1932

Abstract

Quantitative imaging instruments produce a large number of images of plankton and marine snow, acquired in a controlled manner, from which the visual characteristics of individual objects and their in situ concentrations can be computed. To exploit this wealth of information, machine learning is necessary to automate tasks such as taxonomic classification. Through a review of the literature, we highlight the progress of those machine classifiers and what they can and still cannot be trusted for. Several examples showcase how the combination of quantitative imaging with machine learning has brought insights on pelagic ecology. They also highlight what is still missing and how images could be exploited further through trait-based approaches. In the future, we suggest deeper interactions with the computer sciences community, the adoption of data standards, and the more systematic sharing of databases to build a global community of pelagic image providers and users.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Machine Learning for the Study of Plankton and Marine Snow from Images
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-041921-013023
2022-01-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-041921-013023.html?itemId=/content/journals/10.1146/annurev-marine-041921-013023&mimeType=html&fmt=ahah

Literature Cited

  1. Badue C, Guidolini R, Carneiro RV, Azevedo P, Cardoso VB et al. 2021. Self-driving cars: a survey. Expert Syst. Appl. 165:113816
    [Google Scholar]
  2. Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO et al. 2001. Biospheric primary production during an ENSO transition. Science 291:2594–97
    [Google Scholar]
  3. Bell JL, Hopcroft RR. 2008. Assessment of ZooImage as a tool for the classification of zooplankton. J. Plankton Res. 30:1351–67
    [Google Scholar]
  4. Benfield MC, Grosjean P, Culverhouse PF, Irigoien X, Sieracki ME et al. 2007. RAPID: Research on Automated Plankton Identification. Oceanography 20:2172–87
    [Google Scholar]
  5. Benoit-Bird KJ, McManus MA. 2012. Bottom-up regulation of a pelagic community through spatial aggregations. Biol. Lett. 8:813–16
    [Google Scholar]
  6. Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P et al. 2016. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532:504–7
    [Google Scholar]
  7. Blackburn N, Hagström Å, Wikner J, Cuadros-Hansson R, Bjørnson PK. 1998. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64:3246–55
    [Google Scholar]
  8. BODC (Br. Oceanogr. Data Cent.) 2021. Vocabularies. British Oceanographic Data Centre https://www.bodc.ac.uk/resources/vocabularies
    [Google Scholar]
  9. Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR et al. 2020. Small phytoplankton dominate western North Atlantic biomass. ISME J 14:1663–74
    [Google Scholar]
  10. Botella C, Joly A, Bonnet P, Monestiez P, Munoz F 2018. Species distribution modeling based on the automated identification of citizen observations. Appl. Plant Sci. 6:e1029
    [Google Scholar]
  11. Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  12. Breiman L. 2001. Random forests. Mach. Learn. 45:5–32
    [Google Scholar]
  13. Brisbin MM, Brunner OD, Grossmann MM, Mitarai S. 2020. Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnol. Oceanogr. 65:2953–65
    [Google Scholar]
  14. Brownlee EF, Olson RJ, Sosik HM. 2016. Microzooplankton community structure investigated with imaging flow cytometry and automated live-cell staining. Mar. Ecol. Prog. Ser. 550:65–81
    [Google Scholar]
  15. Buitenhuis ET, Vogt M, Moriarty R, Bednaršek N, Doney SC et al. 2013. MAREDAT: towards a world atlas of MARine Ecosystem DATa.. Earth Syst. Sci. Data 5:227–39
    [Google Scholar]
  16. Cael BB, Cavan EL, Britten GL. 2021. Reconciling the size-dependence of marine particle sinking speed. Geophys. Res. Lett. 48:e2020GL091771
    [Google Scholar]
  17. Campbell L, Henrichs DW, Olson RJ, Sosik HM. 2013. Continuous automated imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico. Environ. Sci. Pollut. Res. 20:6896–902
    [Google Scholar]
  18. Chase AP, Kramer SJ, Haëntjens N, Boss ES, Karp-Boss L et al. 2020. Evaluation of diagnostic pigments to estimate phytoplankton size classes. Limnol. Oceanogr. Methods 18:570–84
    [Google Scholar]
  19. Christiansen S, Hoving H-J, Schütte F, Hauss H, Karstensen J et al. 2018. Particulate matter flux interception in oceanic mesoscale eddies by the polychaete Poeobius sp. Limnol. Oceanogr. 63:2093–2109
    [Google Scholar]
  20. Cortes C, Vapnik V. 1995. Support vector machine. Mach. Learn. 20:273–97
    [Google Scholar]
  21. Costello MJ, Bouchet P, Boxshall G, Fauchald K, Gordon D et al. 2013. Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PLOS ONE 8:e51629
    [Google Scholar]
  22. Cowen RK, Guigand CM 2008. In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. Methods 6:126–32
    [Google Scholar]
  23. Cowen RK, Sponaugle S, Robinson KL, Luo JY 2015. PlanktonSet 1.0: plankton imagery data collected from F.G. Walton Smith in Straits of Florida from 2014-06-03 to 2014-06-06 and used in the 2015 National Data Science Bowl (NCEI Accession 0127422). National Centers for Environmental Information https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0127422
    [Google Scholar]
  24. Culverhouse PF, Simpson RG, Ellis R, Lindley JA, Williams R et al. 1996. Automatic classification of field-collected dinoflagellates by artificial neural network. Mar. Ecol. Prog. Ser. 139:281–87
    [Google Scholar]
  25. Culverhouse PF, Williams R, Benfield M, Flood PR, Sell AF et al. 2006. Automatic image analysis of plankton: future perspectives. Mar. Ecol. Prog. Ser. 312:297–309
    [Google Scholar]
  26. Davis CS, Gallager SM, Berman MS, Haury LR, Strickler JR. 1992a. The Video Plankton Recorder (VPR): design and initial results. Arch. Hydrobiol. Beih. 36:67–81
    [Google Scholar]
  27. Davis CS, Gallager SM, Solow AR. 1992b. Microaggregations of oceanic plankton observed by towed video microscopy. Science 257:230–32
    [Google Scholar]
  28. Davis CS, Hu Q, Gallager SM, Tang X, Ashjian CJ. 2004. Real-time observation of taxa-specific plankton distributions: an optical sampling method. Mar. Ecol. Prog. Ser. 284:77–96
    [Google Scholar]
  29. Davis CS, McGillicuddy DJ. 2006. Transatlantic abundance of the N2-fixing colonial cyanobacterium Trichodesmium. Science 312:1517–20
    [Google Scholar]
  30. de Vargas C, Audic S, Henry N, Decelle J, Mahé F et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605
    [Google Scholar]
  31. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L 2009. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition248–55 Piscataway, NJ: IEEE
  32. Dennett MR, Caron DA, Michaels AF, Gallager SM, Davis CS. 2002. Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific. J. Plankton Res. 24:797–805
    [Google Scholar]
  33. Dubelaar GB, Gerritzen PL, Beeker AE, Jonker RR, Tangen K. 1999. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 37:247–54
    [Google Scholar]
  34. Durden JM, Schoening T, Althaus F, Friedman A, Garcia R et al. 2016. Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding. Oceanogr. Mar. Biol. Annu. Rev. 54:1–72
    [Google Scholar]
  35. Elineau A, Desnos C, Jalabert L, Olivier M, Romagnan J-B et al. 2018. ZooScanNet: plankton images captured with the ZooScan. SEANOE. https://doi.org/10.17882/55741
    [Crossref] [Google Scholar]
  36. Ellen JS, Graff CA, Ohman MD. 2019. Improving plankton image classification using context metadata. Limnol. Oceanogr. Methods 17:439–61
    [Google Scholar]
  37. Fefilatyev S, Shreve M, Kramer K, Hall L, Goldgof D et al. 2012. Label-noise reduction with support vector machines. Proceedings of the 21st International Conference on Pattern Recognition3504–8 Piscataway, NJ: IEEE
  38. Feuilloley G, Fromentin J-M, Saraux C, Irisson J-O, Jalabert L, Stemmann L 2021. Temporal fluctuations in zooplankton size, abundance and taxonomic composition since 1995 in the North Western Mediterranean Sea. ICES J. Mar. Sci. In press
    [Google Scholar]
  39. Ford M, Bezio N, Collins A. 2020. Duobrachium sparksae (incertae sedis Ctenophora Tentaculata Cydippida): a new genus and species of benthopelagic ctenophore seen at 3,910 m depth off the coast of Puerto Rico. Plankton Benthos Res 15:296–305
    [Google Scholar]
  40. Forest A, Stemmann L, Picheral M, Burdorf L, Robert D et al. 2012. Size distribution of particles and zooplankton across the shelf-basin system in southeast Beaufort Sea: combined results from an Underwater Vision Profiler and vertical net tows. Biogeosciences 9:1301–20
    [Google Scholar]
  41. Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S. 2006. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75:1259–68
    [Google Scholar]
  42. Gaillard F, Autret E, Thierry V, Galaup P, Coatanoan C, Loubrieu T 2009. Quality control of large Argo datasets. J. Atmos. Ocean. Technol. 26:337–51
    [Google Scholar]
  43. Garcia-Comas C, Stemmann L, Ibanez F, Berline L, Mazzocchi MG et al. 2011. Zooplankton long-term changes in the NW Mediterranean Sea: decadal periodicity forced by winter hydrographic conditions related to large-scale atmospheric changes?. J. Mar. Syst. 87:216–26
    [Google Scholar]
  44. Giering SLC, Cavan EL, Basedow SL, Briggs N, Burd AB et al. 2020a. Sinking organic particles in the ocean—flux estimates from in situ optical devices. Front. Mar. Sci. 6:834
    [Google Scholar]
  45. Giering SLC, Hosking B, Briggs N, Iversen MH. 2020b. The interpretation of particle size, shape, and carbon flux of marine particle images is strongly affected by the choice of particle detection algorithm. Front. Mar. Sci. 7:564
    [Google Scholar]
  46. Gomes-Pereira JN, Auger V, Beisiegel K, Benjamin R, Bergmann M et al. 2016. Current and future trends in marine image annotation software. Prog. Oceanogr. 149:106–20
    [Google Scholar]
  47. González P, Castaño A, Peacock EE, Díez J, Del Coz JJ, Sosik HM. 2019. Automatic plankton quantification using deep features. J. Plankton Res. 41:449–63
    [Google Scholar]
  48. Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L et al. 2010. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32:285–303
    [Google Scholar]
  49. Greer AT, Cowen RK, Guigand CM, Hare JA. 2015. Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system. J. Mar. Syst. 142:111–25
    [Google Scholar]
  50. Greer AT, Cowen RK, Guigand CM, McManus MA, Sevadjian JC, Timmerman AHV. 2013. Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res. 35:939–56
    [Google Scholar]
  51. Grosjean P, Denis K, Wacquet G 2018. Zooimage: analysis of numerical plankton images. CRAN. https://CRAN.R-project.org/package=zooimage
    [Google Scholar]
  52. Grosjean P, Picheral M, Warembourg C, Gorsky G. 2004. Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J. Mar. Sci. J. Cons. 61:518–25
    [Google Scholar]
  53. Guidi L, Stemmann L, Jackson GA, Ibanez F, Claustre H et al. 2009. Effects of phytoplankton community on production, size, and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54:1951–63
    [Google Scholar]
  54. Guidi L, Stemmann L, Legendre L, Picheral M, Prieur L, Gorsky G 2007. Vertical distribution of aggregates (>110 μm) and mesoscale activity in the northeastern Atlantic: effects on the deep vertical export of surface carbon. Limnol. Oceanogr. 52:7–18
    [Google Scholar]
  55. Haddock SH. 2004. A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530:549–56
    [Google Scholar]
  56. Hays GC, Richardson AJ, Robinson C. 2005. Climate change and marine plankton. Trends Ecol. Evol. 20:337–44
    [Google Scholar]
  57. Henrichs DW, Anglès S, Gaonkar CC, Campbell L. 2021. Application of a convolutional neural network to improve automated early warning of harmful algal blooms. Environ. Sci. Pollut. Res. 28:28544–55
    [Google Scholar]
  58. Horton T, Marsh L, Bett BJ, Gates AR, Jones DOB et al. 2021. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8:620702
    [Google Scholar]
  59. Hu Q, Davis C. 2005. Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine. Mar. Ecol. Prog. Ser. 295:21–31
    [Google Scholar]
  60. Hu Q, Davis C. 2006. Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction. Mar. Ecol. Prog. Ser. 306:51–61
    [Google Scholar]
  61. ICZN (Int. Comm. Zool. Nomencl.) 2017. Declaration 45—addition of Recommendations to Article 73 and of the term “specimen, preserved” to the Glossary. Bull. Zool. Nomencl. 73:96–97
    [Google Scholar]
  62. IMEV (Inst. Mer Villefranche), LOV (Lab. Océanogr. Villefranche), Sorbonne Univ./CNRS 2020. Plankton community in Régent (680 μm) net, Point B, Villefranche-sur-Mer, France Data Set, Eur. Mar. Obs. Data Netw. (EMODnet), updated July 29. https://www.emodnet-biology.eu/data-catalog?module=dataset&dasid=6506
  63. Irigoien X, Fernandes JA, Grosjean P, Denis K, Albaina A, Santos M 2009. Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment. J. Plankton Res. 31:1–17
    [Google Scholar]
  64. Katija K, Troni G, Daniels J, Lance K, Sherlock RE et al. 2020. Revealing enigmatic mucus structures in the deep sea using DeepPIV. Nature 583:78–82
    [Google Scholar]
  65. Kaye J, Heeney C, Hawkins N, de Vries J, Boddington P. 2009. Data sharing in genomics—re-shaping scientific practice. Nat. Rev. Genet. 10:331–35
    [Google Scholar]
  66. Kenitz KM, Orenstein EC, Roberts PLD, Franks PJS, Jaffe JS et al. 2020. Environmental drivers of population variability in colony-forming marine diatoms. Limnol. Oceanogr. 65:2515–28
    [Google Scholar]
  67. Kiko R, Biastoch A, Brandt P, Cravatte S, Hauss H et al. 2017. Biological and physical influences on marine snowfall at the equator. Nat. Geosci. 10:852–58
    [Google Scholar]
  68. Kiko R, Christiansen S, Schröder S-M, Koch R, Stemmann L 2018. PlanktonID – combining deep learning, in situ imaging and citizen science to resolve the distribution of zooplankton in major upwelling regions. Proceedings of the 10th International Conference on Ecological Informatics: Translating Ecological Data into Knowledge and Decisions in a Rapidly Changing World J Gaikwad, B König-Ries, F Recknagel 174 Jena, Ger: Friedrich-Schiller-Univ. Jena (Abstr.)
  69. Krizhevsky A, Sutskever I, Hinton GE 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 F Pereira, CJC Burges, L Bottou, KQ Weinberger 1097–105 Red Hook, NY: Curran
    [Google Scholar]
  70. Lampitt RS, Hillier WR, Challenor PG. 1993. Seasonal and diel variation in the open ocean concentration of marine snow aggregates. Nature 362:737–39
    [Google Scholar]
  71. LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  72. Lindsay DJ. 2017. Pukia ohtsukai sp. nov., a new species of “cydippid” ctenophore from Japan. Plankton Benthos Res 12:61–65
    [Google Scholar]
  73. Lindsay DJ, Grossmann MM, Bentlage B, Collins AG, Minemizu R et al. 2017. The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae). Mar. Biol. Res. 13:494–512
    [Google Scholar]
  74. Lindsay DJ, Pagès F, Corbera J, Miyake H, Hunt JC et al. 2008. The anthomedusan fauna of the Japan Trench: preliminary results from in situ surveys with manned and unmanned vehicles. J. Mar. Biol. Assoc. UK 88:1519–39
    [Google Scholar]
  75. Lindsay DJ, Umetsu M, Grossmann M, Miyake H, Yamamoto H 2015. The gelatinous macroplankton community at the Hatoma Knoll hydrothermal vent. Subseafloor Biosphere Linked to Hydrothermal Systems J Ishibashi, K Okino, M Sunamura 639–66 Tokyo: Springer
    [Google Scholar]
  76. Lombard F, Boss E, Waite AM, Vogt M, Uitz J et al. 2019. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6:196
    [Google Scholar]
  77. Luo JY, Irisson J-O, Graham B, Guigand C, Sarafraz A et al. 2018. Automated plankton image analysis using convolutional neural networks. Limnol. Oceanogr. Methods. 16:814–27
    [Google Scholar]
  78. Luo T, Kramer K, Goldgof DB, Hall LO, Samson S et al. 2005. Active learning to recognize multiple types of plankton. J. Mach. Learn. Res. 6:589–613
    [Google Scholar]
  79. Mackas DL, Denman KL, Abbott MR. 1985. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci. 37:652–74
    [Google Scholar]
  80. Malkiel E, Alquaddoomi O, Katz J 1999. Measurements of plankton distribution in the ocean using submersible holography. Meas. Sci. Technol. 10:114252
    [Google Scholar]
  81. Martini S, Larras F, Boyé A, Faure E, Aberle N et al. 2020. Functional trait-based approaches as a common framework for aquatic ecologists. Limnol. Oceanogr. 66:965–94
    [Google Scholar]
  82. MBARI (Monterey Bay Aquar. Res. Inst.) 2019. Video Annotation and Reference System. Monterey Bay Aquarium Research Institute. https://www.mbari.org/products/research-software/video-annotation-and-reference-system-vars
    [Google Scholar]
  83. Miloslavich P, Bax NJ, Simmons SE, Klein E, Appeltans W et al. 2018. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24:2416–33
    [Google Scholar]
  84. Molinero JC, Ibanez F, Souissi S, Buecher E, Dallot S, Nival P 2008. Climate control on the long-term anomalous changes of zooplankton communities in the Northwestern Mediterranean. Glob. Change Biol. 14:11–26
    [Google Scholar]
  85. Muller-Karger FE, Miloslavich P, Bax NJ, Simmons S, Costello MJ et al. 2018. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5:211
    [Google Scholar]
  86. Nakamura Y, Somiya R, Suzuki N, Hidaka-Umetsu M, Yamaguchi A, Lindsay DJ 2017. Optics-based surveys of large unicellular zooplankton: a case study on radiolarians and phaeodarians. Plankton Benthos Res 12:95–103
    [Google Scholar]
  87. Northcutt CG, Athalye A, Mueller J 2021. Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv:2103.14749 [stat.ML]
  88. Ohman MD. 2019. A sea of tentacles: optically discernible traits resolved from planktonic organisms in situ. ICES J. Mar. Sci. 76:1959–72
    [Google Scholar]
  89. Ohman MD, Davis RE, Sherman JT, Grindley KR, Whitmore BM et al. 2019. Zooglider: an autonomous vehicle for optical and acoustic sensing of zooplankton. Limnol. Oceanogr. Methods 17:69–86
    [Google Scholar]
  90. Olson RJ, Sosik HM. 2007. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 5:195–203
    [Google Scholar]
  91. Orenstein EC, Beijbom O. 2017. Transfer learning and deep feature extraction for planktonic image data sets. 2017 IEEE Winter Conference on Applications of Computer Vision1082–88 Piscataway, NJ: IEEE
  92. Orenstein EC, Kenitz KM, Roberts PL, Franks PJ, Jaffe JS, Barton AD 2020a. Semi- and fully supervised quantification techniques to improve population estimates from machine classifiers. Limnol. Oceanogr. Methods 18:739–53
    [Google Scholar]
  93. Orenstein EC, Ratelle D, Briseno-Avena C, Carter ML, Franks PJS et al. 2020b. The Scripps Plankton Camera system: a framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18:681–95
    [Google Scholar]
  94. Pearson DL, Hamilton AL, Erwin TL 2011. Recovery plan for the endangered taxonomy profession. BioScience 61:58–63
    [Google Scholar]
  95. Picheral M, Colin S, Irisson J-O 2017. EcoTaxa, a tool for the taxonomic classification of images http://ecotaxa.obs-vlfr.fr
  96. Picheral M, Guidi L, Stemmann L, Karl DM, Iddaoud G, Gorsky G. 2010. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8:462–73
    [Google Scholar]
  97. Priyadarshi A, Smith SL, Mandal S, Tanaka M, Yamazaki H. 2019. Micro-scale patchiness enhances trophic transfer efficiency and potential plankton biodiversity. Sci. Rep. 9:17243
    [Google Scholar]
  98. Remsen A, Hopkins TL, Samson S. 2004. What you see is not what you catch: a comparison of concurrently collected net, Optical Plankton Counter, and Shadowed Image Particle Profiling Evaluation Recorder data from the northeast Gulf of Mexico. Deep-Sea Res. I 51:129–51
    [Google Scholar]
  99. Riedel A, Sagata K, Suhardjono YR, Tänzler R, Balke M. 2013. Integrative taxonomy on the fast track-towards more sustainability in biodiversity research. Front. Zool. 10:15
    [Google Scholar]
  100. Robinson KL, Luo JY, Sponaugle S, Guigand C, Cowen RK 2017. A tale of two crowds: public engagement in plankton classification. Front. Mar. Sci. 4:82
    [Google Scholar]
  101. Robison BH, Reisenbichler KR, Sherlock RE 2017. The coevolution of midwater research and ROV technology at MBARI. Oceanography 30:426–37
    [Google Scholar]
  102. Romagnan J-B, Aldamman L, Gasparini S, Nival P, Aubert A et al. 2016. High frequency mesozooplankton monitoring: Can imaging systems and automated sample analysis help us describe and interpret changes in zooplankton community composition and size structure—an example from a coastal site. J. Mar. Syst. 162:18–28
    [Google Scholar]
  103. Romagnan J-B, Legendre L, Guidi L, Jamet J-L, Jamet D et al. 2015. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLOS ONE 10:e0119219
    [Google Scholar]
  104. Russakovsky O, Deng J, Su H, Krause J, Satheesh S et al. 2015. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115:211–52
    [Google Scholar]
  105. Sandel V, Kiko R, Brandt P, Dengler M, Stemmann L et al. 2015. Nitrogen fuelling of the pelagic food web of the tropical Atlantic. PLOS ONE 10:e0131258
    [Google Scholar]
  106. Schlimpert O, Uhlmann D, Schuller M, Hohne E. 1980. Automated pattern-recognition of phytoplankton – procedure and results. Int. Rev. Gesamten Hydrobiol. Hydrogr. 65:427–37
    [Google Scholar]
  107. Schroeder S-M, Kiko R, Koch R 2020. MorphoCluster: efficient annotation of plankton images by clustering. Sensors 20:3060
    [Google Scholar]
  108. Schulz J, Barz K, Ayon P, Luedtke A, Zielinski O et al. 2010. Imaging of plankton specimens with the lightframe on-sight key species investigation (LOKI) system. J. Eur. Opt. Soc. Rapid Publ. 5:10017s
    [Google Scholar]
  109. Sieracki CK, Sieracki ME, Yentsch CS. 1998. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 168:285–96
    [Google Scholar]
  110. Sommer U. 2012. Plankton Ecology: Succession in Plankton Communities Berlin: Springer
  111. Sosik HM, Olson RJ. 2007. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 5:204–16
    [Google Scholar]
  112. Sosik HM, Peacock EE, Brownlee EF. 2021. WHOI-Plankton: annotated plankton images - data set for developing and evaluating classification methods. Woods Hole Open Access Server http://hdl.handle.net/1912/7341
    [Google Scholar]
  113. Stemmann L, Boss E. 2012. Plankton and particle size and packaging: from determining optical properties to driving the biological pump. Annu. Rev. Mar. Sci. 4:263–90
    [Google Scholar]
  114. Stemmann L, Claustre H, D'Ortenzio F 2012. Integrated observation system for pelagic ecosystems and biogeochemical cycles in the oceans. Sensors for Ecology: Towards Integrated Knowledge of Ecosystems J-F Le Galliard, J-M Guarini, F Gaill 261–78 Paris: CNRS
    [Google Scholar]
  115. Stemmann L, Gorsky G, Marty JC, Picheral M, Miquel JC 2002. Four-year study of large-particle vertical distribution (0–1000 m) in the NW Mediterranean in relation to hydrology, phytoplankton, and vertical flux. Deep-Sea Res. II 49:2143–62
    [Google Scholar]
  116. Stemmann L, Hosia A, Youngbluth MJ, Soiland H, Picheral M, Gorsky G 2008. Vertical distribution (0–1000 m) of macrozooplankton, estimated using the Underwater Video Profiler, in different hydrographic regimes along the northern portion of the Mid-Atlantic Ridge. Deep-Sea Res. II 55:94–105
    [Google Scholar]
  117. Sun H, Benzie PW, Burns N, Hendry DC, Player MA, Watson J. 2008. Underwater digital holography for studies of marine plankton. Philos. Trans. R. Soc. A 366:1789–806
    [Google Scholar]
  118. Takahashi K, Ichikawa T, Tadokoro K. 2015. Diel colour changes in male Sapphirina nigromaculata (Cyclopoida, Copepoda). J. Plankton Res. 37:1181–89
    [Google Scholar]
  119. Tang XO, Stewart WK, Vincent L, Huang H, Marra M et al. 1998. Automatic plankton image recognition. Artif. Intell. Rev. 12:177–99
    [Google Scholar]
  120. Trudnowska E, Lacour L, Ardyna M, Rogge A, Irisson J-O et al. 2021. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12:2816
    [Google Scholar]
  121. Van Horn G, Mac Aodha O, Song Y, Cui Y, Sun C et al. 2018. The iNaturalist species classification and detection dataset. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition8769–78 Piscataway, NJ: IEEE
  122. Vandromme P, Stemmann L, Berline L, Gasparini S, Mousseau L et al. 2011. Inter-annual fluctuations of zooplankton communities in the Bay of Villefranche-sur-mer from 1995 to 2005 (Northern Ligurian Sea, France). Biogeosciences 8:3143–58
    [Google Scholar]
  123. Vilgrain L, Maps F, Picheral M, Babin M, Aubry C et al. 2021. Trait-based approach using in situ copepod images reveals contrasting ecological patterns across an Arctic ice melt zone. Limnol. Oceanogr. 66:1155–67
    [Google Scholar]
  124. Wiebe PH, Benfield MC. 2003. From the Hensen net toward four-dimensional biological oceanography. Prog. Oceanogr. 56:7–136
    [Google Scholar]
  125. WMO (World Meteorol. Organ.), UNEP (UN Environ. Programme), ICSU (Int. Counc. Sci.), UNESCO (UN Educ. Sci. Cult. Organ.), UNFCCC (UN Framew. Conv. Clim. Change) 2003. The second report on the adequacy of the global observing systems for climate in support of the UNFCCC Rep. GCOS 82, WMO/TD 1143, WMO, Geneva
  126. Woodson CB, Litvin SY. 2015. Ocean fronts drive marine fishery production and biogeochemical cycling. PNAS 112:1710–15
    [Google Scholar]
/content/journals/10.1146/annurev-marine-041921-013023
Loading
/content/journals/10.1146/annurev-marine-041921-013023
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error