1932

Abstract

Frontogenesis is the fluid-dynamical processes that rapidly sharpen horizontal density gradients and their associated horizontal velocity shears. It is a positive feedback process where the ageostrophic, overturning secondary circulation in the cross-front plane accelerates the frontal sharpening until an arrest occurs through frontal instability and other forms of turbulent mixing. Several well-known types of oceanic frontal phenomena are surveyed, their impacts on oceanic system functioning are assessed, and future research is envisioned.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032320-120725
2021-01-03
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-032320-120725.html?itemId=/content/journals/10.1146/annurev-marine-032320-120725&mimeType=html&fmt=ahah

Literature Cited

  1. Akan C, McWilliams JC, Moghimi S, Ozkan-Haller HT 2017. Frontal dynamics at the edge of the Columbia River plume. Ocean Model 122:1–12
    [Google Scholar]
  2. Barkan R, Molemaker MJ, Srinivasan K, McWilliams JC, D'Asaro E 2019. The role of horizontal divergence in submesoscale frontogenesis. J. Phys. Oceanogr. 49:1593–618
    [Google Scholar]
  3. Baschek B, Farmer DM, Garrett C 2006. Tidal fronts and their role in air-sea gas exchange. J. Mar. Res. 64:483–515
    [Google Scholar]
  4. Benjamin TB. 1966. Internal waves of finite horizontal amplitude and permanent form. J. Fluid Mech. 25:241–53
    [Google Scholar]
  5. Benjamin TB. 1968. Gravity currents and related phenomena. J. Fluid Mech. 31:209–48
    [Google Scholar]
  6. Bjerknes J. 1919. On the structure of moving cyclones. Geofys. Publ. 1:21–8
    [Google Scholar]
  7. Bodner AS, Fox-Kemper B, Van Roekel LP, McWilliams JC, Sullivan PP 2020. A perturbation approach to understanding the effects of turbulence on frontogenesis. J. Fluid Mech. 883:A25
    [Google Scholar]
  8. Chapman DC. 2000. Boundary layer control of buoyant coastal currents and the establishment of a shelfbreak front. J. Phys. Oceanogr. 30:2941–55
    [Google Scholar]
  9. D'Asaro E, Lee C, Rainville L, Thomas L 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science 332:318–22
    [Google Scholar]
  10. D'Asaro E, Shcherbina AY, Klymak JM, Molemaker MJ, Novelli G et al. 2018. Ocean convergence and the dispersion of flotsam. PNAS 115:1162–67
    [Google Scholar]
  11. Dauhajre D, McWilliams JC. 2018. Diurnal evolution of submesoscale front and filament circulations. J. Phys. Oceanogr. 48:2343–61
    [Google Scholar]
  12. Dauhajre D, McWilliams JC, Renault L 2019. Nearshore Lagrangian connectivity: submesoscale influence and resolution sensitivity. J. Geophys. Res. Oceans 124:5180–204
    [Google Scholar]
  13. Davies HC. 1999. Theories of frontogenesis. The Life Cycles of Extratropical Cyclones MA Shapiro, S Gronas 215–38 Boston: Am. Meteorol. Soc.
    [Google Scholar]
  14. Federov KN. 1986. The Physical Nature and Structure of Oceanic Fronts New York: Springer-Verlag
    [Google Scholar]
  15. Ferrari R, Rudnick DL. 2000. Thermohaline variability in the upper ocean. J. Geophys. Res. 105:16857–83
    [Google Scholar]
  16. Fox-Kemper B, Ferrari R, Hallberg R 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38:1145–65
    [Google Scholar]
  17. Friehe CA, Shaw WJ, Rodgers DB, Davidson KL, Large WG et al. 1991. Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res. 96:8593–609
    [Google Scholar]
  18. Garvine RW. 1974. Dynamics of small-scale ocean fronts. J. Phys. Oceanogr. 4:557–69
    [Google Scholar]
  19. Gaube P, Chickadel CC, Branch R, Jessup A 2019. Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett. 46:2690–95
    [Google Scholar]
  20. Gawarkiewicz G, Chapman DC. 1992. The role of stratification in the formation and maintenance of shelfbreak fronts. J. Phys. Oceanogr. 22:753–72
    [Google Scholar]
  21. Gent PR, McWilliams JC, Snyder C 1994. A note on a scaling analysis of curved fronts: the formal validity of the balance equations and semigeostrophy. J. Atmos. Sci. 51:160–63
    [Google Scholar]
  22. Geyer WR, Ralston FP. 2015. Estuarine frontogenesis. J. Phys. Oceanogr. 45:546–61
    [Google Scholar]
  23. Gula J, Molemaker MJ, McWilliams JC 2014. Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 44:2617–43
    [Google Scholar]
  24. Haine TWN, Marshall J. 1998. Gravitational, symmetric and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28:634–58
    [Google Scholar]
  25. Hamlington PE, Van Roekel LP, Fox-Kemper B, Julien K, Chini GP 2014. Langmuir-submesoscale interactions: descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr. 44:2249–72
    [Google Scholar]
  26. Hill AE, James ID, Linden PF, Matthews JP, Prandle D et al. 1993. Dynamics of tidal mixing fronts in the North Sea. Philos. Trans. R. Soc. Lond. A 343:431–46
    [Google Scholar]
  27. Horner-Devine AR, Hetland RC, MacDonald DG 2015. Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech. 47:569–94
    [Google Scholar]
  28. Hoskins BJ. 1982. The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14:131–51
    [Google Scholar]
  29. Hoskins BJ. 2003. Back to frontogenesis. A Half Century of Progress in Meteorology: A Tribute to Richard Reed RH Johnson, RA Houze Jr 49–59 Boston: Am. Meteorol. Soc.
    [Google Scholar]
  30. Hoskins BJ, Bretherton FP. 1972. Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29:11–37
    [Google Scholar]
  31. Hoskins BJ, Draghici I. 1977. The forcing of ageostrophic motion according to the semi-geostrophic equations and in an isentropic coordinate model. J. Atmos. Sci. 34:1859–67
    [Google Scholar]
  32. Klymak JM, Shearman RK, Gula J, Lee CM, D'Asaro EA et al. 2016. Submesoscale streamers exchange water on the north wall of the Gulf Stream. Geophys. Res. Lett. 43:1226–33
    [Google Scholar]
  33. Lamb KG. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46:231–54
    [Google Scholar]
  34. Lamb KG, Warn-Varnas A. 2015. Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea. Nonlinear Process. Geophys. 22:289–312
    [Google Scholar]
  35. Lapeyre G, Klein P, Hua BL 2006. Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr. 36:1577–90
    [Google Scholar]
  36. Loder JW, Drinkwater KF, Oakey NS, Horne EPW 1993. Circulation, hydrographic structure and mixing at tidal fronts: the view from Georges Bank. Philos. Trans. R. Soc. Lond. A 343:447–60
    [Google Scholar]
  37. Long RR. 1972. The steepening of long, internal waves. Tellus 24:88–99
    [Google Scholar]
  38. Lorenz E. 1960. Energy and numerical weather prediction. Tellus 12:364–73
    [Google Scholar]
  39. Lorenz E. 1969. The predictability of a flow which possesses many scales of motion. Tellus 21:289–307
    [Google Scholar]
  40. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8:161–84
    [Google Scholar]
  41. McWilliams JC. 2016. Submesoscale currents in the ocean. Proc. R. Soc. A 472:20160117
    [Google Scholar]
  42. McWilliams JC. 2017. Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech. 823:391–432
    [Google Scholar]
  43. McWilliams JC. 2018. Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech. 843:479–517
    [Google Scholar]
  44. McWilliams JC. 2019. A survey of submesoscale currents. Geosci. Lett. 6:3
    [Google Scholar]
  45. McWilliams JC, Colas F, Molemaker MJ 2009a. Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett. 36:L18602
    [Google Scholar]
  46. McWilliams JC, Fox-Kemper B. 2013. Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech. 730:46490
    [Google Scholar]
  47. McWilliams JC, Gent PR. 1980. Intermediate models of planetary circulations in the atmosphere and ocean. J. Atmos. Sci. 37:165778
    [Google Scholar]
  48. McWilliams JC, Gula J, Molemaker MJ 2019. The Gulf Stream north wall: ageostrophic circulation and frontogenesis. J. Phys. Oceanogr. 49:893916
    [Google Scholar]
  49. McWilliams JC, Gula J, Molemaker MJ, Renault L, Shchepetkin AF 2015. Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr. 45:19882005
    [Google Scholar]
  50. McWilliams JC, Molemaker MJ. 2011. Baroclinic frontal arrest: a sequel to unstable frontogenesis. J. Phys. Oceanogr. 41:60119
    [Google Scholar]
  51. McWilliams JC, Molemaker MJ, Olafsdottir EI 2009b. Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr. 39:311129
    [Google Scholar]
  52. McWilliams JC, Yavneh I, Cullen MJP, Gent PR 1998. The breakdown of large-scale flows in rotating, stratified fluids. Phys. Fluids 10:317884
    [Google Scholar]
  53. Nagai T, Tandon A, Yamazaki H, Doubell MJ 2009. Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys. Res. Lett. 36:L12609
    [Google Scholar]
  54. Pedlosky J. 1987. Geophysical Fluid Dynamics New York: Springer-Verlag
    [Google Scholar]
  55. Renault L, McWilliams JC, Gula J 2018. Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Sci. Rep. 8:13388
    [Google Scholar]
  56. Roden GI. 1980. On the variability of surface temperature fronts in the western Pacific, as detected by satellite. J. Geophys. Res. 85:270410
    [Google Scholar]
  57. Rotunno R, Skamarock WC, Snyder C 1994. An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci. 51:337398
    [Google Scholar]
  58. Rudnick DL, Ferrari R. 1999. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283:52629
    [Google Scholar]
  59. Rudnick DL, Luyten JR. 1996. Intensive surveys of the Azores Front: 1. Tracers and dynamics. J. Geophys. Res. 101:92339
    [Google Scholar]
  60. Samelson RM, Skyllingstad ED. 2016. Frontogenesis and turbulence: a numerical simulation. J. Atmos. Sci. 73:502540
    [Google Scholar]
  61. Shakespeare CJ, Taylor JR. 2014. The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain: theory. J. Fluid Mech. 757:81753
    [Google Scholar]
  62. Shakespeare CJ, Taylor JR. 2015. The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain: numerical solutions. J. Fluid Mech. 772:50834
    [Google Scholar]
  63. Simpson JE. 1997. Gravity Currents in the Environment and Laboratory Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  64. Simpson JE, Linden PF. 1989. Frontogenesis in a fluid with horizontal density gradients. J. Fluid Mech. 202:116
    [Google Scholar]
  65. Small J, deSzoeke SP, Xie SP, O'Neill L, Seo H et al. 2008. Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 45:274319
    [Google Scholar]
  66. Snyder C, Skamarock WC, Rotunno R 1993. Frontal dynamics near and following frontal collapse. J. Atmos. Sci. 50:3194221
    [Google Scholar]
  67. Sokolov S, Rintoul SR. 2009. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res. 114:C11018
    [Google Scholar]
  68. Spall MA. 1995. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res. 100:254357
    [Google Scholar]
  69. Spall MA. 1997. Baroclinic jets in confluent flow. J. Phys. Oceanogr. 27:105471
    [Google Scholar]
  70. Spall MA, Pickart RS, Lin P, von Appen WJ, Mastropole D et al. 2019. Frontogenesis and variability in Denmark Strait and its influence on overflow water. J. Phys. Oceanogr. 49:1889904
    [Google Scholar]
  71. Sullivan PP, McWilliams JC. 2018. Frontogenesis and frontal arrest for a dense filament in the oceanic surface boundary layer. J. Fluid Mech. 837:34180
    [Google Scholar]
  72. Sullivan PP, McWilliams JC. 2019. Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech. 879:51253
    [Google Scholar]
  73. Sullivan PP, McWilliams JC, Weil JC, Patton EG, Fernando HJS 2020. Marine boundary layers above heterogeneous SST: across-front winds. J. Atmos. Sci. press. https://doi.org/10.1175/JAS-D-20-0062.1
    [Crossref] [Google Scholar]
  74. Suzuki N, Fox-Kemper B, Hamlington PE, Van Roekel LP 2016. Surface waves affect frontogenesis. J. Geophys. Res. Oceans 121:3597624
    [Google Scholar]
  75. Taylor JR, Ferrari R. 2009. On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622:10313
    [Google Scholar]
  76. Thomas LN. 2008. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity. Dyn. Atmos. Oceans 45:25273
    [Google Scholar]
  77. Thomas LN. 2017. On the modifications of near-inertial waves at fronts: implications for energy transfer across scales. Ocean Dyn 67:133550
    [Google Scholar]
  78. Thomas LN, Lee C. 2005. Intensification of ocean fronts by downfront winds. J. Phys. Oceanogr. 35:1086102
    [Google Scholar]
  79. Thompson LN. 2000. Ekman layers and two-dimensional frontogenesis in the upper ocean. J. Geophys. Res. 105:643751
    [Google Scholar]
  80. Tintore J, La Violette PE, Blade I, Cruzado A 1988. A study of an intense density front in the Eastern Alboran Sea: the Almeria-Oran front. J. Phys. Oceanogr. 18:138497
    [Google Scholar]
  81. Ungarish M, Huppert HE. 1998. The effects of rotation on axisymmetric gravity currents. J. Fluid Mech. 362:1751
    [Google Scholar]
  82. van Heijst GJF. 1986. On the dynamics of a tidal mixing front. Marine Interfaces Ecohydrodynamics JCJ Nihoul 16594 Amsterdam: Elsevier
    [Google Scholar]
  83. Verma V, Pham HT, Sarkar S 2019. The submesoscale, the finescale and their interaction at a mixed layer front. Ocean Model 140:101400
    [Google Scholar]
  84. Wang DP, Jordi A. 2011. Surface frontogenesis and thermohaline intrusion in a shelfbreak front. Ocean Model 38:16170
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032320-120725
Loading
/content/journals/10.1146/annurev-marine-032320-120725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error