1932

Abstract

Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032020-012810
2021-01-03
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-032020-012810.html?itemId=/content/journals/10.1146/annurev-marine-032020-012810&mimeType=html&fmt=ahah

Literature Cited

  1. Alderkamp A-C, van Rijssel M, Bolhuis H 2007. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiol. Ecol. 59:108–17
    [Google Scholar]
  2. Allison SD. 2005. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8:626–35
    [Google Scholar]
  3. Aluwihare LI, Repeta DJ. 1999. A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Mar. Ecol. Prog. Ser. 186:105–17
    [Google Scholar]
  4. Aluwihare LI, Repeta DJ, Pantoja S, Johnson CG 2005. Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science 308:1007–10
    [Google Scholar]
  5. Arnosti C. 1996. A new method for measuring polysaccharide hydrolysis rates in marine environments. Org. Geochem. 25:105–15
    [Google Scholar]
  6. Arnosti C. 2000. Substrate specificity in polysaccharide hydrolysis: contrasts between bottom water and sediments. Limnol. Oceanogr. 45:1112–19
    [Google Scholar]
  7. Arnosti C. 2003. Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers for measurement of enzyme activities in complex media. J. Chromatogr. B 793:181–91
    [Google Scholar]
  8. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3:401–25
    [Google Scholar]
  9. Arnosti C, Bell DL, Moorhead RL, Sinsabaugh RS, Steen AD et al. 2014. Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21
    [Google Scholar]
  10. Arnosti C, Fuchs B, Amann R, Passow U 2012. Contrasting extracellular enzyme activities of particle associated bacteria from distinct provinces of the North Atlantic Ocean. Front. Microbiol. 3:425
    [Google Scholar]
  11. Arnosti C, Holmer M. 1999. Carbohydrate dynamics and contributions to the carbon budget of an organic-rich coastal sediment. Geochim. Cosmochim. Acta 63:393–403
    [Google Scholar]
  12. Arnosti C, Reintjes G, Amann R 2018. A mechanistic microbial underpinning for the size-reactivity continuum of DOC degradation. Mar. Chem. 206:93–99
    [Google Scholar]
  13. Arnosti C, Steen AD, Ziervogel K, Ghobrial S, Jeffrey WH 2011. Latitudinal gradients in degradation of marine dissolved organic carbon. PLOS ONE 6:e28900
    [Google Scholar]
  14. Avcı B, Krüger K, Fuchs BM, Teeling H, Amann R 2020. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J 14:1369–83
    [Google Scholar]
  15. Badur AH, Plutz MJ, Yalamanchili G, Jagtap SS, Schweder T et al. 2017. Exploiting fine-scale genetic and physiological variation of closely related microbes to reveal unknown enzymatic function. J. Biol. Chem. 292:13056–67
    [Google Scholar]
  16. Balmonte JP, Teske A, Arnosti C 2018. Structure and function of high Arctic pelagic, particle-associated and benthic bacterial communities. Environ. Microbiol. 20:2941–59
    [Google Scholar]
  17. Baltar F, Aristegui J, Sintes E, van Aken HM, Gasol JM, Herndl GJ 2009. Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ. Microbiol. 11:1998–2014
    [Google Scholar]
  18. Bauer M, Kube M, Telling H, Richter M, Lombardot T et al. 2006. Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 8:2201–13
    [Google Scholar]
  19. Becker S, Scheffel A, Polz MF, Hehemann J-H 2017. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl. Environ. Microbiol. 83:e03389–16
    [Google Scholar]
  20. Becker S, Tebben J, Coffinet S, Wiltshire KH, Iversen MH et al. 2020. Laminarin is a major molecule in the marine carbon cycle. PNAS 117:6599–607
    [Google Scholar]
  21. Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–64
    [Google Scholar]
  22. Bergamaschi BA, Walters JS, Hedges JI 1999. Distributions of uronic acids and O-methyl sugars in sinking and sedimentary particles in two coastal marine environments. Geochim. Cosmochim. Acta 63:413–25
    [Google Scholar]
  23. Biersmith A, Benner R. 1998. Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar. Chem. 63:131–44
    [Google Scholar]
  24. Bird JT, Tague ED, Zinke L, Schmidt JM, Steen AD et al. 2019. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. mBio 10:e02376–18
    [Google Scholar]
  25. Boedeker C, Schuler M, Reintjes G, Jeske O, van Teeseling MCF et al. 2017. Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8:14583
    [Google Scholar]
  26. Boetius A, Scheibe S, Tselepides A, Thiel H 1996. Microbial biomass and activities in deep-sea sediments of the Eastern Mediterranean: Trenches are benthic hotspots. Deep-Sea Res. I 43:1439–60
    [Google Scholar]
  27. Borch NH, Kirchman DL. 1997. Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD. Mar. Chem. 57:85–95
    [Google Scholar]
  28. Burdige DJ, Skoog A, Gardner K 2000. Dissolved and particulate carbohydrates in contrasting marine sediments. Geochim. Cosmochim. Acta 64:1029–41
    [Google Scholar]
  29. Canfield D, Glazer AN, Falkowski PG 2010. The evolution and future of Earth's nitrogen cycle. Science 330:192–96
    [Google Scholar]
  30. Cao X, Mulholland MR, Helms JR, Bernhardt PW, Duan P et al. 2017. A major step in opening the black box of high-molecular-weight dissolved organic nitrogen by isotopic labeling of Synechococcus and multibond two-dimensional NMR. Anal. Chem. 89:11990–98
    [Google Scholar]
  31. Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C et al. 2014. Microbial community composition and enzymatic activities in seawater and sediments from an Arctic fjord of Svalbard: the role of Verrucomicrobia. Appl. Environ. Microbiol. 80:3749–56
    [Google Scholar]
  32. Chin W-C, Orellana MV, Verdugo P 1998. Spontaneous assembly of marine dissolved organic matter in polymer gels. Nature 391:568–72
    [Google Scholar]
  33. Coolen MJL, Overmann J. 2000. Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea. Appl. Environ. Microbiol. 66:2589–98
    [Google Scholar]
  34. Cottrell MT, Kirchman DL. 2016. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl. Environ. Microbiol. 82:6010–18
    [Google Scholar]
  35. Cowie GL, Hedges JI. 1984. Carbohydrates sources in a coastal marine environment. Geochim. Cosmochim. Acta 48:2075–87
    [Google Scholar]
  36. Cowie GL, Hedges JI, Prahl FG, De Lange GJ 1995. Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim. Cosmochim. Acta 59:33–46
    [Google Scholar]
  37. Cuskin F, Lowe EC, Tample MJ, Zhu Y, Cameron EA et al. 2015. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517:165–73
    [Google Scholar]
  38. D'Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C 2014. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J 8:2167–79
    [Google Scholar]
  39. Deniaud-Bouet E, Hardouin K, Potin P, Kloareg B, Herve C 2017. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr. Polym. 175:395–408
    [Google Scholar]
  40. Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL 2014. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24:50–55
    [Google Scholar]
  41. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–56
    [Google Scholar]
  42. Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA et al. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–99
    [Google Scholar]
  43. Ebrahimi A, Schwartzman J, Cordero OX 2019. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS 116:23309–16
    [Google Scholar]
  44. Eglinton T, Repeta DJ. 2006. Organic matter in the contemporary ocean. The Oceans and Marine Geochemistry H Elderfield 145–80 Oxford, UK: Pergamon
    [Google Scholar]
  45. Elifantz H, Waidner LA, Michelou VK, Cottrell MT, Kirchman DL 2008. Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. FEMS Microbiol. Ecol. 63:316–27
    [Google Scholar]
  46. Engel A, Handel N. 2011. A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater. Mar. Chem. 127:180–91
    [Google Scholar]
  47. Enke TN, Leventhal GE, Metzger M, Saavedra JT, Cordero OX 2018. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9:2743
    [Google Scholar]
  48. Falkowski PG, Barber RT, Smetacek V 1998. Biogeochemical controls and feedbacks on ocean primary productivity. Science 281:200–6
    [Google Scholar]
  49. Fernandez-Gomez B, Richter M, Schuler M, Pinhassi J, Acinas SG et al. 2013. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7:1026–37
    [Google Scholar]
  50. Ficko-Bean E, Prechoux A, Thomas F, Rochat T, Larocque R et al. 2017. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat. Commun. 8:1685
    [Google Scholar]
  51. Foran E, Buravenkov V, Kopel M, Mizrahi N, Shoshani S et al. 2017. Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome. Algal Res 25:39–46
    [Google Scholar]
  52. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV et al. 2008. A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105:7774–78
    [Google Scholar]
  53. Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T et al. 2003. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. PNAS 100:8298–303
    [Google Scholar]
  54. Gobet A, Barbeyron T, Matard-Mann M, Magdelenat G, Vellenet D et al. 2018. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front. Microbiol. 9:2740
    [Google Scholar]
  55. Goldberg SJ, Carlson CA, Hansell DA, Nelson NB, Siegel DA 2009. Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the northwestern Sargasso Sea. Deep-Sea Res. I 56:672–85
    [Google Scholar]
  56. Gomez-Pereira PR, Schuler M, Fuchs BM, Bennke CM, Teeling H et al. 2012. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environ. Microbiol. 14:52–66
    [Google Scholar]
  57. Grossart H-P, Hietanen S, Ploug H 2003. Microbial dynamics on diatom aggregates in Oresund, Denmark. Mar. Ecol. Prog. Ser. 249:69–78
    [Google Scholar]
  58. Gugi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M 2015. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar. Drugs 13:5993–6018
    [Google Scholar]
  59. Hama T, Yanagi K. 2001. Production and neutral aldose composition of dissolved carbohydrates excreted by natural marine phytoplankton populations. Limnol. Oceanogr. 46:1945–55
    [Google Scholar]
  60. Hama T, Yanagi K, Hama J 2004. Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnol. Oceanogr. 49:471–81
    [Google Scholar]
  61. Hansell DA. 2013. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5:421–45
    [Google Scholar]
  62. Hansell DA, Carlson CA 2015. Biogeochemistry of Marine Dissolved Organic Matter San Diego, CA: Academic
    [Google Scholar]
  63. Haug A, Myklestad S. 1976. Polysaccharides of marine diatoms with special reference to Chaetoceros species. Mar. Biol. 34:217–22
    [Google Scholar]
  64. Hedges JI. 1992. Global biogeochemical cycles: progress and problems. Mar. Chem. 39:67–93
    [Google Scholar]
  65. Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson M, Wakeham SG 2001. Evidence for non-selective preservation of organic matter in sinking particles. Nature 409:801–4
    [Google Scholar]
  66. Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson M, Wakeham SG 2002. The biochemical and elemental compositions of marine plankton: a NMR perspective. Mar. Chem. 78:47–63
    [Google Scholar]
  67. Hehemann J-H, Arevalo P, Datta MS, Yu X, Corzett CH et al. 2016. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7:12860
    [Google Scholar]
  68. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel C 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:90812
    [Google Scholar]
  69. Hehemann J-H, Correc G, Thomas F, Bernard T, Barbeyron T 2012. Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. J. Biol. Chem. 287:3057184
    [Google Scholar]
  70. Hehemann J-H, Truong LV, Unfried F, Welsch N, Kabisch J 2017. Aquatic adaptation of a laterally acquired pectin degradation pathway in marine gammaproteobacteria. Environ. Microbiol. 19:232033
    [Google Scholar]
  71. Helbert W. 2017. Marine polysaccharide sulfatases. Front. Mar. Sci. 4:6
    [Google Scholar]
  72. Herve C, Simeon A, Jam M, Cassin A, Johnson KL 2016. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and the role in Fucus serratus embryo development. New Phytol 209:142841
    [Google Scholar]
  73. Hoarfrost A, Arnosti C. 2017. Heterotrophic extracellular enzymatic activities in the Atlantic Ocean follow patterns across spatial and depth regimes. Front. Mar. Sci. 4:200
    [Google Scholar]
  74. Hoarfrost A, Snider R, Arnosti C 2017. Improved measurement of extracellular enzymatic activities in subsurface sediments using a competitive desorption treatment. Front. Earth Sci. 5:13
    [Google Scholar]
  75. Hofmann T, Hanlon ARM, Taylor JD, Ball AS, Osborn AM, Underwood GJC 2009. Dynamics and compositional changes in extracellular carbohydrates in estuarine sediments during degradation. Mar. Ecol. Prog. Ser. 379:4558
    [Google Scholar]
  76. Hoppe H-G. 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. Handbook of Methods in Aquatic Microbial Ecology PF Kemp, BF Sherr, EB Sherr, JJ Cole 42331 Ann Arbor, MI: Lewis
    [Google Scholar]
  77. Hoppe H-G, Arnosti C, Herndl GJ 2002. Ecological significance of bacterial enzymes in the marine environment. Enzymes in the Environment RG Burns, RP Dick 73107 New York: Marcel Dekker
    [Google Scholar]
  78. Hung C-C, Guo L, Santschi PH, Alvarado-Quiroz N, Haye JM 2003. Distributions of carbohydrate species in the Gulf of Mexico. Mar. Chem. 81:11935
    [Google Scholar]
  79. Hung C-C, Tang D, Warnken KW, Santschi PH 2001. Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar. Chem. 73:30518
    [Google Scholar]
  80. Jatt AN, Tang KW, Liu J, Zhang Z, Zhang X-H 2015. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiol. Ecol. 91:113
    [Google Scholar]
  81. Jumars PA, Penry DL, Baross JA, Perry MJ, Frost BW 1989. Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res. A 36:48395
    [Google Scholar]
  82. Kabisch A, Otto A, Konig S, Becher D, Albrecht D et al. 2014. Functional characterization of polysaccharide utilization loci in the marine BacteroidetesGramella forsetii’ KT 0803. ISME J 8:1492502
    [Google Scholar]
  83. Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S et al. 2018. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J 13:7691
    [Google Scholar]
  84. Kerherve P, Charriere B, Gadel F 1995. Determination of marine monosaccharides by high-pH anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A 718:28389
    [Google Scholar]
  85. Kirchman DL. 2002. The ecology of the CytophagaFlavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39:91100
    [Google Scholar]
  86. Koch H, Durwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S et al. 2019a. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J 13:92103
    [Google Scholar]
  87. Koch H, Freese HM, Hahnke R, Simon M, Wietz M 2019b. Adaptations of Alteromonas sp. 76-1 to polysacchacharide degradation: a CAZyme plasmid for ulvan degradation and two alginolytic systems. Front. Microbiol. 10:504
    [Google Scholar]
  88. Koch H, Germscheid N, Freese HM, Noriega-Ortega B, Lucking D et al. 2020. Genomic, metabolic and phenotypic variability shapes ecological differentiation and interspecies interactions of Alteromonas macleodii. Sci. . Rep 10:809
    [Google Scholar]
  89. Krüger K, Chafee M, Francis TB, del Rio TG, Becher D et al. 2019. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J 13:280016
    [Google Scholar]
  90. Laine RA. 1994. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4:75967
    [Google Scholar]
  91. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S et al. 2009. The genomic basis of trophic strategy in marine bacteria. PNAS 106:1552733
    [Google Scholar]
  92. Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ et al. 2016. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18:120011
    [Google Scholar]
  93. Li J, Azam F, Zhang S 2016. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogen Vibrio shilonii AK1. Environ. Microbiol. 18:385066
    [Google Scholar]
  94. Lin P, Guo L. 2015. Spatial and vertical variability of dissolved carbohydrate species in the northern Gulf of Mexico following the Deepwater Horizon oil spill, 2010–2011. Mar. Chem. 174:1325
    [Google Scholar]
  95. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–95
    [Google Scholar]
  96. Mabeau S, Kloareg B. 1987. Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifucaria bifucata and Laminaria digitata. . J. Exp. Bot 38:157380
    [Google Scholar]
  97. Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14:19
    [Google Scholar]
  98. Mann AJ, Hahnke RL, Huang S, Werner J, Xing P et al. 2013. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl. Environ. Microbiol. 79:681322
    [Google Scholar]
  99. Mao J, Kong X, Schmidt-Rohr K, Pignatello JJ, Perdue EM 2012. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. Environ. Sci. Technol. 46:580614
    [Google Scholar]
  100. Martens EC, Koropatkin NM, Smith TJ, Gordon JI 2009. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284:2463777
    [Google Scholar]
  101. Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG et al. 2012. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. . PLOS ONE 7:e35314
    [Google Scholar]
  102. McCarthy M, Hedges J, Benner R 1996. Major biochemical composition of dissolved high molecular weight organic matter in seawater. Mar. Chem. 55:28197
    [Google Scholar]
  103. Miyajima T, Ogawa H, Koike I 2001. Alkali-extractable polysaccharides in marine sediments: abundance, molecular size distribution, and monosaccharide composition. Geochim. Cosmochim. Acta 65:145566
    [Google Scholar]
  104. Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K et al. 2007. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J 50:111828
    [Google Scholar]
  105. Mopper K, Zhou J, Sri Ramana K, Passow U, Dam HG, Drapeau DT 1995. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep-Sea Res. II 42:4773
    [Google Scholar]
  106. Myklestad SM, Borsheim KY. 2007. Dynamics of carbohydrates in the Norwegian Sea inferred from monthly profiles collected during 3 years at 66°N, 2°E. Mar. Chem. 107:47585
    [Google Scholar]
  107. Myklestad SM, Skanoy E, Hestmann S 1997. A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar. Chem. 56:27986
    [Google Scholar]
  108. Neumann AM, Balmonte JP, Berger M, Giebel H-A, Arnosti C et al. 2015. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ. Microbiol. 17:385768
    [Google Scholar]
  109. Nouara A, Panagiotopoulos C, Sempere R 2019. Simultaneous determination of neutral sugars, alditols and anhydrosugars using anion-exchange chromatography with pulsed amperometric detection: application for marine and atmospheric samples. Mar. Chem. 213:2432
    [Google Scholar]
  110. Orsi WD, Richards TA, Francis WR 2018. Predicted microbial secretomes and their target substrates in marine sediments. Nat. Microbiol. 3:3237
    [Google Scholar]
  111. Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P et al. 2015. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J 9:174763
    [Google Scholar]
  112. Painter TJ. 1983. Algal polysaccharides. The Polysaccharides GO Aspinall 195285 New York: Academic
    [Google Scholar]
  113. Pakulski JD, Benner R. 1992. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar. Chem. 40:14360
    [Google Scholar]
  114. Panagiotopoulos C, Sempere R. 2005. Analytical methods for the determination of sugars in marine samples: a historical perspective and future directions. Limnol. Oceanogr. Methods 3:41954
    [Google Scholar]
  115. Passow U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55:287333
    [Google Scholar]
  116. Percival E, Rahman MA, Weigel H 1980. Chemistry of the polysaccharides of the diatom Coscinodiscus nobilis. . Phytochemistry 19:80911
    [Google Scholar]
  117. Polz MF, Hunt DE, Preheim SP, Weinreich DM 2006. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos. Trans. R. Soc. B 361:200921
    [Google Scholar]
  118. Quijada M, Riboulleau A, Guerardel Y, Monnet C, Tribovillard N 2015. Neutral aldoses derived from sequential acid hydrolysis of sediments as indicators of diagenesis over 120,000 years. Org. Geochem. 81:5363
    [Google Scholar]
  119. Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T et al. 2011. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ. Microbiol. 13:125370
    [Google Scholar]
  120. Reintjes G, Arnosti C, Fuchs BM, Amann R 2017. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J 11:164050
    [Google Scholar]
  121. Reintjes G, Arnosti C, Fuchs BM, Amann R 2019. Selfish, sharing, and scavenging bacteria in the Atlantic Ocean: a biogeographic study of microbial substrate utilisation. ISME J 13:111932
    [Google Scholar]
  122. Reintjes G, Fuchs BM, Scharfe M, Wiltshire KH, Amann R, Arnosti C 2020. Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environ. Microbiol. 22:1884900
    [Google Scholar]
  123. Reisky L, Prechoux A, Zuhlke M-K, Baumgen M, Robb CS et al. 2019. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat. Chem. Biol. 15:80312
    [Google Scholar]
  124. Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA et al. 2016. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 10:596608
    [Google Scholar]
  125. Salmean AA, Guillouzo A, Duffieux D, Jam M, Matard-Mann M et al. 2018. Double blind microarray-based polysaccharide profiling enables parallel identification of uncharacterized polysaccharides and carbohydrate-binding proteins with unknown specificities. Sci. Rep. 8:2500
    [Google Scholar]
  126. Sarmento H, Morana C, Gasol JM 2016. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J 10:258292
    [Google Scholar]
  127. Saw JHW, Nunoura T, Hirai M, Takaki Y, Parsons R et al. 2020. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11:e02975–19
    [Google Scholar]
  128. Shen Y, Fichot CG, Liang S-K, Benner R 2016. Biological hot spots and the accumulation of marine dissolved organic matter in a highly productive ocean margin. Limnol. Oceanogr. 61:1287300
    [Google Scholar]
  129. Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S et al. 2020. Verrucomicrobial use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5:102639
    [Google Scholar]
  130. Smith DC, Simon M, Alldredge AL, Azam F 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:13942
    [Google Scholar]
  131. Steen AD, Arnosti C. 2011. Long lifetimes of β-glucosidase, leucine aminopeptidase, and phosphatase in Arctic seawater. Mar. Chem. 123:12732
    [Google Scholar]
  132. Steen AD, Hamdan L, Arnosti C 2008. Dynamics of high molecular weight dissolved organic carbon in the Chesapeake Bay: insights from enzyme activities, carbohydrate concentrations, and microbial metabolism. Limnol. Oceanogr. 53:93647
    [Google Scholar]
  133. Steen AD, Ziervogel K, Ghobrial S, Arnosti C 2012. Functional variation among polysaccharide-hydrolyzing microbial communities in the Gulf of Mexico. Mar. Chem. 138:1320
    [Google Scholar]
  134. Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:80112
    [Google Scholar]
  135. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:60811
    [Google Scholar]
  136. Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M et al. 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5:e11888
    [Google Scholar]
  137. Teske A, Durbin A, Ziervogel K, Cox C, Arnosti C 2011. Microbial community composition and function in permanently cold seawater and sediments from an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 77:20818
    [Google Scholar]
  138. Thomas F, Barbeyron T, Tonon T, Genicot S, Czjzek M, Michel C 2012. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ. . Microbiol 14:237994
    [Google Scholar]
  139. Thornton DCO. 2014. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49:2046
    [Google Scholar]
  140. Traving SJ, Thygesen UH, Riemann L, Stedmon CA 2015. A model of extracellular enzymes in free-living microbes: Which strategy pays off. ? Appl. Environ. Microbiol. 81:738593
    [Google Scholar]
  141. Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S et al. 2018. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J 12:2894906
    [Google Scholar]
  142. Vetter YA, Deming JW, Jumars PA, Krieger-Brockett BB 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36:7592
    [Google Scholar]
  143. Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61:536369
    [Google Scholar]
  144. Warren RAJ. 1996. Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50:183212
    [Google Scholar]
  145. Wietz M, Wemheuer B, Simon HM, Giebel H-A, Siebt MA et al. 2015. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans. Environ. Microbiol. 17:382231
    [Google Scholar]
  146. Xing P, Hahnke RL, Unfried F, Markert S, Hugang S et al. 2014. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J 9:141022
    [Google Scholar]
  147. Yamahara KM, Preston CM, Birch J, Walz K, Marin R III et al. 2019. In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle. Front. Mar. Sci. 6:373
    [Google Scholar]
  148. Ziervogel K, Steen AD, Arnosti C 2010. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7:100717
    [Google Scholar]
  149. Zimmerman AE, Martiny AC, Allison SD 2013. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7:118799
    [Google Scholar]
  150. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM et al. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLOS ONE 6:e24570
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032020-012810
Loading
/content/journals/10.1146/annurev-marine-032020-012810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error