1932

Abstract

The seasonal sea ice zone encompasses the region between the winter maximum and summer minimum sea ice extent. In both the Arctic and Antarctic, the majority of the ice cover can now be classified as seasonal. Here, we review the sea ice physics that governs the evolution of seasonal sea ice in the Arctic and Antarctic, spanning sea ice growth, melt, and dynamics and including interactions with ocean surface waves as well as other coupled processes. The advent of coupled wave–ice modeling and discrete-element modeling, together with improved and expanded satellite observations and field campaigns, has yielded advances in process understanding. Many topics remain in need of further investigation, including rheologies appropriate for seasonal sea ice, wave-induced sea ice fracture, welding for sea ice freeze-up, and the distribution of snow on seasonal sea ice. Future research should aim to redress biases (such as disparities in focus between the Arctic and Antarctic and between summer and winter processes) and connect observations to modeling across spatial scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121422-015323
2025-01-16
2025-04-07
The full text of this item is not currently available.

Literature Cited

  1. Alberello A, Bennetts LG, Onorato M, Vichi M, MacHutchon K, et al. 2022.. Three-dimensional imaging of waves and floes in the marginal ice zone during a cyclone. . Nat. Commun. 13::4590
    [Crossref] [Google Scholar]
  2. Alberello A, Onorato M, Bennetts L, Vichi M, Eayrs C, et al. 2019.. Brief communication: pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone. . Cryosphere 13:(1):4148
    [Crossref] [Google Scholar]
  3. Andreas E, Horst T, Grachev A, Persson P, Fairall C, et al. 2010.. Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. . Q. J. R. Meteorol. Soc. 136::92743
    [Crossref] [Google Scholar]
  4. Ardhuin F, Otero M, Merrifield S, Grouazel A, Terrill E. 2020.. Ice breakup controls dissipation of wind waves across Southern Ocean sea ice. . Geophys. Res. Lett. 47:(13):e2020GL087699
    [Crossref] [Google Scholar]
  5. Asbjørnsen H, Årthun M, Skagseth Ø, Eldevik T. 2020.. Mechanisms underlying recent Arctic Atlantification. . Geophys. Res. Lett. 47:(15):e2020GL088036
    [Crossref] [Google Scholar]
  6. Asplin MG, Scharien R, Else B, Howell S, Barber DG, et al. 2014.. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes. . J. Geophys. Res. Oceans 119:(4):232743
    [Crossref] [Google Scholar]
  7. Åström J, Haapala J, Polojärvi A, Uiboupin R, Maljutenko I. 2024.. A large-scale high-resolution numerical model for sea-ice fragmentation dynamics. . Cryosphere 18::242942
    [Crossref] [Google Scholar]
  8. Bateson AW, Feltham DL, Schröder D, Hosekova L, Ridley JK, Aksenov Y. 2020.. Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice. . Cryosphere 14:(2):40328
    [Crossref] [Google Scholar]
  9. Bennetts LG, O'Farrell S, Uotila P. 2017.. Brief communication: impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model. . Cryosphere 11:(3):103540
    [Crossref] [Google Scholar]
  10. Bouchat A, Hutter N, Chanut J, Dupont F, Dukhovskoy D, et al. 2022.. Sea Ice Rheology Experiment (SIREx): 1. Scaling and statistical properties of sea-ice deformation fields. . J. Geophys. Res. Space Phys. 127:(4):e2021JC017667
    [Crossref] [Google Scholar]
  11. Boutin G, Lique C, Ardhuin F, Rousset C, Talandier C, et al. 2020.. Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone. . Cryosphere 14:(2):70935
    [Crossref] [Google Scholar]
  12. Brenner S, Horvat C, Hall P, Lo Piccolo A, Fox-Kemper B, et al. 2023.. Scale-dependent air–sea exchange in the polar oceans: floe–floe and floe–flow coupling in the generation of ice–ocean boundary layer turbulence. . Geophys. Res. Lett. 50::e2023GL105703
    [Crossref] [Google Scholar]
  13. Brenner S, Rainville L, Thomson J, Cole S, Lee C. 2021.. Comparing observations and parameterizations of ice-ocean drag through an annual cycle across the Beaufort Sea. . J. Geophys. Res. Oceans 126:(4):e2020JC016977
    [Crossref] [Google Scholar]
  14. Brunette C, Tremblay LB, Newton R. 2022.. A new state-dependent parameterization for the free drift of sea ice. . Cryosphere 16:(2):53357
    [Crossref] [Google Scholar]
  15. Buckley EM, Cañuelas L, Timmermans ML, Wilhelmus MM. 2024.. Seasonal evolution of the sea ice floe size distribution from two decades of MODIS data. . EGUsphere 2024-89. https://doi.org/10.5194/egusphere-2024-89
  16. Budyko MI. 1969.. The effect of solar radiation variations on the climate of the Earth. . Tellus 21:(5):61119
    [Crossref] [Google Scholar]
  17. Cheng L, von Schuckmann K, Abraham JP, Trenberth KE, Mann ME, et al. 2022.. Past and future ocean warming. . Nat. Rev. Earth Environ. 3:(11):77694
    [Crossref] [Google Scholar]
  18. Clark SP, Doering JC. 2009.. Frazil flocculation and secondary nucleation in a counter-rotating flume. . Cold Regions Sci. Technol. 55:(2):22129
    [Crossref] [Google Scholar]
  19. Clemens-Sewall D, Smith MM, Holland MM, Polashenski C, Perovich D. 2022.. Snow redistribution onto young sea ice: observations and implications for climate models. . Elem. Sci. Anthr. 10:(1):00115
    [Crossref] [Google Scholar]
  20. CMEMS (Copernicus Mar. Environ. Monit. Serv.). 2024.. Global ocean – high resolution SAR sea ice drift. . Copernicus Marine Environment Monitoring Service. https://doi.org/10.48670/moi-00135
    [Google Scholar]
  21. Cooper VT, Roach LA, Thomson J, Brenner SD, Smith MM, et al. 2022.. Wind waves in sea ice of the western Arctic and a global coupled wave-ice model. . Philos. Trans. R. Soc. A 380:(2235):20210258
    [Crossref] [Google Scholar]
  22. Cryosphere Innovation. 2024.. Round-the-clock through-ice observation. . Cryosphere Innovation. https://www.cryosphereinnovation.com/simb3
    [Google Scholar]
  23. Daly SF, ed. 1994.. International Association for Hydraulic Research Working Group on Thermal Regimes report on frazil ice. Spec. Rep. 94-23, Cold Reg. Res. Eng. Lab. , US Army Corps Eng., Hanover, NH:
    [Google Scholar]
  24. Dansereau V, Weiss J, Saramito P, Lattes P. 2016.. A Maxwell elasto-brittle rheology for sea ice modelling. . Cryosphere 10:(3):133959
    [Crossref] [Google Scholar]
  25. Doble MJ. 2009.. Simulating pancake and frazil ice growth in the Weddell Sea: a process model from freezing to consolidation. . J. Geophys. Res. 114:(C9):C09003
    [Google Scholar]
  26. Dolatshah A, Bennetts LG, Meylan MH, Monty JP, Toffoli A. 2019.. An experimental model of wind-induced rafting of pancake ice floating on waves. . In 34th International Workshop on Water Waves and Floating Bodies. N.p.:: Int. Worksh. Water Waves Float. Bodies. http://www.iwwwfb.org/Abstracts/iwwwfb34/iwwwfb34_11.pdf
    [Google Scholar]
  27. Drinkwater MR, Liu X. 2000.. Seasonal to interannual variability in Antarctic sea-ice surface melt. . IEEE Trans. Geosci. Remote Sens. 38:(4):182742
    [Crossref] [Google Scholar]
  28. Dumas-Lefebvre E, Dumont D. 2023.. Aerial observations of sea ice breakup by ship waves. . Cryosphere 17:(2):82742
    [Crossref] [Google Scholar]
  29. Dumont D. 2022.. Marginal ice zone dynamics: history, definitions and research perspectives. . Philos. Trans. R. Soc. A 380:(2235):20210253
    [Crossref] [Google Scholar]
  30. Dumont D, Kohout A, Bertino L. 2011.. A wave-based model for the marginal ice zone including a floe breaking parameterization. . J. Geophys. Res. Oceans 116:(C4):C04001
    [Crossref] [Google Scholar]
  31. Feltham DL. 2005.. Granular flow in the marginal ice zone. . Philos. Trans. R. Soc. A 363:(1832):1677700
    [Crossref] [Google Scholar]
  32. Feltham DL. 2008.. Sea ice rheology. . Annu. Rev. Fluid Mech. 40::91112
    [Crossref] [Google Scholar]
  33. Finn T, Durand C, Farchi A, Bocquet M, Chen Y, et al. 2023.. Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology. . Cryosphere 17:(7):296591
    [Crossref] [Google Scholar]
  34. Gough AJ, Mahoney AR, Langhorne PJ, Williams MJM, Robinson NJ, Haskell TG. 2012.. Signatures of supercooling: McMurdo Sound platelet ice. . J. Glaciol. 58:(207):3850
    [Crossref] [Google Scholar]
  35. Gupta M, Gürcan E, Thompson A. 2024.. Eddy-induced dispersion of sea ice floes at the marginal ice zone. . Geophys. Res. Lett. 51::e2023GL105656
    [Crossref] [Google Scholar]
  36. Gupta M, Marshall J, Song H, Campin JM, Meneghello G. 2020.. Sea-ice melt driven by ice-ocean stresses on the mesoscale. . J. Geophys. Res. Oceans 125:(11):e2020JC016404
    [Crossref] [Google Scholar]
  37. Gupta M, Thompson AF. 2022.. Regimes of sea-ice floe melt: ice-ocean coupling at the submesoscales. . J. Geophys. Res. Oceans 127:(9):e2022JC018894
    [Crossref] [Google Scholar]
  38. Heorton HDBS, Radia N, Feltham DL. 2017.. A model of sea ice formation in leads and polynyas. . J. Phys. Oceanogr. 47:(7):170118
    [Crossref] [Google Scholar]
  39. Herman A. 2011.. Molecular-dynamics simulation of clustering processes in sea-ice floes. . Phys. Rev. E 84:(5):056104
    [Crossref] [Google Scholar]
  40. Herman A. 2012.. Influence of ice concentration and floe-size distribution on cluster formation in sea-ice floes. . Open Phys. 10:(3):71522
    [Crossref] [Google Scholar]
  41. Herman A. 2022.. Granular effects in sea ice rheology in the marginal ice zone. . Philos. Trans. R. Soc. A 380::20210260
    [Crossref] [Google Scholar]
  42. Herman A, Dojczman M, Świszcz K. 2020.. High-resolution simulations of interactions between surface ocean dynamics and frazil ice. . Cryosphere 14:(11):370729
    [Crossref] [Google Scholar]
  43. Herman A, Wenta M, Cheng S. 2021.. Sizes and shapes of sea ice floes broken by waves—a case study from the east Antarctic coast. . Front. Earth Sci. 9::655977
    [Crossref] [Google Scholar]
  44. Hibler WD. 1979.. A dynamic thermodynamic sea ice model. . J. Phys. Oceanogr. 9:(4):81546
    [Crossref] [Google Scholar]
  45. Holland DM, Jenkins A. 1999.. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. . J. Phys. Oceanogr. 29:(8):1787800
    [Crossref] [Google Scholar]
  46. Holland PR, Feltham DL. 2005.. Frazil dynamics and precipitation in a water column with depth-dependent supercooling. . J. Fluid Mech. 530::10124
    [Crossref] [Google Scholar]
  47. Holland PR, Kimura N. 2016.. Observed concentration budgets of Arctic and Antarctic Sea Ice. . J. Clim. 29:(14):524149
    [Crossref] [Google Scholar]
  48. Horvat C. 2022.. Floes, the marginal ice zone and coupled wave-sea-ice feedbacks. . Philos. Trans. R. Soc. A 380:(2235):20210252
    [Crossref] [Google Scholar]
  49. Horvat C, Roach LA. 2022.. WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture. . Geosci. Model Dev. 15:(2):80314
    [Crossref] [Google Scholar]
  50. Horvat C, Roach LA, Tilling R, Bitz CM, Fox-Kemper B, et al. 2019.. Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison. . Cryosphere 13:(11):286985
    [Crossref] [Google Scholar]
  51. Horvat C, Tziperman E. 2015.. A prognostic model of the sea-ice floe size and thickness distribution. . Cryosphere 9:(6):211934
    [Crossref] [Google Scholar]
  52. Irgens F. 2014.. Rheology and Non-Newtonian Fluids. Cham, Switz:.: Springer
    [Google Scholar]
  53. Jeffries MO, Krouse HR, Hurst-Cushing B, Maksym T. 2001.. Snow-ice accretion and snow-cover depletion on Antarctic first-year sea-ice floes. . Ann. Glaciol. 33::5160
    [Crossref] [Google Scholar]
  54. Jop P. 2015.. Rheological properties of dense granular flows. . C. R. Phys. 16::6272
    [Crossref] [Google Scholar]
  55. Jop P, Forterre Y, Pouliquen O. 2006.. A constitutive law for dense granular flows. . Nature 441::72730
    [Crossref] [Google Scholar]
  56. Kacimi S, Kwok R. 2022.. Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–2021. . Geophys. Res. Lett. 49:(5):e2021GL097448
    [Crossref] [Google Scholar]
  57. Kamrin K, Hill K, Goldman D, Andrade J. 2024.. Advances in modeling dense granular media. . Annu. Rev. Fluid Mech. 56::21540
    [Crossref] [Google Scholar]
  58. Kay JE, DeRepentigny P, Holland M, Bailey D, DuVivier A, et al. 2022.. Less surface sea ice melt in the CESM2 improves Arctic sea ice simulation with minimal non-polar climate impacts. . J. Adv. Model. Earth Syst. 14:(4):e2021MS002679
    [Crossref] [Google Scholar]
  59. Keen A, Blockley E, Bailey DA, Debernard JB, Bushak M, et al. 2021.. An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models. . Cryosphere 15:(2):95182
    [Crossref] [Google Scholar]
  60. Kohout AL, Smith M, Roach LA, Williams G, Montiel F, Williams MJ. 2020.. Observations of exponential wave attenuation in Antarctic sea ice during the PIPERS campaign. . Ann. Glaciol. 61:(82):196209
    [Crossref] [Google Scholar]
  61. Kohout AL, Williams MJM, Dean SM, Meylan MH. 2014.. Storm-induced sea-ice breakup and the implications for ice extent. . Nature 509:(7502):6047
    [Crossref] [Google Scholar]
  62. Leonard KC, Maksym T. 2011.. The importance of wind-blown snow redistribution to snow accumulation on Bellingshausen Sea ice. . Ann. Glaciol. 52:(57):27178
    [Crossref] [Google Scholar]
  63. Li H, Lubbad R. 2018.. Laboratory study of ice floes collisions under wave action. . In Proceedings of the Twenty-Eighth (2018) International Ocean and Polar Engineering Conference, pp. 151624. Cupertino, CA:: Int. Soc. Offshore Polar Eng.
    [Google Scholar]
  64. Light B, Smith M, Perovich D, Webster M, Holland M, et al. 2022.. Arctic sea ice albedo: apectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift. . Elem. Sci. Anthr. 10:(1):103
    [Crossref] [Google Scholar]
  65. Liu J, Li R, Li S, Meucci A, Young IR. 2024.. Increasing wave power due to global climate change and intensification of Antarctic Oscillation. . Appl. Energy 358::122572
    [Crossref] [Google Scholar]
  66. Longuet-Higgins MS, Stewart RW. 1964.. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. . Oceanogr. Abstr. 11:(4):52962
    [Google Scholar]
  67. Lu P, Li Z, Cheng B, Leppäranta M. 2011.. A parameterization of the ice-ocean drag coefficient. . J. Geophys. Res. 116:(C7):C07019
    [Google Scholar]
  68. Maksym T. 2019.. Arctic and Antarctic sea ice change: contrasts, commonalities, and causes. . Annu. Rev. Mar. Sci. 11::187213
    [Crossref] [Google Scholar]
  69. Malyarenko A, Wells AJ, Langhorne PJ, Robinson NJ, Williams MJ, Nicholls KW. 2020.. A synthesis of thermodynamic ablation at ice-ocean interfaces from theory, observations and models. . Ocean Model. 154::101692
    [Crossref] [Google Scholar]
  70. Manucharyan GE, Montemuro BP. 2022.. SubZero: a sea ice model with an explicit representation of the floe life cycle. . J. Adv. Model. Earth Syst. 14:(12):e2022MS003247
    [Crossref] [Google Scholar]
  71. Manucharyan GE, Thompson AF. 2017.. Submesoscale sea ice-ocean interactions in marginal ice zones. . J. Geophys. Res. Oceans 122:(12):945575
    [Crossref] [Google Scholar]
  72. Marquart R, Bogaers A, Skatulla S, Alberello A, Toffoli A, Schwarz C. 2023.. Small-scale computational fluid dynamics modelling of the wave induced ice floe-grease ice interaction in the Antarctic marginal ice zone. . Cold Regions Sci. Technol. 219::104108
    [Crossref] [Google Scholar]
  73. Martinson DG. 1990.. Evolution of the southern ocean winter mixed layer and sea ice: open ocean deepwater formation and ventilation. . J. Geophys. Res. 95:(C7):11641
    [Crossref] [Google Scholar]
  74. McFarlane V, Loewen M, Hicks F. 2014.. Laboratory measurements of the rise velocity of frazil ice particles. . Cold Regions Sci. Technol. 106–7::12030
    [Crossref] [Google Scholar]
  75. Mchedlishvili A, Lüpkes C, Petty A, Tsamados M, Spreen G. 2023.. New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data. . Cryosphere 17::410331
    [Crossref] [Google Scholar]
  76. Meier W, Fetterer F, Windnagel A, Stewart S. 2021.. NOAA/NSIDC Climate Data Record of passive microwave sea ice concentration, version 4. Dataset G02202 , Natl. Snow Ice Data Cent., Boulder, CO:. https://doi.org/10.7265/efmz-2t65
    [Google Scholar]
  77. Meyer A, Fer I, Sundfjord A, Peterson AK. 2017.. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring. . J. Geophys. Res. Oceans 122:(6):456986
    [Crossref] [Google Scholar]
  78. Mokus NGA, Montiel F. 2022.. Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study. . Cryosphere 16:(10):444772
    [Crossref] [Google Scholar]
  79. Morse B, Richard M. 2009.. A field study of suspended frazil ice particles. . Cold Regions Sci. Technol. 55:(1):86102
    [Crossref] [Google Scholar]
  80. Nakata K, Ohshima K, Nihashi S. 2021.. Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice production. . Geophys. Res. Lett. 48::e2020GL091353
    [Crossref] [Google Scholar]
  81. Naumann AK, Notz D, Håvik L, Sirevaag A. 2012.. Laboratory study of initial sea-ice growth: properties of grease ice and nilas. . Cryosphere 6:(4):72941
    [Crossref] [Google Scholar]
  82. NASA (Natl. Aeronaut. Space Adm.). 2024.. ICESat-2 the app. . NASA. https://icesat-2.gsfc.nasa.gov/MobileApps
    [Google Scholar]
  83. Nose T, Waseda T, Kodaira T, Inoue J. 2020.. On the coagulated pancake ice formation: observation in the refreezing Chukchi Sea and comparison to the Antarctic consolidated pancake ice. . Polar Sci. 27::100622
    [Crossref] [Google Scholar]
  84. NSIDC (Natl. Snow Ice Data Cent.). 2024.. Sea ice index daily and monthly image. . NSIDC. https://nsidc.org/data/seaice_index
    [Google Scholar]
  85. Ólason E, Boutin G, Korosov A, Rampal P, Williams T, et al. 2022.. A new brittle rheology and numerical framework for large-scale sea-ice models. . J. Adv. Model. Earth Syst. 14:(8):e2021MS002685
    [Crossref] [Google Scholar]
  86. Perovich DK, Polashenski C. 2012.. Albedo evolution of seasonal Arctic sea ice. . Geophys. Res. Lett. 39:(8):L08501
    [Crossref] [Google Scholar]
  87. Perovich DK, Richter-Menge JA. 2015.. Regional variability in sea ice melt in a changing Arctic. . Philos. Trans. R. Soc. A 373:(2045):20140165
    [Crossref] [Google Scholar]
  88. Pithan F, Athanase M, Dahlke S, Sánchez-Benítez A, Shupe MD, et al. 2023.. Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition. . Geosci. Model Dev. 16:(7):185773
    [Crossref] [Google Scholar]
  89. Polashenski C, Perovich D, Courville Z. 2012.. The mechanisms of sea ice melt pond formation and evolution. . J. Geophys. Res. Oceans 117:(C1):C01001
    [Crossref] [Google Scholar]
  90. Prinsenberg SJ, Peterson IK. 2011.. Observing regional-scale pack-ice decay processes with helicopter-borne sensors and moored upward-looking sonars. . Ann. Glaciol. 52:(57):3542
    [Crossref] [Google Scholar]
  91. Rees Jones DW, Wells AJ. 2015.. Solidification of a disk-shaped crystal from a weakly supercooled binary melt. . Phys. Rev. E 92:(2):022406
    [Crossref] [Google Scholar]
  92. Rees Jones DW, Wells AJ. 2018.. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes. . Cryosphere 12:(1):2538
    [Crossref] [Google Scholar]
  93. Richter-Menge JA, Perovich DK, Pegau WS. 2001.. Summer ice dynamics during SHEBA and its effect on the ocean heat content. . Ann. Glaciol. 33::2016
    [Crossref] [Google Scholar]
  94. Roach LA, Dörr J, Holmes CR, Massonnet F, Blockley EW, et al. 2020.. Antarctic sea ice area in CMIP6. . Geophys. Res. Lett. 47:(9):e2019GL086729
    [Crossref] [Google Scholar]
  95. Roach LA, Eisenman I, Wagner TJW, Blanchard-Wrigglesworth E, Bitz CM. 2022.. Asymmetry in the seasonal cycle of Antarctic sea ice driven by insolation. . Nat. Geosci. 15:(4):27781
    [Crossref] [Google Scholar]
  96. Roach LA, Horvat C, Dean SM, Bitz CM. 2018a.. An emergent sea ice floe size distribution in a global coupled ocean–sea ice model. . J. Geophys. Res. Oceans 123:(6):432237
    [Crossref] [Google Scholar]
  97. Roach LA, Smith MM, Dean SM. 2018b.. Quantifying growth of pancake sea ice floes using images from drifting buoys. . J. Geophys. Res. Oceans 123:(4):285166
    [Crossref] [Google Scholar]
  98. Rogers WE, Thomson J, Shen HH, Doble MJ, Wadhams P, Cheng S. 2016.. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea. . J. Geophys. Res. Oceans 121:(11):79918007
    [Crossref] [Google Scholar]
  99. Roquet F, Ferreira D, Caneill R, Schlesinger D, Madec G. 2022.. Unique thermal expansion properties of water key to the formation of sea ice on Earth. . Sci. Adv. 8:(46):eabq0793
    [Crossref] [Google Scholar]
  100. Rothrock DA, Thorndike AS. 1984.. Measuring the sea ice floe size distribution. . J. Geophys. Res. 89:(C4):6477
    [Crossref] [Google Scholar]
  101. Rynders S, Aksenov Y, Feltham D, Nurser A, Madec G. 2022.. Impact of granular behaviour of fragmented sea ice on marginal ice zone dynamics. . In IUTAM Symposium on Physics and Mechanics of Sea Ice, ed. J Tuhkuri, A Polojärvi , pp. 26174. Cham, Switz:.: Springer
    [Google Scholar]
  102. Schneck CC, Ghobrial TR, Loewen MR. 2019.. Laboratory study of the properties of frazil ice particles and flocs in water of different salinities. . Cryosphere 13:(10):275169
    [Crossref] [Google Scholar]
  103. Shen HH. 2022.. Wave-in-ice: theoretical bases and field observations. . Philos. Trans. R. Soc. A 380:(2235):20210254
    [Crossref] [Google Scholar]
  104. Shen HH, Ackley SF, Hopkins MA. 2001.. A conceptual model for pancake-ice formation in a wave field. . Ann. Glaciol. 33:(2):36167
    [Crossref] [Google Scholar]
  105. Shen HH, Hibler WD, Leppäranta M. 1984.. On the rheology of a broken ice field due to floe collision. . MIZEX Bull. 3::2934
    [Google Scholar]
  106. Shen HH, Hibler WD, Leppäranta M. 1986.. On applying granular flow theory to a deforming broken ice field. . Acta Mech. 63:(1–4):14360
    [Crossref] [Google Scholar]
  107. Shen HH, Hibler WD, Leppäranta M. 1987.. The role of floe collisions in sea ice rheology. . J. Geophys. Res. 92:(C7):7085
    [Crossref] [Google Scholar]
  108. Shen HH, Sankaran B. 2004.. Internal length and time scales in a simple shear granular flow. . Phys. Rev. E 70:(5):051308
    [Crossref] [Google Scholar]
  109. Smedsrud LH. 2011.. Grease-ice thickness parameterization. . Ann. Glaciol. 52:(57):7782
    [Crossref] [Google Scholar]
  110. Smedsrud LH, Martin T. 2015.. Grease ice in basin-scale sea-ice ocean models. . Ann. Glaciol. 56:(69):295306
    [Crossref] [Google Scholar]
  111. Smith MM, Holland M, Light B. 2022.. Arctic sea ice sensitivity to lateral melting representation in a coupled climate model. . Cryosphere 16:(2):41934
    [Crossref] [Google Scholar]
  112. Smith MM, Stammerjohn S, Persson O, Rainville L, Liu G, et al. 2018.. Episodic reversal of autumn ice advance caused by release of ocean heat in the Beaufort Sea. . J. Geophys. Res. Oceans 123:(5):316485
    [Crossref] [Google Scholar]
  113. Smith MM, Thomson J. 2020.. Pancake sea ice kinematics and dynamics using shipboard stereo video. . Ann. Glaciol. 61:(82):111
    [Crossref] [Google Scholar]
  114. Squire VA. 2018.. A fresh look at how ocean waves and sea ice interact. . Philos. Trans. R. Soc. A 376:(2129):20170342
    [Crossref] [Google Scholar]
  115. Stern HL, Schweiger AJ, Stark M, Zhang J, Steele M, Hwang B. 2018.. Seasonal evolution of the sea-ice floe size distribution in the Beaufort and Chukchi seas. . Elem. Sci. Anthr. 6:(1):48
    [Crossref] [Google Scholar]
  116. Stopa JE, Sutherland P, Ardhuin F. 2018.. Strong and highly variable push of ocean waves on Southern Ocean sea ice. . PNAS 115:(23):586165
    [Crossref] [Google Scholar]
  117. Stroeve JC, Jenouvrier S, Campbell GG, Barbraud C, Delord K. 2016.. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels. . Cryosphere 10:(4):182343
    [Crossref] [Google Scholar]
  118. Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A. 2014.. Changes in Arctic melt season and implications for sea ice loss. . Geophys. Res. Lett. 41:(4):121625
    [Crossref] [Google Scholar]
  119. Strong C, Rigor IG. 2013.. Arctic marginal ice zone trending wider in summer and narrower in winter. . Geophys. Res. Lett. 40:(18):486468
    [Crossref] [Google Scholar]
  120. Sumata H, de Steur L, Divine DV, Granskog MA, Gerland S. 2023.. Regime shift in Arctic Ocean sea ice thickness. . Nature 615:(7952):44349
    [Crossref] [Google Scholar]
  121. Supply A, Boutin J, Kolodziejczyk N, Reverdin G, Lique C, et al. 2022.. Meltwater lenses over the Chukchi and the Beaufort seas during summer 2019: from in situ to synoptic view. . J. Geophys. Res. Oceans 127:(12):e2021JC018388
    [Crossref] [Google Scholar]
  122. Sutherland P, Dumont D. 2018.. Marginal ice zone thickness and extent due to wave radiation stress. . J. Phys. Oceanogr. 48:(8):1885901
    [Crossref] [Google Scholar]
  123. Thomson J. 2022.. Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system. . Philos. Trans. R. Soc. A 380:(2235):20210251
    [Crossref] [Google Scholar]
  124. Thorndike AS, Rothrock DA, Maykut GA, Colony R. 1975.. The thickness distribution of sea ice. . J. Geophys. Res. 80:(33):450113
    [Crossref] [Google Scholar]
  125. Tian TR, Fraser AD, Kimura N, Zhao C, Heil P. 2022.. Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product. . Cryosphere 16:(4):1299314
    [Crossref] [Google Scholar]
  126. Timmermann R. 2004.. Utilizing the ASPeCt sea ice thickness data set to evaluate a global coupled sea ice–ocean model. . J. Geophys. Res. 109:(C7):C07017
    [Google Scholar]
  127. Toyota T, Haas C, Tamura T. 2011.. Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter. . Deep-Sea Res. II 58:(9–10):118293
    [Google Scholar]
  128. Tsamados M, Feltham DL, Petty A, Schroeder D, Flocco D. 2015.. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model. . Philos. Trans. R. Soc. A 373:(2052):20140167
    [Crossref] [Google Scholar]
  129. Tsamados M, Feltham DL, Schroeder D, Flocco D, Farrell SL, et al. 2014.. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. . J. Phys. Oceanogr. 44:(5):132953
    [Crossref] [Google Scholar]
  130. Vichi M. 2022.. An indicator of sea ice variability for the Antarctic marginal ice zone. . Cryosphere 16:(10):4087106
    [Crossref] [Google Scholar]
  131. Voermans JJ, Babanin AV, Thomson J, Smith MM, Shen HH. 2019.. Wave attenuation by sea ice turbulence. . Geophys. Res. Lett. 46:(12):6796803
    [Crossref] [Google Scholar]
  132. Voermans JJ, Rabault J, Filchuk K, Ryzhov I, Heil P, et al. 2020.. Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up. . Cryosphere 14:(11):426578
    [Crossref] [Google Scholar]
  133. Wagner TJW, Eisenman I. 2015.. How climate model complexity influences sea ice stability. . J. Clim. 28:(10):39984014
    [Crossref] [Google Scholar]
  134. Wagner TJW, Eisenman I, Ceroli AM, Constantinou NC. 2022.. How winds and ocean currents influence the drift of floating objects. . J. Phys. Oceanogr. 52:(5):90716
    [Crossref] [Google Scholar]
  135. Wahlgren S, Thomson J, Biddle LC, Swart S. 2023.. Direct observations of wave-sea ice interactions in the Antarctic marginal ice zone. . J. Geophys. Res. Oceans 128:(10):e2023JC019948
    [Crossref] [Google Scholar]
  136. Wakatsuchi M, Ono N. 1983.. Measurements of salinity and volume of brine excluded from growing sea ice. . J. Geophys. Res. Oceans 88:(C5):294351
    [Crossref] [Google Scholar]
  137. Ward JL, Tandon NF. 2024.. Why is summertime Arctic sea ice drift speed projected to decrease?. Cryosphere 18:(3):9951012
    [Crossref] [Google Scholar]
  138. Webster MA, Holland M, Wright NC, Hendricks S, Hutter N, et al. 2022.. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results. . Elem Sci. Anthr. 10:(1):000072
    [Crossref] [Google Scholar]
  139. Wells AJ, Hitchen JR, Parkinson JRG. 2019.. Mushy-layer growth and convection, with application to sea ice. . Philos. Trans. R. Soc. A 377:(2146):20180165
    [Crossref] [Google Scholar]
  140. Wilson EA, Riser SC, Campbell EC, Wong APS. 2019.. Winter upper-ocean stability and ice–ocean feedbacks in the sea ice–covered Southern Ocean. . J. Phys. Oceanogr. 49:(4):1099117
    [Crossref] [Google Scholar]
  141. Womack A, Alberello A, de Vos M, Toffoli A, Verrinder R, Vichi M. 2024.. A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone. . Cryosphere 18::20529
    [Crossref] [Google Scholar]
  142. Womack A, Vichi M, Alberello A, Toffoli A. 2022.. Atmospheric drivers of a winter-to-spring Lagrangian sea-ice drift in the Eastern Antarctic marginal ice zone. . J. Glaciol. 68::9991013
    [Google Scholar]
  143. Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL. 2008.. Thickness distribution of Antarctic sea ice. . J. Geophys. Res. 113:(C5):C05S92
    [Google Scholar]
  144. World Meteorol. Organ. 2014.. Sea ice nomenclature. Rep. 259 , World Meteorol. Organ., Geneva:. https://library.wmo.int/records/item/41953-wmo-sea-ice-nomenclature
    [Google Scholar]
  145. Yulmetov R, Lubbad R, Løset S. 2016.. Planar multi-body model of iceberg free drift and towing in broken ice. . Cold Reg. Sci. Technol. 121::15466
    [Crossref] [Google Scholar]
  146. Zhaka V, Bridges R, Riska K, Hagermann A, Cwirzen A. 2023.. Initial snow-ice formation on a laboratory scale. . Ann. Glaciol. 64:(91):7794
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-121422-015323
Loading
/content/journals/10.1146/annurev-marine-121422-015323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error