1932

Abstract

Great Bahama Bank (GBB) is the principal location of the formation and accumulation of ooids (concentrically coated, sand-size carbonate grains) in the world today, and as such has been the focus of studies on all aspects of ooids for more than half a century. Our view from a close look at this vast body of literature coupled with our continuing interests stresses that biological mechanisms (microbially mediated organomineralization) are very important in the formation of ooids, whereas the controlling factor for the distribution and size of ooid sand bodies is the physical energy. Mapping and coring studies of the modern ooid sand bodies on GBB provide insight into the rock record from different perspectives. An important consequence of the dual influence of ooid formation and distribution is that the geochemical signature of ooids is not in equilibrium with the seawater in which ooids form; therefore, extracting the paleophysical energy record from oolitic deposits is potentially more accurate than doing so for the paleochemical record.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095251
2019-01-03
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010318-095251.html?itemId=/content/journals/10.1146/annurev-marine-010318-095251&mimeType=html&fmt=ahah

Literature Cited

  1. Ball MM 1967. Carbonate sand bodies of Florida and the Bahamas. J. Sediment. Petrol. 37:556–91
    [Google Scholar]
  2. Bathurst RGC 1975. Carbonate Sediments and Their Diagenesis Amsterdam: Elsevier
    [Google Scholar]
  3. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–11
    [Google Scholar]
  4. Brehm U, Krumbein WE, Palinska KA 2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiol. J. 23:545–50
    [Google Scholar]
  5. Brehm U, Palinska KA, Krumbein WE 2004. Laboratory cultures of calcifying biomicrospheres generate ooids—a contribution to the origin of oolites. Carnets Géol 4:CG2004_L03
    [Google Scholar]
  6. Budd DA 1984. Freshwater diagenesis of Holocene ooid sands, Schooner Cays, Bahamas PhD Thesis Univ. Tex. Austin:
    [Google Scholar]
  7. Cayeux L 1935. Les roches sédimentaires de France: roches carbonatées Paris: Masson
    [Google Scholar]
  8. Cruz FE 2008. Processes, patterns, and petrophysical heterogeneity of grainstone shoals at Ocean Cay, Western Great Bahama Bank PhD Thesis Univ. Miami Miami, FL:
    [Google Scholar]
  9. Cruz FE, Eberli GP, Byrnes AP 2006. Petrophysical heterogeneity of a Pleistocene oolitic shoal: lessons for ancient reservoirs. Reservoir Characterization: Integrating Technology and Business Practices RM Slatt, NC Rosen, M Bowman, J Castagna, T Good et al.813–48 Tulsa, OK: SEPM
    [Google Scholar]
  10. Curtis RV 1985. Sedimentology of the Holocene ooid shoals, Eleuthera Bank, Bahamas MA Thesis, Univ. Tex. Austin:
    [Google Scholar]
  11. Davies PJ, Bubela B, Ferguson J 1978. The formation of ooids. Sedimentology 25:703–30
    [Google Scholar]
  12. Decho AW 2000. Microbial biofilms in intertidal systems. Cont. Shelf Res. 20:1257–73
    [Google Scholar]
  13. Deelman JC 1978. Experimental ooids and grapestone:carbonate aggregates and their origin. J. Sediment. Petrol. 48:503–12
    [Google Scholar]
  14. Diaz MR, Eberli GP, Blackwelder P, Phillips B, Swart PK 2017. Microbially mediated organomineralization in the formation of ooids. Geology 45:771–74
    [Google Scholar]
  15. Diaz MR, Piggot AM, Eberli GP, Klaus JS 2013. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago. Mar. Ecol. Prog. Ser. 485:9–24
    [Google Scholar]
  16. Diaz MR, Swart PK, Eberli GP, Oehlert AM, Devlin Q et al. 2015. Geochemical evidence of microbial activity within ooids. Sedimentology 62:2090–112
    [Google Scholar]
  17. Diaz MR, Van Norstrand JD, Eberli GP, Piggot AM, Zhou J, Klaus JS 2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology 12:231–49
    [Google Scholar]
  18. Donahue JD 1965. The laboratory growth of pisolite grains. J. Sediment. Petrol. 39:1399–411
    [Google Scholar]
  19. Dravis JJ 1977. Holocene sedimentary depositional environments on Eleuthera Bank, Bahamas MS Thesis, Univ. Miami Miami, FL:
    [Google Scholar]
  20. Dravis JJ 1979. Rapid and widespread generation of Recent oolitic hardgrounds on a high-energy Bahamian platform, Eleuthera Bank, Bahamas. J. Sediment. Petrol. 49:195–208
    [Google Scholar]
  21. Duguid SMA, Kyser TK, James NP, Rankey EC 2010. Microbes and ooids. J. Sediment. Res. 80:236–51
    [Google Scholar]
  22. Dupraz C, Visscher PT 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–38
    [Google Scholar]
  23. Edgcomb VP, Bernhard JM, Beaudoin D, Pruss S, Welander PV et al. 2013. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas. Geobiology 11:234–51
    [Google Scholar]
  24. Enos P 1974. Map of surface sediment facies of the Florida-Bahamas Plateau Map Chart Ser. MC-5 Geol. Soc. Am. Boulder, CO:
    [Google Scholar]
  25. Evans CC 1984. Development of an ooid shoal complex; the importance of antecedent and syndepositional topography. See Harris 1984a 392–428
  26. Fabricius FH 1977. Origin of Marine Ooids and Grapestones Contrib. Sedimentol. Vol. 7 Stuttgart, Ger.: Schweizerbart
    [Google Scholar]
  27. Ferguson J, Bubela B, Davies PJ 1978. Synthesis and possible mechanism of formation of radial carbonate ooids. Chem. Geol. 22:285–308
    [Google Scholar]
  28. Folk RL 1993. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sediment. Petrol. 63:990–99
    [Google Scholar]
  29. Folk RL, Lynch FL 2001. Organic matter, putative nannobacteria and the formation of ooids and hardgrounds. Sedimentology 46:215–29
    [Google Scholar]
  30. Fournet MJ 1853. Observations relatives a des oolithes carcaires formees dans une terre vegetale des environs de Lyon. C. R. Acad. Sci. Paris 37:926–35
    [Google Scholar]
  31. Garrett P, Gould SJ 1986. Geology of New Providence Island, Bahamas. Geol. Soc. Am. Bull. 95:209–20
    [Google Scholar]
  32. Gonzalez R, Eberli GP 1997. Sediment transport and bedforms in a carbonate tidal inlet; Lee Stocking Island, Exumas, Bahamas. Sedimentology 44:1015–30
    [Google Scholar]
  33. Halley RB, Harris PM, Hine AC 1983. Bank margin environments. Carbonate Depositional Environments PA Scholle, DG Bebout, CH Moore 463–506 Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  34. Halley RB, Shinn EA, Hudson JH, Lidz BH 1977. Pleistocene barrier bar seaward of ooid shoal complex near Miami, Florida. Am. Assoc. Petrol. Geol. Bull. 61:519–26
    [Google Scholar]
  35. Hardie LA, Garrett P 1977. General environmental setting. Sedimentation on the Modern Carbonate Tidal Flats of Norwest Andros, Bahamas L Hardie 12–49 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  36. Harris PM 1979. Facies Anatomy and Diagenesis of a Bahamian Ooid Shoal Sedimenta VII Miami, FL: Univ. Miami
    [Google Scholar]
  37. Harris PM 1984.a Carbonate Sands SEPM Core Workshop 5 Tulsa, OK: SEPM
    [Google Scholar]
  38. Harris PM 1984.b Cores from a modern sand body; the Joulters ooid shoal, Great Bahama Bank. See Harris 1984a 429–64
  39. Harris PM 2010. Delineating and quantifying depositional facies patterns in carbonate reservoirs: insight from modern analogs. Am. Assoc. Petrol. Geol. Bull. 94:61–86
    [Google Scholar]
  40. Harris PM, Ellis JM 2009. Satellite Imagery, Visualization and Geologic Interpretation of the Exumas, Great Bahamas Bank: An Analog for Carbonate Sand Reservoirs SEPM Short Course Notes 53 Tulsa, OK: SEPM
    [Google Scholar]
  41. Harris PM, Ellis JM, Purkis SJ 2010. Delineating and Quantifying Depositional Facies Patterns of Modern Carbonate Sand Deposits on Great Bahama Bank SEPM Short Course Notes 54 Tulsa, OK: SEPM
    [Google Scholar]
  42. Harris PM, Halley RB, Lukas KJ 1979. Endolith microborings and their preservation in Holocene-Pleistocene (Bahamas-Florida) ooids. Geology 7:216–20
    [Google Scholar]
  43. Harris PM, Kerans C, Bebout DG 1993. Ancient outcrop and modern examples of platform carbonate cycles—implications for subsurface correlation and understanding reservoir heterogeneity. Carbonate Sequence Stratigraphy: Recent Developments and Applications R Loucks, JF Sarg 475–92 Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  44. Harris PM, Kowalik WS 1994. Satellite Images of Carbonate Depositional Settings: Examples of Reservoir- and Exploration-Scale Geologic Facies Variation Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  45. Harris PM, Purkis SJ, Cavalcante G 2018. Controls and patterns of depositional facies across Great Bahama Bank Presented at the American Association of Petroleum Geologists Annual Convention and Exhibition Salt Lake City, UT: May 20–23. Posted as Search and Discovery article #51501. http://www.searchanddiscovery.com/pdfz/documents/2018/51501harris/ndx_harris.pdf.html
    [Google Scholar]
  46. Harris PM, Purkis SJ, Ellis JM 2011. Analyzing spatial patterns in modern carbonate sand bodies from Great Bahama Bank. J. Sediment. Res. 81:185–206
    [Google Scholar]
  47. Harris PM, Purkis SJ, Ellis JM, Swart P, Reijmer JJG 2015. Mapping bathymetry and depositional facies on Great Bahama Bank. Sediment 62:566–89
    [Google Scholar]
  48. Harris PM, Weber LJ 2006. Giant Hydrocarbon Reservoirs of the World: From Rocks to Reservoir Characterization and Modeling Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  49. Hine AC 1977. Lily Bank, Bahamas: history of an active oolite sand shoal. J. Sediment. Petrol. 47:1554–81
    [Google Scholar]
  50. Hine AC, Wilber RJ, Neumann AC 1981. Carbonate sand bodies along contrasting shallow bank margins facing open seaways in northern Bahamas. Am. Assoc. Petrol. Geol. Bull. 65:261–90
    [Google Scholar]
  51. Hoffmeister JE, Stockman KW, Multer HG 1967. Miami limestone of Florida and its recent Bahamian counterpart. Geol. Soc. Am. Bull. 78:175–90
    [Google Scholar]
  52. Illing LV 1954. Bahamian calcareous sands. Am. Assoc. Petrol. Geol. Bull. 38:1–95
    [Google Scholar]
  53. Imbrie J, Buchanan H 1965. Sedimentary structures in modern carbonate sands of the Bahamas. Primary Sedimentary Structures and Their Hydrodynamic Interpretations GV Middleton 149–72 Tulsa, OK: SEPM
    [Google Scholar]
  54. James NP, Jones B 2015. Origin of Carbonate Sedimentary Rocks Washington, DC: Am. Geophys. Union
    [Google Scholar]
  55. Jones B, Goodbody QH 1984. Biological factors in the formation of ooids. Bull. Can. Petrol. Geol. 32:190–200
    [Google Scholar]
  56. Jones B, Peng X 2014. Signatures of biologically influenced CaCO3 and Mg-Fe silicate precipitation in hot springs: case study from Ruidian geothermal area, western Yunnan Province, China. Sedimentology 61:56–89
    [Google Scholar]
  57. Kaczmarek SE, Hicks MK, Fullmer SM, Steffen KL, Bachtel SL 2010. Mapping facies distributions on modern carbonate platforms through integration of multispectral Landsat data, statistics-based unsupervised classifications, and surface sediment data. Am. Assoc. Petrol. Geol. Bull. 94:1581–606
    [Google Scholar]
  58. Kahle CF 1965. Strontium in oolitic limestone. J. Sediment. Petrol. 35:846–56
    [Google Scholar]
  59. Kahle CF 2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria, nannobacteria(?), and biofilms. Carbonates Evaporites 22:10–22
    [Google Scholar]
  60. Kawaguchi T, Decho AW 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth 240:230–35
    [Google Scholar]
  61. Keith BD, Zuppann CW 1993. Mississippian Oolites and Modern Analogs Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  62. Lalou C 1957. Studies on bacterial precipitation of carbonates in seawater. J. Sediment. Petrol. 27:190–95
    [Google Scholar]
  63. Linck G 1903. Zur bildung der oolithe und rogensteine. Neues Jahrb. Mineral. Geol. Paläontol. 16:495–513
    [Google Scholar]
  64. Major RP, Bebout DG, Harris PM 1996.a Facies Heterogeneity in a Modern Ooid Sand Shoal—an Analog for Hydrocarbon Reservoirs Austin: Univ. Tex. Bur. Econ. Geol.
    [Google Scholar]
  65. Major RP, Bebout DG, Harris PM 1996.b Recent evolution of a Bahamian ooid shoal: effects of Hurricane Andrew. Geol. Soc. Am. Bull. 108:168–80
    [Google Scholar]
  66. Maniloff J 1997. Nannobacteria: size limits and evidence. Science 276:1773–76
    [Google Scholar]
  67. Mariotti G, Pruss SB, Klepac-Ceraj V, Summons RE, Newman SA, Bosak T 2014. Where is the ooid factory? Paper presented at the American Geophysical Union Fall Meeting San Francisco: Dec. 15–19 (Abstr. EP24A-04)
    [Google Scholar]
  68. Mariotti G, Pruss SB, Summons RE, Newman SA, Bosak T 2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island, The Bahamas. Minerals 8:252
    [Google Scholar]
  69. Mathews AAL 1930. Origin and growth of the Great Salt Lake oolites. J. Geol. 38:633–42
    [Google Scholar]
  70. McNeill DF, Eberli GP, Harris PM, Cruz FEG 2004. Field Guide to Carbonate Sediments Along the Exuma Bank Margin and a Virtual Field Trip to the Exuma Island Chain, Bahamas Sedimenta CD Ser. No. 2 Miami, FL: Univ. Miami
    [Google Scholar]
  71. Mitterer RM 1968. Amino-acid composition of organic matrix in calcareous oolites. Science 162:1498–99
    [Google Scholar]
  72. Mitterer RM 1971. Influence of natural organic matter on CaCO3 precipitation. Carbonate Cements OP Bricker 252–58 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  73. Mitterer RM 1972. Biogeochemistry of aragonite mud and oolites. Geochim. Cosmochim. Acta 36:1407–12
    [Google Scholar]
  74. Mitterer RM, Cunningham R 1985. The interaction of natural organic matter with grain surfaces: implications for calcium carbonate precipitation. Carbonate Cements N Schneidermann, PM Harris 17–31 Tulsa, OK: SEPM
    [Google Scholar]
  75. Monaghan P, Lytle M 1956. The origin of calcareous ooliths. J. Sediment. Res. 26:111–18
    [Google Scholar]
  76. Morse JW, Mackenzie FT 1990. Geochemistry of Sedimentary Carbonates Amsterdam: Elsevier
    [Google Scholar]
  77. Nealson KH 1997. Nannobacteria: size limits and evidence. Science 276:1773–76
    [Google Scholar]
  78. Nesteroff WD 1956. Le substratum organique dans les dépôts calcaires, sa signification. Bull. Soc. Geol. Fr. 6:381–90
    [Google Scholar]
  79. Newell ND, Purdy EG, Imbrie J 1960. Bahamian oolitic sand. J. Geol. 68:481–97
    [Google Scholar]
  80. Newell ND, Rigby JK 1957. Geological studies in the Great Bahama Bank. Regional Aspects of Carbonate Sedimentation RJ Le Blanc, JG Breeding 15–79 Tulsa, OK: SEPM
    [Google Scholar]
  81. O'Reilly SS, Mariotti G, Winter AR, Newman SA, Matys ED et al. 2017. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, the Bahamas. Geobiology 15:112–30
    [Google Scholar]
  82. Pacton M, Ariztegui D, Wacey D, Kilburn MR, Rollion-Bard C et al. 2012. Going nano: a new step toward understanding the processes governing freshwater ooid formation. Geology 40:547–50
    [Google Scholar]
  83. Palmer MS 1979. Holocene facies geometry of the leeward bank margin, Tongue of the Ocean, Bahamas MS Thesis, Univ. Miami Miami, FL:
    [Google Scholar]
  84. Paterson DM 1989. Short-term changes in the erodability of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. 34:223–34
    [Google Scholar]
  85. Peng X, Jones B 2013. Patterns of biomediated CaCO3 crystal bushes in hot spring deposits. Sediment. Geol. 294:105–17
    [Google Scholar]
  86. Plée K, Ariztegui D, Martini R, Davaud E 2008. Unraveling the microbial role in ooid formation—results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology 6:341–50
    [Google Scholar]
  87. Plée K, Pacton M, Ariztegui D 2010. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms (Lake Geneva, Switzerland). Geomicrobiol. J. 27:391–99
    [Google Scholar]
  88. Purdy EG 1961. Bahamian oolite shoals. Geometry of Sandstones Bodies JA Peterson, JC Osmond 53–62 Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  89. Purdy EG 1963.a Carbonate diagenesis: an environmental survey. Geol. Romana 7:183–228
    [Google Scholar]
  90. Purdy EG 1963.b Recent calcium carbonate facies of the Great Bahama Bank. 1. Petrography and reaction groups. J. Geol. 71:334–55
    [Google Scholar]
  91. Purdy EG 1963.c Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies. J. Geol. 71:472–97
    [Google Scholar]
  92. Purkis SJ, Cavalcante G, Rohtla L, Oehlert AM, Harris PM, Swart P 2017. Hydrodynamic control of whitings on Great Bahama Bank. Geology 45:939–42
    [Google Scholar]
  93. Purkis SJ, Harris PM 2016. The extent and patterns of sediment filling of accommodation space on Great Bahama Bank. J. Sediment. Res. 86:294–310
    [Google Scholar]
  94. Purkis SJ, Harris PM 2017. Quantitative interrogation of a fossilized carbonate sand body—the Pleistocene Miami oolite of South Florida. Sediment 64:1439–64
    [Google Scholar]
  95. Rankey EC, Doolittle DF 2012. Geomorphology of carbonate platform-marginal uppermost slopes: insights from a Holocene analogue, Little Bahama Bank, Bahamas. Sediment 59:2146–71
    [Google Scholar]
  96. Rankey EC, Reeder SL 2011. Holocene oolitic marine sand complexes of the Bahamas. J. Sediment. Res. 81:97–117
    [Google Scholar]
  97. Rankey EC, Reeder SL 2012. Tidal sands of the Bahamian archipelago. Principles of Tidal Sedimentology RA Davis, RW Dalrymple 537–65 Berlin: Springer
    [Google Scholar]
  98. Rankey EC, Riegl BM, Steffen K 2006. Form, function, and feedbacks in a tidally dominated ooid shoal, Bahamas. Sediment 53:1191–210
    [Google Scholar]
  99. Reeder SL, Rankey EC 2008. Interactions between tidal flows and ooid shoals, northern Bahamas. J. Sediment. Res. 78:175–86
    [Google Scholar]
  100. Reeder SL, Rankey EC 2009. Controls on morphology and sedimentology of carbonate tidal deltas, Abacos, Bahamas. Mar. Geol. 267:141–55
    [Google Scholar]
  101. Reijmer JJG, Swart PK, Bauch T, Otto R, Reuning L et al. 2009. A re-evaluation of facies on Great Bahama Bank I: new facies maps of western Great Bahama Bank. Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg PK Swart, GP Eberli, JA McKenzie 29–46 Ghent, Belg.: Int. Assoc. Sedimentol.
    [Google Scholar]
  102. Reitner J 1993. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts. Facies 29:3–40
    [Google Scholar]
  103. Richter K 1983. Calcareous ooids: a synopsis. Coated Grains TM Peryt 71–99 Berlin: Springer
    [Google Scholar]
  104. Roehl PO, Choquette PW 1985. Carbonate Petroleum Reservoirs New York: Springer
    [Google Scholar]
  105. Rothpletz A 1892. Uber die bildung der oolithe. Bot. Centralbl. 35:1–4
    [Google Scholar]
  106. Rush JW, Rankey EC 2017. Geostatistical facies modeling trends for oolitic tidal sand shoals. Am. Assoc. Petrol. Geol. Bull. 101:1341–79
    [Google Scholar]
  107. Shearman DJ, Skipwith PAD 1965. Organic matter in recent and ancient limestones and its role in their diagenesis. Nature 208:1310–11
    [Google Scholar]
  108. Smith DJ, Underwood GJC 1998. Exopolymer production by intertidal epipelic diatoms. Limnol. Oceanogr. 43:1578–91
    [Google Scholar]
  109. Sorby HC 1879. The structure and origin of limestones. Proc. Geol. Soc. Lond. 35:56–95
    [Google Scholar]
  110. Sparks AG, Rankey EC 2013. Relations between geomorphic form and sedimentologic-stratigraphic variability: Holocene ooid sand shoal, Lily Bank, Bahamas. Am. Assoc. Petrol. Geol. Bull. 97:61–85
    [Google Scholar]
  111. Suess E, Futterer D 1972. Aragonite ooids: experimental precipitation from seawater in the presence of humic acid. Sedimentology 19:129–39
    [Google Scholar]
  112. Summons RE, Bird LR, Gillespie AL, Pruss SB, Roberts M, Sessions AL 2013. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora. Geobiology 11:420–36
    [Google Scholar]
  113. Sumner DY, Grotzinger JP 1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. J. Sediment. Petrol. 63:974–82
    [Google Scholar]
  114. Tan Q, Shi ZJ, Tian YM, Wang Y, Wang CC 2017. Origin of ooids in ooidal muddy laminates: a case study of the lower Cambrian Qingxudong formation in the Sichuan Basin, South China. Geol. J. 53:1716–27
    [Google Scholar]
  115. Tang D, Shi X, Shi Q, Wu J, Song G, Jiang G 2015. Organomineralization in Mesoproterozoic giant ooids. J. Asian Earth Sci. 107:195–211
    [Google Scholar]
  116. Thompson JB, Zielinski B, Trienekens JA, Hollander DJ, Paul JH 2008. The biogeochemistry of modern ooids: assessing the role of microbes in ooid formation Paper presented at the Ocean Sciences Meeting Orlando, FL: Mar. 2–7 (Abstr. 2586)
    [Google Scholar]
  117. Traverse A, Ginsburg RN 1966. Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation. Mar. Geol. 4:417–59
    [Google Scholar]
  118. Trienekens J 2007. Geochemical evidence for the formation of marine ooids: a microbial mediated process MS Thesis Eckerd Coll. St. Petersburg, FL:
    [Google Scholar]
  119. Trower EJ, Lamb MP, Fischer WW 2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth Planet. Sci. Lett. 468:112–18
    [Google Scholar]
  120. Tucker ME, Wright VP 1990. Carbonate Sedimentology New York: Wiley-Blackwell
    [Google Scholar]
  121. Usdun HC 2014. Evidence of sea-level oscillations within the last Interglacial from the Miami limestone and Bahamian oolitic shoals MS Thesis Univ. Miami Miami, FL:
    [Google Scholar]
  122. Vaughan TW 1914. Preliminary remarks on the geology of the Bahamas, with special reference to the origin of the Bahamian and Floridian oolites. Papers from the Tortugas Laboratory of the Carnegie Institution of Washington 542–54 Washington, DC: Carnegie Inst. Wash.
    [Google Scholar]
  123. Virlet-D'Aoust PT 1857. Sur les oeufs d'insects donnant lieu à la formation d'oolithées dans des calcaires lacustres au Mexique. C. R. Acad. Sci. Paris 45:865–68
    [Google Scholar]
  124. Walther J 1888. Die Korallenriffe der Sinaihalbinsel. Abh. Math. Phys. Cl. Königlich Sächsischen Ges. Wiss. 24:437–505
    [Google Scholar]
  125. Wanless HR, Tedesco LP 1993. Comparison of oolitic sand bodies generated by tidal versus wind-wave agitation. Mississippian Oolites and Modern Analogs BD Keith, CW Zuppann 199–225 Tulsa, OK: Am. Assoc. Petrol. Geol.
    [Google Scholar]
  126. Wethered E 1895. The formation of oolite. Q. J. Geol. Soc. Lond. 51:196–206
    [Google Scholar]
  127. Weyl P 1967. The solution behavior of carbonate materials in sea water. Stud. Trop. Oceanogr. 5:178–228
    [Google Scholar]
  128. Wilson JL 1975. Carbonate Facies in Geologic History New York: Springer
    [Google Scholar]
  129. Zhang S, Henehan MJ, Hull PM, Reid RP, Hardisty DS et al. 2017. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett. 458:380–93
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095251
Loading
/content/journals/10.1146/annurev-marine-010318-095251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error