1932

Abstract

This review focuses on modeling methodologies of the gastrointestinal tract during digestion that have adopted a systems-view approach and, more particularly, on physiologically based compartmental models of food digestion and host–diet–microbiota interactions. This type of modeling appears very promising for integrating the complex stream of mechanisms that must be considered and retrieving a full picture of the digestion process from mouth to colon. We may expect these approaches to become more and more accurate in the future and to serve as a useful means of understanding the physicochemical processes occurring in the gastrointestinaltract, interpreting postprandial in vivo data, making relevant predictions, and designing healthier foods. This review intends to provide a scientific and historical background of this field of research, before discussing the future challenges and potential benefits of the establishment of such a model to study and predict food digestion and absorption in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-070620-124140
2021-03-25
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-070620-124140.html?itemId=/content/journals/10.1146/annurev-food-070620-124140&mimeType=html&fmt=ahah

Literature Cited

  1. Aarons L. 2005. Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. Br. J. Clin. Pharmacol. 60:6581–83
    [Google Scholar]
  2. Arosio M, Ronchi CL, Beck-Peccoz P, Gebbia C, Giavoli C et al. 2004. Effects of modified sham feeding on ghrelin levels in healthy human subjects. J. Clin. Endocrinol. Metab. 89:105101–4
    [Google Scholar]
  3. Baggio LL, Kim J-G, Drucker DJ. 2004. Chronic exposure to GLP-1R agonists promotes homologous GLP-1 receptor desensitization in vitro but does not attenuate GLP-1R-dependent glucose homeostasis in vivo. Diabetes 53:Suppl. 3S205–14
    [Google Scholar]
  4. Baldini F, Heinken A, Heirendt L, Magnusdottir S, Fleming RMT, Thiele I. 2019. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinforma. Oxf. Engl. 35:132332–34
    [Google Scholar]
  5. Balsa-Canto E, Henriques D, Gábor A, Banga JR. 2016. AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 32:213357–59
    [Google Scholar]
  6. Bannink A, Dijkstra J, Koopmans S-J, Mroz Z. 2006. Physiology, regulation and multifunctional activity of the gut wall: a rationale for multicompartmental modelling. Nutr. Res. Rev. 19:2227–53
    [Google Scholar]
  7. Barros RM, Xavier Malcata F 2004. A kinetic model for hydrolysis of whey proteins by cardosin A extracted from Cynara cardunculus. Food Chem 88:3351–59
    [Google Scholar]
  8. Bastianelli D, Sauvant D, Rérat A. 1996. Mathematical modeling of digestion and nutrient absorption in pigs. J. Anim. Sci. 74:81873–87
    [Google Scholar]
  9. Beaumont M, Jaoui D, Douard V, Mat D, Koeth F et al. 2017. Structure of protein emulsion in food impacts intestinal microbiota, caecal luminal content composition and distal intestine characteristics in rats. Mol. Nutr. Food Res. 61:101700078
    [Google Scholar]
  10. Bohn T, Carriere F, Day L, Amelie D, Egger L et al. 2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models?. Crit. Rev. Food Sci. Nutr. 58:132239–61
    [Google Scholar]
  11. Bornhorst GM, Gouseti O, Wickham MSJ, Bakalis S. 2016. Engineering digestion: multiscale processes of food digestion. J. Food Sci. 81:3R534–43
    [Google Scholar]
  12. Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14:4991–1014
    [Google Scholar]
  13. Buffa R, Solcia E, Go VLW. 1976. Immunohistochemical identification of the cholecystokinin cell in the intestinal mucosa. Gastroenterology 70:4528–32
    [Google Scholar]
  14. Chandra R, Liddle RA. 2015. Regulation of pancreatic secretion. Pancreapedia Exocrine Pancreas Knowl. Base https://doi.org/10.3998/panc.2015.38
    [Crossref] [Google Scholar]
  15. Chetty M, Johnson TN, Polak S, Salem F, Doki K, Rostami-Hodjegan A. 2018. Physiologically based pharmacokinetic modelling to guide drug delivery in older people. Adv. Drug Deliv. Rev. 135:85–96
    [Google Scholar]
  16. Chey WY, Chang T. 2001. Neural hormonal regulation of exocrine pancreatic secretion. Pancreatology 1:4320–35
    [Google Scholar]
  17. Cremer J, Arnoldini M, Hwa T 2017. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. PNAS 114:256438–43
    [Google Scholar]
  18. Csajka C, Drover D, Verotta D. 2005. The use of a sum of inverse Gaussian functions to describe the absorption profile of drugs exhibiting complex absorption. Pharm. Res. 22:81227–35
    [Google Scholar]
  19. Dalla Man C, Camilleri M, Cobelli C. 2006. A system model of oral glucose absorption: validation on gold standard data. IEEE Trans. Biomed. Eng. 53:122472–78
    [Google Scholar]
  20. Danhof M, de Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA 2008. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol. Sci. 29:4186–91
    [Google Scholar]
  21. Drechsler KC, Bornhorst GM. 2018. Modeling the softening of carbohydrate-based foods during simulated gastric digestion. J. Food Eng. 222:38–48
    [Google Scholar]
  22. Drechsler KC, Ferrua MJ. 2016. Modelling the breakdown mechanics of solid foods during gastric digestion. Food Res. Int. 88:181–90
    [Google Scholar]
  23. Dupont D, Alric M, Blanquet-Diot S, Bornhorst G, Cueva C et al. 2019. Can dynamic in vitro digestion systems mimic the physiological reality?. Crit. Rev. Food Sci. Nutr. 59:101546–62
    [Google Scholar]
  24. Dupont D, Le Feunteun S, Marze S, Souchon I 2018. Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innov. Food Sci. Emerg. Technol. 46:83–90
    [Google Scholar]
  25. Edwards CH, Warren FJ, Milligan PJ, Butterworth PJ, Ellis PR. 2014. A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food Funct 5:112751–58
    [Google Scholar]
  26. Eelderink C, Schepers M, Preston T, Vonk RJ, Oudhuis L, Priebe MG. 2012. Slowly and rapidly digestible starchy foods can elicit a similar glycemic response because of differential tissue glucose uptake in healthy men. Am. J. Clin. Nutr. 96:51017–24
    [Google Scholar]
  27. Egger L, Ménard O, Delgado-Andrade C, Alvito P, Assuncao R et al. 2016. The harmonized INFOGEST in vitro digestion method: from knowledge to action. Food Res. Int. 88:217–25
    [Google Scholar]
  28. Ekström J, Khosravani N, Castagnola M, Messana I 2012. Saliva and the control of its secretion. Dysphagia: Diagnosis and Treatment O Ekberg 19–47 Berlin: Springer
    [Google Scholar]
  29. Elashoff JL, Reedy TJ, Meyer JH. 1982. Analysis of gastric emptying data. Gastroenterology 83:1306–12
    [Google Scholar]
  30. Ferrua MJ, Singh RP. 2010. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 75:R151–62
    [Google Scholar]
  31. Ferrua MJ, Singh RP. 2015. Computational modelling of gastric digestion: current challenges and future directions. Curr. Opin. Food Sci. 4:116–23
    [Google Scholar]
  32. Fouillet H, Juillet B, Gaudichon C, Mariotti F, Tome D, Bos C 2009. Absorption kinetics are a key factor regulating postprandial protein metabolism in response to qualitative and quantitative variations in protein intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1691–705
    [Google Scholar]
  33. Froehlich DA, Pangborn RM, Whitaker JR. 1987. The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion. Physiol. Behav. 41:3209–17
    [Google Scholar]
  34. Gavião MBD, der Bilt AV. 2004. Salivary secretion and chewing: stimulatory effects from artificial and natural foods. J. Appl. Oral Sci. 12:2159–63
    [Google Scholar]
  35. Giang TM, Gaucel S, Brestaz P, Anton M, Meynier A et al. 2016. Dynamic modeling of in vitro lipid digestion: individual fatty acid release and bioaccessibility kinetics. Food Chem 194:1180–88
    [Google Scholar]
  36. Guarner F, Malagelada J-R. 2003. Gut flora in health and disease. Lancet Lond. Engl. 361:9356512–19
    [Google Scholar]
  37. Haario H, Laine M, Mira A, Saksman E 2006. DRAM: efficient adaptive MCMC. Stat. Comput. 16:4339–54
    [Google Scholar]
  38. Harrison SM, Cleary PW, Sinnott MD. 2018. Investigating mixing and emptying for aqueous liquid content from the stomach using a coupled biomechanical-SPH model. Food Funct 9:63202–19
    [Google Scholar]
  39. Harrison SM, Eyres G, Cleary PW, Sinnott MD, Delahunty C, Lundin L. 2014. Computational modeling of food oral breakdown using smoothed particle hydrodynamics. J. Texture Stud. 45:297–109
    [Google Scholar]
  40. Heinken A, Sahoo S, Fleming RMT, Thiele I. 2013. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4:128–40
    [Google Scholar]
  41. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A et al. 2019. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14:3639–702
    [Google Scholar]
  42. Hunt JN, Smith JL, Jiang CL. 1985. Effect of meal volume and energy density on the gastric emptying of carbohydrates. Gastroenterology 89:61326–30
    [Google Scholar]
  43. Hunt JN, Stubbs DF. 1975. The volume and energy content of meals as determinants of gastric emptying. J. Physiol. 245:1209–25
    [Google Scholar]
  44. INFOGEST In Silico Work. Group 2019. A shared reference library on in silico models related to food digestion. INFOGEST https://www.cost-infogest.eu/WORKING-GROUPS/WG6/A-shared-reference-library-on-in-silico-models-related-to-food-digestion
    [Google Scholar]
  45. Iooss B, Janon A, Pujol G. 2019. R package “sensitivity. .” https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf
  46. Iooss B, Lemaître P 2015. A review on global sensitivity analysis methods. Uncertainty Management in Simulation-Optimization of Complex Systems 59: G Dellino, C Meloni 101–22 Boston, MA: Springer
    [Google Scholar]
  47. Jelic K, Hallgreen CE, Colding-Jørgensen M. 2009. A model of NEFA dynamics with focus on the postprandial state. Ann. Biomed. Eng. 37:91897
    [Google Scholar]
  48. Johnson LR. 2014. Gastrointestinal Physiology Philadelphia: Elsevier Mosby. , 8th ed..
    [Google Scholar]
  49. Joseph IMP, Zavros Y, Merchant JL, Kirschner D. 2003. A model for integrative study of human gastric acid secretion. J. Appl. Physiol. 94:41602–18
    [Google Scholar]
  50. Jullion A, Lambert P, Beck B, Vandenhende F. 2009. Pharmacokinetic parameters estimation using adaptive Bayesian P-splines models. Pharm. Stat. 8:298–112
    [Google Scholar]
  51. Kettle H, Holtrop G, Louis P, Flint HJ 2018. microPop: modelling microbial populations and communities in R. Methods Ecol. Evol. 9:2399–409
    [Google Scholar]
  52. Kettle H, Louis P, Holtrop G, Duncan SH, Flint HJ. 2015. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17:51615–30
    [Google Scholar]
  53. Kim WJ, Kim HU, Lee SY 2017. Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2:10–18
    [Google Scholar]
  54. Kondjoyan A, Daudin J-D, Santé-Lhoutellier V. 2015. Modelling of pepsin digestibility of myofibrillar proteins and of variations due to heating. Food Chem 172:265–71
    [Google Scholar]
  55. Konturek SJ, Biernat J, Oleksy J. 1974. Serum gastrin and gastric acid responses to meals at various pH levels in man. Gut 15:7526–30
    [Google Scholar]
  56. Konturek SJ, Johnson LR. 1971. Evidence for an enterogastric reflex for the inhibition of acid secretion. Gastroenterology 61:5667–74
    [Google Scholar]
  57. Kong F, Singh RP. 2009. Modes of disintegration of solid foods in simulated gastric environment. Food Biophys 4:3180–90
    [Google Scholar]
  58. Korpela K. 2018. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu. Rev. Food Sci. Technol. 9:65–84
    [Google Scholar]
  59. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M et al. 2019. The mechanisms of pharmacokinetic food-drug interactions: a perspective from the UNGAP group. Eur. J. Pharm. Sci. 134:31–59
    [Google Scholar]
  60. Labarthe S, Polizzi B, Phan T, Goudon T, Ribot M, Laroche B. 2019. A mathematical model to investigate the key drivers of the biogeography of the colon microbiota. J. Theor. Biol. 462:552–81
    [Google Scholar]
  61. Lavielle M. 2014. Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools Boca Raton, FL: CRC Press
    [Google Scholar]
  62. Le Feunteun S, Barbe F, Remond D, Menard O, Le Gouar Y et al. 2014. Impact of the dairy matrix structure on milk protein digestion kinetics: mechanistic modelling based on mini-pig in vivo data. Food Bioprocess Technol 7:1099–113
    [Google Scholar]
  63. Le Feunteun S, Mackie AR, Dupont D. 2020. In silico trials of food digestion and absorption: How far are we?. Curr. Opin. Food Sci. 31:121–25
    [Google Scholar]
  64. Li H, Dhital S, Gidley MJ, Gilbert RG. 2019. A more general approach to fitting digestion kinetics of starch in food. Carbohydr. Polym. 225:115244
    [Google Scholar]
  65. Li J, Jia H, Cai X, Zhong H, Feng Q et al. 2014. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32:8834–41
    [Google Scholar]
  66. Li M, Zhao P, Pan Y, Wagner C. 2018. Predictive performance of physiologically based pharmacokinetic models for the effect of food on oral drug absorption: current status. CPT Pharmacomet. Syst. Pharmacol. 7:282–89
    [Google Scholar]
  67. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. 1985. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest. 75:41144–52
    [Google Scholar]
  68. Luo Q, Zhan W, Boom RM, Janssen AEM. 2018. Interactions between acid and proteins under in vitro gastric condition: a theoretical and experimental quantification. Food Funct 9:105283–89
    [Google Scholar]
  69. Manca D 2018. Quantitative Systems Pharmacology: Models and Model-Based Systems with Applications Amsterdam: Elsevier. , 1st ed..
    [Google Scholar]
  70. Marathe CS, Rayner CK, Jones KL, Horowitz M. 2013. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care 36:51396–405
    [Google Scholar]
  71. Mc Auley MT, Mooney KM. 2015. Computationally modeling lipid metabolism and aging: a mini-review. Comput. Struct. Biotechnol. J. 13:38–46
    [Google Scholar]
  72. Mennah-Govela YA, Keppler S, Januzzi-Guerreiro F, Follador-Lemos C, Vilpont K, Bornhorst GM. 2020. Acid and moisture uptake into red beets during in vitro gastric digestion as influenced by gastric pH. Food Biophys 15:261–72
    [Google Scholar]
  73. Mennah-Govela YA, Singh RP, Bornhorst GM. 2019. Buffering capacity of protein-based model food systems in the context of gastric digestion. Food Funct 10:96074–87
    [Google Scholar]
  74. Meraz M, Alvarez-Ramirez J, Vernon-Carter EJ, Reyes I, Hernandez-Jaimes C, Martinez-Martinez F. 2019. A two competing substrates Michaelis-Menten kinetics scheme for the analysis of in vitro starch digestograms. Starch 72:9–101900170
    [Google Scholar]
  75. Minami H, McCallum RW. 1984. The physiology and pathophysiology of gastric emptying in humans. Gastroenterology 86:1592–610
    [Google Scholar]
  76. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T et al. 2014. A standardised static in vitro digestion method suitable for food: an international consensus. Food Funct 5:1113–24
    [Google Scholar]
  77. Morris MD. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics 33:2161–74
    [Google Scholar]
  78. Motelica-Wagenaar AM, Nauta A, van den Heuvel EGHM, Kleerebezem R. 2014. Flux analysis of the human proximal colon using anaerobic digestion model 1. Anaerobe 28:137–48
    [Google Scholar]
  79. Moxon TE, Gouseti O, Bakalis S. 2016. In silico modelling of mass transfer & absorption in the human gut. J. Food Eng. 176:110–20
    [Google Scholar]
  80. Moxon TE, Nimmegeers P, Telen D, Fryer PJ, Van Impe J, Bakalis S. 2017. Effect of chyme viscosity and nutrient feedback mechanism on gastric emptying. Chem. Eng. Sci. 171:318–30
    [Google Scholar]
  81. Mulet-Cabero A-I, Egger L, Portmann R, Ménard O, Marze S et al. 2020. A standardised semi-dynamic in vitro digestion method suitable for food: an international consensus. Food Funct 11:21702–20
    [Google Scholar]
  82. Muñoz-Tamayo R, Giger-Reverdin S, Sauvant D. 2016. Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota. Anim. Feed Sci. Technol. 220:1–21
    [Google Scholar]
  83. Muñoz-Tamayo R, Laroche B, Walter E, Dore J, Leclerc M 2010. Mathematical modelling of carbohydrate degradation by human colonic microbiota. J. Theor. Biol. 266:189–201
    [Google Scholar]
  84. Muttakin S, Moxon TE, Gouseti O 2019. In vivo, in vitro, and in silico studies of the GI tract. Interdisciplinary Approaches to Food Digestion O Gouseti, GM Bornhorst, S Bakalis, A Mackie 29–67 Cham., Switz: Springer
    [Google Scholar]
  85. Oberli M, Douard V, Beaumont M, Jaoui D, Devime F et al. 2018. Lipo-protein emulsion structure in the diet affects protein digestion kinetics, intestinal mucosa parameters and microbiota composition. Mol. Nutr. Food Res. 62:21700570
    [Google Scholar]
  86. Orth JD, Thiele I, Palsson BØ. 2010. What is flux balance analysis?. Nat. Biotechnol. 28:3245–48
    [Google Scholar]
  87. Pandey M, Reddy V, Wanjari P. 2019. Comparative evaluation of citric acid and TENS as means for salivary stimulation in adults: an in vivo study. J. Indian Acad.. Oral Med. Radiol. 31:136–39
    [Google Scholar]
  88. Pentafragka C, Symillides M, McAllister M, Dressman J, Vertzoni M, Reppas C. 2019. The impact of food intake on the luminal environment and performance of oral drug products with a view to in vitro and in silico simulations: a PEARRL review. J. Pharm. Pharmacol. 71:4557–80
    [Google Scholar]
  89. Raguideau S, Plancade S, Pons N, Leclerc M, Laroche B. 2016. Inferring aggregated functional traits from metagenomic data using constrained non-negative matrix factorization: application to fiber degradation in the human gut microbiota. PLOS Comput. Biol. 12:12e1005252
    [Google Scholar]
  90. Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T et al. 2015. Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems. Bioinformatics 31:213558–60
    [Google Scholar]
  91. Rivest J, Bernier JF, Pomar C. 2000. A dynamic model of protein digestion in the small intestine of pigs. J. Anim. Sci. 78:328–40
    [Google Scholar]
  92. Rozendaal YJ, Maas AH, van Pul C, Cottaar EJ, Haak HR et al. 2018. Model-based analysis of postprandial glycemic response dynamics for different types of food. Clin. Nutr. Exp. 19:32–45
    [Google Scholar]
  93. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J et al. 2008. Global Sensitivity Analysis. The Primer Chichester, UK: Wiley & Sons
    [Google Scholar]
  94. Saturnino GB, Thielscher A, Madsen KH, Knösche TR, Weise K. 2019. A principled approach to conductivity uncertainty analysis in electric field calculations. NeuroImage 188:821–34
    [Google Scholar]
  95. Shiang K-D, Kandeel F. 2010. A computational model of the human glucose-insulin regulatory system. J. Biomed. Res. 24:5347–64
    [Google Scholar]
  96. Sicard J, Mirade P-S, Portanguen S, Clerjon S, Kondjoyan A. 2018. Simulation of the gastric digestion of proteins of meat bolus using a reaction-diffusion model. Food Funct 9:126455–69
    [Google Scholar]
  97. Sidhu SS, Thompson DG, Warhurst G, Case RM, Benson RSP. 2000. Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. J. Physiol. 528:Pt. 1165–76
    [Google Scholar]
  98. Siegel JA, Urbain JL, Adler LP, Charkes ND, Maurer AH et al. 1988. Biphasic nature of gastric emptying. Gut 29:185–89
    [Google Scholar]
  99. Strathe AB, Danfær A, Chwalibog A. 2008. A dynamic model of digestion and absorption in pigs. Anim. Feed Sci. Technol. 143:328–71
    [Google Scholar]
  100. Sudret B. 2008. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93:7964–79
    [Google Scholar]
  101. Taghipoor M, Barles G, Georgelin C, Licois JR, Lescoat P. 2014. Digestion modeling in the small intestine: impact of dietary fiber. Math. Biosci. 258:101–12
    [Google Scholar]
  102. Taghipoor M, Lescoat P, Licois JR, Georgelin C, Barles G. 2012. Mathematical modeling of transport and degradation of feedstuffs in the small intestine. J. Theor. Biol. 294:114–21
    [Google Scholar]
  103. Thiele I, Palsson BØ. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5:193–121
    [Google Scholar]
  104. Thimister P, Hopman W, Sloots C, Rosenbusch G, Willems H et al. 1996. Role of intraduodenal proteases in plasma cholecystokinin and pancreaticobiliary responses to protein and amino acids. Gastroenterology 110:2567–75
    [Google Scholar]
  105. Tong J, D'Alessio D. 2014. Give the receptor a brake: slowing gastric emptying by GLP-1. Diabetes 63:2407–9
    [Google Scholar]
  106. Usry JL, Turner LW, Stahly TS, Bridges TC, Gates RS. 1991. GI tract simulation-model of the growing pig. Trans. ASAE 34:1879–90
    [Google Scholar]
  107. van Aken GA. 2010. Relating food emulsion structure and composition to the way it is processed in the gastrointestinal tract and physiological responses: What are the opportunities?. Food Biophys 5:4258–83
    [Google Scholar]
  108. van Aken GA. 2020. In silico digestive physiology modeling. Insight Food Inside http://www.insightfoodinside.com/Food-interacting-with-the-body/In-silico-digestion-modelling/
    [Google Scholar]
  109. van Bentum R, Nelson MI. 2011. Modelling the passage of food through an animal stomach: a chemical reactor engineering approach. Chem. Eng. J. 166:315–23
    [Google Scholar]
  110. van der Graaf PH, Benson N 2011. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm. Res. 28:71460–64
    [Google Scholar]
  111. van der Sman RGM, Houlder S, Cornet S, Janssen A. 2020. Physical chemistry of gastric digestion of proteins gels. Curr. Res. Food Sci. 2:45–60
    [Google Scholar]
  112. van Milgen J, Lescoat P. 2008. Modelling digestion and metabolism in the pig: an alternative to animal experimentation?. Bull. Acad. Vet. Fr. 161:435–40
    [Google Scholar]
  113. Wheeler MH. 1974. Inhibition of gastric secretion by the pyloric antrum. Gut 15:5420–32
    [Google Scholar]
  114. Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z et al. 2016. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1:1216161
    [Google Scholar]
  115. Xiao L, Feng Q, Liang S, Sonne SB, Xia Z et al. 2015. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33:101103–8
    [Google Scholar]
  116. Yu LX. 1999. An integrated model for determining causes of poor oral drug absorption. Pharm. Res. 16:1883–87
    [Google Scholar]
  117. Zhuang X, Lu C. 2016. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B. 6:5430–40
    [Google Scholar]
/content/journals/10.1146/annurev-food-070620-124140
Loading
/content/journals/10.1146/annurev-food-070620-124140
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error