. Food Agric. 35:712–20
    [Google Scholar]
  109. Song L, Thornalley PJ. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem. Toxicol. 45:216–24
    [Google Scholar]
  110. Steinbrecher A, Linseisen J. 2009. Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg cohort study. Ann. Nutr. Metab. 54:87–96
    [Google Scholar]
  111. Steindal AL, Mølmann J, Bengtsson GB, Johansen TJ. 2013. Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 61:10779–86
    [Google Scholar]
  112. Sun J, Zhang M, Chen P. 2016. GLS-Finder: a platform for fast profiling of glucosinolates in Brassica vegetables. J. Agric. Food Chem. 64:4407–15
    [Google Scholar]
  113. Tian Q, Rosselot RA, Schwartz SJ. 2005. Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal. Biochem. 343:93–99
    [Google Scholar]
  114. Tian S, Liu X, Lei P, Zhang X, Shan Y. 2018. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J. Sci. Food Agric. 98:1255–60
    [Google Scholar]
  115. Tolonen M, Rajaniemi S, Pihlava JM, Johansson T, Saris PEJ, Ryhänen EL. 2004. Formation of nisin, plant-derived biomolecules and antimicrobial activity in starter culture fermentations of sauerkraut. Food Microbiol 21:167–79
    [Google Scholar]
  116. Traka MH 2016. Health benefits of glucosinolates. Advances in Botanical Research 80 S Kopriva 247–79 Amsterdam: Acad. Press
    [Google Scholar]
  117. Tse G, Eslick GD. 2014. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr. Cancer 66:128–39
    [Google Scholar]
  118. Vallejo F, Tomás-Barberán F, García-Viguera C. 2002. Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur. Food Res. Technol. 215:310–16
    [Google Scholar]
  119. Vallejo F, Tomás-Barberán FA, Benavente-García AG, García-Viguera C. 2003. Total and individual gluco-sinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J. Sci. Food Agric. 83:307–13
    [Google Scholar]
  120. Verkerk R, Dekker M. 2004. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J. Agric. Food Chem. 52:7318–23
    [Google Scholar]
  121. Verkerk R, Dekker M, Jongen WMF. 2001. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J. Sci. Food Agric. 81:953–58
    [Google Scholar]
  122. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B et al. 2009. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 53:Suppl. 2S219–65
    [Google Scholar]
  123. Volden J, Bengtsson GB, Wicklund T. 2009. Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112:967–76
    [Google Scholar]
  124. Westphal A, Riedl KM, Cooperstone JL, Kamat S, Balasubramaniam VM et al. 2017. High-pressure processing of broccoli sprouts: influence on bioactivation of glucosinolates to isothiocyanates. J. Agric. Food Chem. 65:8578–85
    [Google Scholar]
  125. Wilkinson AP, Rhodes MJC, Fenwick RG. 1984. Myrosinase activity of cruciferous vegetables. J. Food Sci. Agric. 35:543–52
    [Google Scholar]
  126. Wu QJ, Yang Y, Wang J, Han LH, Xiang YB. 2013. Cruciferous vegetable consumption and gastric cancer risk: a meta-analysis of epidemiological studies. Cancer Sci 104:1067–73
    [Google Scholar]
  127. Wu X, Sun J, Haytowitz DB, Harnly JM, Chen P, Pehrsson PR. 2017. Challenges of developing a valid dietary glucosinolate database. J. Food Compos. Anal. 64:78–84
    [Google Scholar]
  128. Wu Y, Shen Y, Wu X, Zhu Y, Mupunga J et al. 2018. Hydrolysis before stir-frying increases the isothiocyanate content of broccoli. J. Agric. Food Chem. 66:1509–15
    [Google Scholar]
  129. Yuan GF, Sun B, Yuan J, Wang QM. 2009. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ. Sci. B 10:580–88
    [Google Scholar]
  130. Zhang H, Schonhof I, Krumbein A, Gutezeit B, Li L et al. 2008. Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassicarapa ssp. rapifera L.). J. Plant Nutr. 171:255–65
    [Google Scholar]
  131. Zhang Y. 2012. The 1,2-benzenedithiole-based cyclocondensation assay: a valuable tool for the measurement of chemopreventive isothiocyanates. Crit. Rev. Food Sci. Nutr. 52:525–32
    [Google Scholar]
  132. Zhang Z-H, Wang L-H, Zeng X-A, Han Z, Brennan CS. 2019. Non-thermal technologies and its current and future application in the food industry: a review. Int. J. Food Sci. Technol. 54:1–13
    [Google Scholar]
/content/journals/10.1146/annurev-food-070620-025744
Loading
/content/journals/10.1146/annurev-food-070620-025744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error