1932

Abstract

Climatic extremes are becoming increasingly common against a background trend of global warming. In the oceans, marine heatwaves (MHWs)—discrete periods of anomalously warm water—have intensified and become more frequent over the past century, impacting the integrity of marine ecosystems globally. We review and synthesize current understanding of MHW impacts at the individual, population, and community levels. We then examine how these impacts affect broader ecosystem services and discuss the current state of research on biological impacts of MHWs. Finally, we explore current and emergent approaches to predicting the occurrence andimpacts of future events, along with adaptation and management approaches. With further increases in intensity and frequency projected for coming decades, MHWs are emerging as pervasive stressors to marine ecosystems globally. A deeper mechanistic understanding of their biological impacts is needed to better predict and adapt to increased MHW activity in the Anthropocene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032122-121437
2023-01-16
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032122-121437.html?itemId=/content/journals/10.1146/annurev-marine-032122-121437&mimeType=html&fmt=ahah

Literature Cited

  1. Angilletta MJ. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  2. Arafeh-Dalmau N, Montaño-Moctezuma G, Martinez JA, Beas-Luna R, Schoeman DS, Torres-Moye G. 2019. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6:499
    [Google Scholar]
  3. Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U et al. 2018. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nat. Clim. Change 8:338–44
    [Google Scholar]
  4. Atkinson J, King NG, Wilmes SB, Moore PJ. 2020. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56:1591–600
    [Google Scholar]
  5. Babcock RC, Bustamante RH, Fulton EA, Fulton DJ, Haywood MDE et al. 2019. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia's coast. Front. Mar. Sci. 6:411 Corrigendum. 2019 Front. Mar. Sci. 6:558
    [Google Scholar]
  6. Bacheler N, Shertzer K. 2020. Catchability of reef fish species in traps is strongly affected by water temperature and substrate. Mar. Ecol. Prog. Ser. 642:179–90
    [Google Scholar]
  7. Barbeaux SJ, Holsman K, Zador S. 2020. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7:703
    [Google Scholar]
  8. Bass A, Wernberg T, Thomsen M, Smale D. 2021. Another decade of marine climate change experiments: trends, progress, and knowledge gaps. Front. Mar. Sci. 18:1223
    [Google Scholar]
  9. Bay RA, Palumbi SR. 2017. Transcriptome predictors of coral survival and growth in a highly variable environment. Ecol. Evol. 7:4794–803
    [Google Scholar]
  10. Beggs H 2020. Temperature. Earth Observation: Data Processing and Applications, Vol. 3B Applications—Surface Waters BA Harrison, JA Anstee, A Dekker, S Phinn, N Mueller, G Byrne 292–330 Melbourne: Aust. N.Z. Coop. Res. Cent. Spat. Inf.
    [Google Scholar]
  11. Begon M, Townsend CR. 2020. Ecology: From Individuals to Ecosystems Oxford, UK: Wiley & Sons. , 5th ed..
    [Google Scholar]
  12. Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ. 2015. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 187:714–23
    [Google Scholar]
  13. Benthuysen JA, Oliver ECJ, Feng M, Marshall AG. 2018. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123:1301–26
    [Google Scholar]
  14. Benthuysen JA, Smith GA, Spillman CM, Steinberg CR. 2021. Subseasonal prediction of the 2020 Great Barrier Reef and Coral Sea marine heatwave. Environ. Res. Lett. 16:124050
    [Google Scholar]
  15. Bonachela JA, Burrows MT, Pinsky ML. 2021. Shape of species climate response curves affects community response to climate change. Ecol. Lett. 24:708–18
    [Google Scholar]
  16. Bost CA, Cotté C, Terray P, Barbraud C, Bon C et al. 2015. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6:8220
    [Google Scholar]
  17. Bouchard C, Geoffroy M, LeBlanc M, Majewski A, Gauthier S et al. 2017. Climate warming enhances polar cod recruitment at least transiently. Prog. Oceanogr. 156:121–29
    [Google Scholar]
  18. Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP et al. 2018. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Change Biol. 24:2239–61
    [Google Scholar]
  19. Brothers CJ, McClintock JB. 2015. The effects of climate-induced elevated seawater temperature on the covering behavior righting response and Aristotle's lantern reflex of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol. Ecol. 467:33–38
    [Google Scholar]
  20. Brown CJ, Mellin C, Edgar GJ, Campbell MD, Stuart-Smith RD. 2020. Direct and indirect effects of heatwaves on a coral reef fishery. Glob. Change Biol. 27:1214–25
    [Google Scholar]
  21. Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A et al. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–95
    [Google Scholar]
  22. Canadell JG, Jackson RB, eds. 2021. Ecosystem Collapse and Climate Change Cham, Switz: Springer
    [Google Scholar]
  23. Caputi N, Kangas MI, Chandrapavan A, Hart A, Feng M et al. 2019. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6:484
    [Google Scholar]
  24. Caputi N, Kangas MI, Denham A, Feng M, Pearce A et al. 2016. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6:3583–93
    [Google Scholar]
  25. Cavole LM, Demko AM, Diner RE, Giddings A, Koester I et al. 2016. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29:2273–85
    [Google Scholar]
  26. Clement A, Lincoqueo L, Saldivia M, Brito CG, Muñoz F et al. 2016. Exceptional summer conditions and HABs of Pseudochattonella in Southern Chile create record impacts on salmon farms. Harmful Algae News 53:1–3
    [Google Scholar]
  27. Coleman MA, Wernberg T. 2020. The silver lining of extreme events. Trends Ecol. Evol. 35:1065–67
    [Google Scholar]
  28. Coleman MA, Wood G, Filbee-Dexter K, Minne AJ, Goold HD et al. 2020. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7:237
    [Google Scholar]
  29. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ et al. 2014. Changes in the global value of ecosystem services. Glob. Environ. Change 26:152–58
    [Google Scholar]
  30. CSIRO (Commonw. Sci. Ind. Res. Organ.) 2022. Marine heatwaves. CSIRO. https://research.csiro.au/cor/climate-impacts-adaptation/marine-heatwaves
    [Google Scholar]
  31. Di Lorenzo E, Mantua N. 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6:1042–47
    [Google Scholar]
  32. Diaz-Almela E, Marbà N, Duarte CM. 2007. Consequences of Mediterranean warming events in seagrass Posidonia oceanica flowering records. Glob. Change Biol. 13:224–35
    [Google Scholar]
  33. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F et al. 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4:11–37
    [Google Scholar]
  34. Doshi A, Pascoe S, Thébaud O, Thomas CR, Setiasih N et al. 2012. Loss of economic value from coral bleaching in SE Asia. Proceedings of the 12th International Coral Reef Symposium D Yellowlees, TP Hughes, pap. ICRS2012_22D_1. Townsville Aust.: James Cook Univ https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_22D_1.pdf
  35. Dunstan PK, Moore BR, Bell JD, Holbrook NJ, Oliver ECJ et al. 2018. How can climate predictions improve sustainability of coastal fisheries in Pacific small-island developing states?. Mar. Policy 88:295–302
    [Google Scholar]
  36. Eakin CM, Sweatman HPA, Brainard RE. 2019. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38:539–45
    [Google Scholar]
  37. Feng M, McPhaden MJ, Xie SP, Hafner J. 2013. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3:1277
    [Google Scholar]
  38. Ferriss BE, Marcinek DJ, Ayres D, Borchert J, Lefebvre KA. 2017. Acute and chronic dietary exposure to domoic acid in recreational harvesters: a survey of shellfish consumption behaviour. Environ. Int. 101:70–79
    [Google Scholar]
  39. Filbee-Dexter K, Wernberg T 2018. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 68:64–76
    [Google Scholar]
  40. Filbee-Dexter K, Wernberg T, Grace SP, Thormar J, Fredriksen S et al. 2020. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10:13388
    [Google Scholar]
  41. Freitas C, Olsen EM, Knutsen H, Albretsen J, Moland E. 2016. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85:628–37
    [Google Scholar]
  42. Frölicher TL, Fischer EM, Gruber N. 2018. Marine heatwaves under global warming. Nature 560:360–64
    [Google Scholar]
  43. Fulton EA, Link JS, Kaplan IC, Savina-Rolland M, Johnson P et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish 12:171–88
    [Google Scholar]
  44. Gall ML, Holmes SP, Campbell H, Byrne M. 2021. Effects of marine heatwave conditions across the metamorphic transition to the juvenile sea urchin Heliocidaris erythrogramma. Mar. Pollut. Bull. 163:111914
    [Google Scholar]
  45. Garrabou J, Gómez-Gras D, Ledoux JB, Linares C, Bensoussan N et al. 2019. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6:707
    [Google Scholar]
  46. Garrabou J, Ledoux J-B, Bensoussan N, Gómez-Gras D, Linares C. 2021. Sliding toward the collapse of Mediterranean coastal marine rocky ecosystems. See Canadell & Jackson 2021 291–324
  47. Genin A, Levy L, Sharon G, Raitsos DE, Diamant A. 2020. Rapid onsets of warming events trigger mass mortality of coral reef fish. PNAS 117:25378–85
    [Google Scholar]
  48. Gleason LU, Burton RS. 2015. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol. Ecol. 24:610–27
    [Google Scholar]
  49. Gómez-Gras D, Linares C, Dornelas M, Madin JS, Brambilla V et al. 2021a. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecol. Lett. 24:1038–51
    [Google Scholar]
  50. Gómez-Gras D, Linares C, López-Sanz A, Amate R, Ledoux JB et al. 2021b. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B 288:20212384
    [Google Scholar]
  51. González S. 2016. Red tide and labor unrest reduce Chilean salmon production Glob. Agric. Inf. Netw. Rep. CI1611 Foreign Agric. Serv., US Dep. Agric. Santiago, Chile:
    [Google Scholar]
  52. Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK. 2015. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97
    [Google Scholar]
  53. Grilo TF, Cardoso PG, Dolbeth M, Bordalo MD, Pardal MA. 2011. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 62:303–11
    [Google Scholar]
  54. Gruber N, Boyd PW, Frölicher TL, Vo M. 2021. Biogeochemical extremes and compound events in the ocean. Nature 600:395–407
    [Google Scholar]
  55. Gunderson AR, Leal M. 2016. A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecol. Lett. 19:111–20
    [Google Scholar]
  56. Guppy M, Withers P. 1999. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol. Rev. Camb. Philos. Soc. 74:1–40
    [Google Scholar]
  57. Harris RM, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8:579–87
    [Google Scholar]
  58. Hart LC, Goodman MC, Walter RK, Rogers-Bennett L, Shum P et al. 2020. Abalone recruitment in low-density and aggregated populations facing climate stress. J. Shellfish Res. 39:359–73
    [Google Scholar]
  59. Hart MW, Scheibling RE. 1988. Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Mar. Biol. 99:167–76
    [Google Scholar]
  60. Harvell CD, Montecino-Latorre D, Caldwell JM, Burt JM, Bosley K et al. 2019. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator Pycnopodia helianthoides. Sci. Adv. 5:eaau7042
    [Google Scholar]
  61. Herbert RJH, Humphreys J, Davies CJ, Roberts C, Fletcher S, Crowe TP. 2016. Ecological impacts of non-native Pacific oysters Crassostrea gigas and management measures for protected areas in Europe. Biodivers. Conserv. 25:2835–65
    [Google Scholar]
  62. Hernán G, Ortega MJ, Gándara AM, Castejón I, Terrados J, Tomas F 2017. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Glob. Change Biol. 23:4530–43
    [Google Scholar]
  63. Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC et al. 2016. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141:227–38
    [Google Scholar]
  64. Hobday AJ, Oliver ECJ, Sen Gupta A, Benthuysen JA, Burrows MT et al. 2018a. Categorizing and naming marine heatwaves. Oceanography 31:2162–73
    [Google Scholar]
  65. Hobday AJ, Spillman CM, Eveson JP, Hartog JR, Zhang X, Brodie S. 2018b. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5:137
    [Google Scholar]
  66. Holbrook NJ, Scannell HA, Sen Gupta A, Benthuysen JA, Feng M et al. 2019. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10:2624
    [Google Scholar]
  67. Holbrook NJ, Sen Gupta A, Oliver ECJ, Hobday AJ, Benthuysen JA et al. 2020. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1:482–93
    [Google Scholar]
  68. Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A et al. 2018. Global warming transforms coral reef assemblages. Nature 556:492–96
    [Google Scholar]
  69. Hughes TP, Kerry JT, Connolly SR, Álvarez-Romero JG, Eakin C et al. 2021. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. 31:5393–99
    [Google Scholar]
  70. Jacox MG, Alexander MA, Amaya D, Becker E, Bograd SJ et al. 2022. Global seasonal forecasts of marine heatwaves. Nature 604:486–90
    [Google Scholar]
  71. Jacox MG, Tommasi D, Alexander MA, Hervieux G, Stock CA. 2019. Predicting the evolution of the 2014–2016 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6:497
    [Google Scholar]
  72. Johnson MR, Williams SL, Lieberman CH, Solbak A. 2003. Changes in the abundance of the seagrasses Zostera marina L. (eelgrass) and Ruppia maritima L. (widgeongrass) in San Diego, California, following an El Niño event. Estuaries 26:106–15
    [Google Scholar]
  73. Jueterbock A, Minne AJ, Cock JM, Coleman MA, Wernberg T et al. 2021. Priming of marine macrophytes for enhanced restoration success and food security in future oceans. Front. Mar. Sci. 8:279
    [Google Scholar]
  74. Kayanne H. 2017. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. Coral Reefs 36:63–70
    [Google Scholar]
  75. Kendrick GA, Nowicki R, Olsen YS, Strydom S, Fraser MW et al. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6:455
    [Google Scholar]
  76. King NG, McKeown NJ, Smale DA, Moore PJ. 2018. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41:1469–84
    [Google Scholar]
  77. King NG, Wilmes SB, Smyth D, Tinker J, Robins PE et al. 2021. Climate change accelerates range expansion of the invasive non-native species, the Pacific oyster, Crassostrea gigas. ICES J. Mar. Sci. 78:70–81
    [Google Scholar]
  78. Koerich G, Costa GB, Sissini MN, Ortiz CL, Canever BF et al. 2021. Physiology, niche characteristics and extreme events: current and future habitat suitability of a Rhodolith-forming species in the southwestern Atlantic. Mar. Environ. Res. 169:105394
    [Google Scholar]
  79. Laufkötter C, Zscheischler J, Frölicher TL. 2020. High-impact marine heatwaves attributable to human-induced global warming. Science 369:1621–25
    [Google Scholar]
  80. Layton C, Johnson CR. 2021. Assessing the feasibility of restoring giant kelp forests in Tasmania Rep. Mar. Biodivers. Hub, Natl. Environ. Sci. Programme Hobart: Aust. https://www.nespmarine.edu.au/document/assessing-feasibility-restoring-giant-kelp-forests-tasmania-final-report
    [Google Scholar]
  81. LeBlanc M, Geoffroy M, Bouchard C, Gauthier S, Majewski A et al. 2020. Pelagic production and the recruitment of juvenile polar cod Boreogadus saida in Canadian Arctic seas. Polar Biol 43:1043–54
    [Google Scholar]
  82. Lefcheck JS, Wilcox DJ, Murphy RR, Marion SR, Orth RJ. 2017. Multiple stressors threaten the imperiled coastal foundation species eelgrass Zostera marina in Chesapeake Bay USA. Glob. Change Biol. 23:3474–83
    [Google Scholar]
  83. Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ et al. 2019. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29:2723–30
    [Google Scholar]
  84. Lejart M, Hily C. 2011. Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J. Sea Res. 65:84–93
    [Google Scholar]
  85. Lemoine NP, Burkepile DE. 2012. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93:2483–89
    [Google Scholar]
  86. Lenanton RCJ, Dowling CE, Smith KA, Fairclough DV, Jackson G. 2017. Potential influence of a marine heatwave on range extensions of tropical fishes in the eastern Indian Ocean—invaluable contributions from amateur observers. Reg. Stud. Mar. Sci. 13:19–31
    [Google Scholar]
  87. Marbà N, Díaz-Almela E, Duarte CM. 2014. Mediterranean seagrass Posidonia oceanica loss between 1842 and 2009. Biol. Conserv. 176:183–90
    [Google Scholar]
  88. Marbà N, Duarte CM. 2010. Mediterranean warming triggers seagrass Posidonia oceanica shoot mortality. Glob. Change Biol. 16:2366–75
    [Google Scholar]
  89. Masson-Delmotte V, Zhai P, Chen Y, Goldfarb L, Gomis MI et al., eds. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press. In press
    [Google Scholar]
  90. Matich P, Heithaus MR, Layman CA. 2011. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80:294–305
    [Google Scholar]
  91. McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG et al. 2016. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43:10366–76
    [Google Scholar]
  92. McDonald JI. 2012. Detection of the tropical mussel species Perna viridis in temperate Western Australia: possible association between spawning and a marine heat pulse. Aquat. Invasions 7:483–90
    [Google Scholar]
  93. McLeod E, Chmura GL, Bouillon S, Salm R, Björk M et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:552–60
    [Google Scholar]
  94. McPherson ML, Finger DJI, Houskeeper HF, Bell TW, Carr MH et al. 2021. Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave. Commun. Biol. 4:298
    [Google Scholar]
  95. Mendez SM, Martinez A, Ortego L, Fabre A. 2015. High sea surface temperature the potential trigger of mass mortality of fish exceptional toxin producing HABs and other socio-economic impacts in Uruguay. Harmful Algae News 51:2
    [Google Scholar]
  96. Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang F-S et al. 2013. Fisheries management in a changing climate. Oceanography 26:2191–95
    [Google Scholar]
  97. Minuti JJ, Byrne M, Hemraj DA, Russell BD. 2021. Capacity of an ecologically key urchin to recover from extreme events: physiological impacts of heatwaves and the road to recovery. Sci. Total Environ. 785:147281
    [Google Scholar]
  98. Moana Proj 2022. New Zealand marine heatwave forecast. Moana Project. https://www.moanaproject.org/marine-heatwave-forecast
    [Google Scholar]
  99. Moore SK, Cline MR, Blair K, Klinger T, Varney A, Norman K. 2019. An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the US West Coast. Mar. Policy 110:103543
    [Google Scholar]
  100. Nowicki R, Heithaus M, Thomson J, Burkholder D, Gastrich K, Wirsing A. 2019. Indirect legacy effects of an extreme climatic event on a marine megafaunal community. Ecol. Monogr. 89:e01365
    [Google Scholar]
  101. Oliver ECJ. 2019. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53:1653–59
    [Google Scholar]
  102. Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ et al. 2017. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8:16101
    [Google Scholar]
  103. Oliver ECJ, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ et al. 2021. Marine heatwaves. Annu. Rev. Mar. Sci. 13:313–42
    [Google Scholar]
  104. Oliver ECJ, Burrows MT, Donat MG, Sen Gupta A, Alexander LV et al. 2019. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6:734
    [Google Scholar]
  105. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA et al. 2018. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:1324
    [Google Scholar]
  106. Pandori LLM, Sorte CJB. 2019. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128:621–29
    [Google Scholar]
  107. Pansch C, Scotti M, Barboza FR, Al-Janabi B, Brakel J et al. 2018. Heat waves and their significance for a temperate benthic community: a near-natural experimental approach. Glob. Change Biol. 24:4357–67
    [Google Scholar]
  108. Papacostas KJ, Rielly-Carroll EW, Georgian SE, Long DJ, Princiotta SD et al. 2017. Biological mechanisms of marine invasions. Mar. Ecol. Prog. Ser. 56:251–68
    [Google Scholar]
  109. Pearce AF, Feng M. 2013. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111:139–56
    [Google Scholar]
  110. Pearce AF, Lenanton R, Jackson G, Moore J, Feng M, Gaughan D. 2011. The “marine heat wave” off Western Australia during the summer of 2010/11 Fish. Res. Rep. 222 West. Aust. Dep. Fish. North Beach: Aust .
    [Google Scholar]
  111. Pears R, Stella J, Wachenfeld DR, David R. 2017. 2016 coral bleaching event on the Great Barrier Reef Rep. Great Barrier Reef Mar. Park Auth. Townsville: Aust .
    [Google Scholar]
  112. Pergent G, Bazairi H, Bianchi CN, Boudouresque CF, Buia MC et al. 2014. Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers. Mediterr. Mar. Sci. 15:462–73
    [Google Scholar]
  113. Pershing AJ, Mills KE, Franklin BS, Dayton AM, Kennedy BT. 2018. Evidence for adaptation from the 2016 marine heatwave in the northwest Atlantic Ocean. Oceanography 31:2152–61
    [Google Scholar]
  114. Pethybridge HR, Fulton EA, Hobday AJ, Blanchard J, Bulman CM et al. 2020. Contrasting futures for Australia's fisheries stocks under IPCC RCP8.5 emissions – a multi-ecosystem model approach. Front. Mar. Sci. 7:846
    [Google Scholar]
  115. Piatt JF, Parrish JK, Renner HM, Schoen SK, Jones TT et al. 2020. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLOS ONE 15:e0226087
    [Google Scholar]
  116. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM. 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108–11
    [Google Scholar]
  117. Plagányi ÉE, Bell JD, Bustamante RH, Dambacher JM, Dennis DM et al. 2011. Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Mar. Freshw. Res. 62:1132–47
    [Google Scholar]
  118. Ponti M, Turicchia E, Ferro F, Cerrano C, Abbiati M. 2018. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. 28:1153–66
    [Google Scholar]
  119. Pratchett MS, Heron SF, Mellin C, Cumming GS. 2021. Recurrent mass-bleaching and the potential for ecosystem collapse on Australia's Great Barrier Reef. See Canadell & Jackson 2021 265–90
  120. Reed D, Washburn L, Rassweiler A, Miller R, Bell T, Harrer S. 2016. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7:13757
    [Google Scholar]
  121. Rogers-Bennett L, Catton CA 2019. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9:15050
    [Google Scholar]
  122. Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F et al. 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 36:643–89
    [Google Scholar]
  123. Salazar SP, Bustamante RH. 2003. Effects of the 1997–1998 El Niño on population size and diet of the Galápagos sea lion Zalophus wollebaeki. Not. Galapagos 62:40–45
    [Google Scholar]
  124. Sanford E, Sones JL, García-Reyes M, Goddard JHR, Largier JL. 2019. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9:4216
    [Google Scholar]
  125. Santora JA, Mantua NJ, Schroeder ID, Field JC, Hazen EL et al. 2020. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11:536
    [Google Scholar]
  126. Schlegel RW, Smit AJ. 2018. heatwaveR: a central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3:821
    [Google Scholar]
  127. Seibel BA, Drazen JC. 2007. The rate of metabolism in marine animals: environmental constraints ecological demands and energetic opportunities. Philos. Trans. R. Soc. B 362:2061–78
    [Google Scholar]
  128. Sen Gupta A, Thomsen MS, Benthuysen JA, Hobday AJ, Oliver ECJ et al. 2020. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10:19359
    [Google Scholar]
  129. Serrano O, Arias-Ortiz A, Duarte CM, Kendrick GA, Lavery PS. 2021. Impact of marine heatwaves on seagrass ecosystems. See Canadell & Jackson 2021 345–64
  130. Shanks AL, Rasmuson LK, Valley JR, Jarvis MA, Salant C et al. 2020. Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol. Oceanogr. 65:627–36
    [Google Scholar]
  131. Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018. Mangrove mortality in a changing climate. Estuar. Coast. Shelf Sci. 215:241–49
    [Google Scholar]
  132. Smale DA. 2020. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225:1447–54
    [Google Scholar]
  133. Smale DA, Taylor JD, Coombs SH, Moore G, Cunliffe M. 2017. Community responses to seawater warming are conserved across diverse biological groupings and taxonomic resolutions. Proc. R. Soc. B 284:20170534
    [Google Scholar]
  134. Smale DA, Wernberg T. 2013. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280:20122829
    [Google Scholar]
  135. Smale DA, Wernberg T, Oliver ECJ, Thomsen MS, Harvey BP et al. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9:306–12
    [Google Scholar]
  136. Smith KE, Burrows MT, Hobday AJ, Sen Gupta A, Moore PJ et al. 2021. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374:eabj3593
    [Google Scholar]
  137. Smith KE, Thatje S, Hauton C. 2013. Thermal tolerance during early ontogeny in the common whelk Buccinum undatum (Linnaeus 1785): bioenergetics, nurse egg partitioning and developmental success. J. Sea Res. 79:32–39
    [Google Scholar]
  138. Somero GN. 2020. The cellular stress response and temperature: function regulation and evolution. J. Exp. Zool. A 333:379–97
    [Google Scholar]
  139. Speare KE, Adam TC, Winslow EM, Lenihan HS, Burkepile DE. 2022. Size-dependent mortality of corals during marine heatwave erodes recovery capacity of a coral reef. Glob. Change Biol. 28:1342–58
    [Google Scholar]
  140. Spillman CM, Smith GA, Hobday AJ, Hartog JR. 2021. Onset and decline rates of marine heatwaves: global trends, seasonal forecasts, and marine management. Front. Clim. 3:182
    [Google Scholar]
  141. Stella JS, Pratchett MS, Hutchings PA, Jones GP. 2011. Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr. Mar. Biol. 49:43–104
    [Google Scholar]
  142. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM et al. 2002. Kelp forest ecosystems: biodiversity, stability, resilience, and future. Environ. Conserv. 29:436–59
    [Google Scholar]
  143. Straub SC, Wernberg T, Marzinelli EM, Vergés A, Kelaher BP, Coleman MA. 2022. Persistence of seaweed forests in the Anthropocene will depend on warming and marine heatwave profiles. J. Phycol. 58:22–35
    [Google Scholar]
  144. Straub SC, Wernberg T, Thomsen MS, Moore PJ, Burrows MT et al. 2019. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6:763
    [Google Scholar]
  145. Strydom S, Murray K, Wilson S, Huntley B, Rule M et al. 2020. Too hot to handle: unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26:3525–38
    [Google Scholar]
  146. Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ. 2018. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560:92–96
    [Google Scholar]
  147. Sunday JM, Bates AE, Dulvy NK. 2012. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2:686–90
    [Google Scholar]
  148. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK et al. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111:5610–15
    [Google Scholar]
  149. Tait LW, Thoral F, Pinkerton MH, Thomsen MS, Schiel DR. 2021. Loss of the giant kelp Macrocystis pyrifera driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. 8:721087
    [Google Scholar]
  150. Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L et al. 2019. Local extinction of bull kelp Durvillaea spp. due to a marine heatwave. Front. Mar. Sci. 6:84
    [Google Scholar]
  151. Thomsen MS, Mondardini L, Thoral F, Gerber D, Montie S et al. 2021. Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Divers. Dist. 27:2369–83
    [Google Scholar]
  152. Thomsen MS, South P. 2019. Communities and attachment networks associated with primary secondary and alternative foundation species; a case of stressed and disturbed stands of southern bull kelp. . Diversity 11:56
    [Google Scholar]
  153. Trainer VL, Moore SK, Hallegraeff G, Kudela RM, Clement A et al. 2020. Pelagic harmful algal blooms and climate change: lessons from nature's experiments with extremes. Harmful Algae 91:101591
    [Google Scholar]
  154. Verdura J, Linares C, Ballesteros E, Coma R, Uriz MJ et al. 2019. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9:5911
    [Google Scholar]
  155. Verdura J, Santamaría J, Ballesteros E, Smale D, Cefalì ME et al. 2021. Local-scale climatic refugia offer sanctuary for a habitat-forming species during a marine heatwave. J. Ecol. 109:1758–73
    [Google Scholar]
  156. Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH et al. 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281:20140846
    [Google Scholar]
  157. Wernberg T. 2021. Marine heatwave drives collapse of kelp forests in Western Australia. See Canadell & Jackson 2021 325–43
  158. Wernberg T, Bennett S, Babcock RC, Bettignies T, de Cure K et al. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–72
    [Google Scholar]
  159. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ et al. 2013. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3:78–82
    [Google Scholar]
  160. Wiens JJ. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol 14:e2001104
    [Google Scholar]
  161. Wild S, Krützen M, Rankin RW, Hoppitt WJE, Gerber L, Allen SJ. 2019. Long-term decline in survival and reproduction of dolphins following a marine heatwave. Curr. Biol. 29:R225–40
    [Google Scholar]
  162. Wilkinson C 2000. Status of Coral Reefs of the World: 2000 Townsville/Dampier, Aust: Aust. Inst. Mar. Sci.
    [Google Scholar]
  163. Wilson SK, Robinson JPW, Chong-Seng K, Robinson J, Graham NAJ 2019. Boom and bust of keystone structure on coral reefs. Coral Reefs 38:625–35
    [Google Scholar]
  164. Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NA. 2019. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33:1023–34
    [Google Scholar]
  165. Zarco-Perello S, Wernberg T, Langlois TJ, Vanderklift MA. 2017. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7:820
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032122-121437
Loading
/content/journals/10.1146/annurev-marine-032122-121437
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error