1932

Abstract

Antisense oligonucleotides represent a novel therapeutic platform for the discovery of medicines that have the potential to treat most neurodegenerative diseases. Antisense drugs are currently in development for the treatment of amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease, and multiple research programs are underway for additional neurodegenerative diseases. One antisense drug, nusinersen, has been approved for the treatment of spinal muscular atrophy. Importantly, nusinersen improves disease symptoms when administered to symptomatic patients rather than just slowing the progression of the disease. In addition to the benefit to spinal muscular atrophy patients, there are discoveries from nusinersen that can be applied to other neurological diseases, including method of delivery, doses, tolerability of intrathecally delivered antisense drugs, and the biodistribution of intrathecal dosed antisense drugs. Based in part on the early success of nusinersen, antisense drugs hold great promise as a therapeutic platform for the treatment of neurological diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050501
2019-07-08
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050501.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050501&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen PM, Al-Chalabi A 2011. Clinical genetics of amyotrophic lateral sclerosis: What do we really know?. Nat. Rev. Neurol. 7:603–15
    [Google Scholar]
  2. Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin WL et al. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–46
    [Google Scholar]
  3. Balendra R, Isaacs AM 2018. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14:544–58
    [Google Scholar]
  4. Banks WA, Farr SA, Butt W, Kumar VB, Franko MW, Morley JE 2001. Delivery across the blood-brain barrier of antisense directed against amyloid β: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J. Pharmacol. Exp. Ther. 297:1113–21
    [Google Scholar]
  5. Becker LA, Huang B, Bieri G, Ma R, Knowles DA et al. 2017. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544:367–71
    [Google Scholar]
  6. Bennett CF, Baker BF, Pham N, Swayze EE, Geary RS 2017. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57:81–105
    [Google Scholar]
  7. Bennett CF, Swayze EE 2010. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50:259–93
    [Google Scholar]
  8. Bevan AK, Hutchinson KR, Foust KD, Braun L, McGovern VL et al. 2010. Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet. 19:3895–905
    [Google Scholar]
  9. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA 2006. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:57781389–92
    [Google Scholar]
  10. Boudreau RL, McBride JL, Martins I, Shen S, Xing Y et al. 2009. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol. Ther. 17:1053–63
    [Google Scholar]
  11. Bruijn LI, Cleveland DW 1996. Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease. Neuropathol. Appl. Neurobiol. 22:373–87
    [Google Scholar]
  12. Bruijn LI, Miller TM, Cleveland DW 2004. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27:723–49
    [Google Scholar]
  13. Butler M, Hayes CS, Chappell A, Murray SF, Yaksh TL, Hua XY 2005. Spinal distribution and metabolism of 2′-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats. Neuroscience 131:705–15
    [Google Scholar]
  14. Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S et al. 2011. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol. Ther. 19:2178–85
    [Google Scholar]
  15. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR 2006. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am. J. Hum. Genet. 78:63–77
    [Google Scholar]
  16. Cartegni L, Krainer AR 2002. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30:377–84
    [Google Scholar]
  17. Cartegni L, Krainer AR 2003. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Structural Biol. 10:120–25
    [Google Scholar]
  18. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J et al. 2016. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86:890–97
    [Google Scholar]
  19. Cleveland DW, Hwo SY, Kirschner MW 1977. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 116:2207–25
    [Google Scholar]
  20. Cobben JM, Lemmink HH, Snoeck I, Barth PA, van der Lee JH, de Visser M 2008. Survival in SMA type I: a prospective analysis of 34 consecutive cases. Neuromuscul. Disord. 18:541–44
    [Google Scholar]
  21. Cooper TA, Wan L, Dreyfuss G 2009. RNA and disease. Cell 136:777–93
    [Google Scholar]
  22. Crooke ST 2017. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 27:70–77
    [Google Scholar]
  23. Crooke ST, Witztum JL, Bennett CF, Baker BF 2018. RNA-targeted therapeutics. Cell Metab 27:714–39
    [Google Scholar]
  24. Darras BT, Chiriboga CA, Iannaccone ST, Swoboda KJ, Montes J et al. 2019. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology In press
    [Google Scholar]
  25. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH et al. 2012. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73:685–97
    [Google Scholar]
  26. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56
    [Google Scholar]
  27. DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K et al. 2013. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33:12887–97
    [Google Scholar]
  28. DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS et al. 2017. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9:eaag0481
    [Google Scholar]
  29. Dietrich P, Johnson IM, Alli S, Dragatsis I 2017. Elimination of huntingtin in the adult mouse leads to progressive behavioral deficits, bilateral thalamic calcification, and altered brain iron homeostasis. PLOS Genet. 13:e1006846
    [Google Scholar]
  30. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E et al. 2007. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. PNAS 104:17204–9
    [Google Scholar]
  31. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA et al. 2013. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–28
    [Google Scholar]
  32. Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT et al. 1995. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269:407–10
    [Google Scholar]
  33. Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL et al. 2015. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14:759–80
    [Google Scholar]
  34. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS et al. 2010. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–75
    [Google Scholar]
  35. Esau C, Davis S, Murray SF, Yu XX, Pandey SK et al. 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3:87–98
    [Google Scholar]
  36. Estrada-Sanchez AM, Burroughs CL, Cavaliere S, Barton SJ, Chen S et al. 2015. Cortical efferents lacking mutant huntingtin improve striatal neuronal activity and behavior in a conditional mouse model of Huntington's disease. J. Neurosci. 35:4440–51
    [Google Scholar]
  37. Evers MM, Miniarikova J, Juhas S, Valles A, Bohuslavova B et al. 2018. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington's disease minipig model. Mol. Ther. 26:2163–77
    [Google Scholar]
  38. Evers MM, Pepers BA, van Deutekom JC, Mulders SA, den Dunnen JT et al. 2011. Targeting several CAG expansion diseases by a single antisense oligonucleotide. PLOS ONE 6:e24308
    [Google Scholar]
  39. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RAK et al. 2017. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 26:4093–94
    [Google Scholar]
  40. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J et al. 2016. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–26
    [Google Scholar]
  41. Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK et al. 2014a. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83:810–17
    [Google Scholar]
  42. Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK et al. 2014b. Observational study of spinal muscular atrophy type 1 and implications for clinical trials. Neurology 83:974–80
    [Google Scholar]
  43. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL et al. 2017. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377:1723–32
    [Google Scholar]
  44. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gutierrez Gomez M et al. 2015. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurol 72:316–24
    [Google Scholar]
  45. Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D et al. 2013. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol. Ther. 21:2148–59
    [Google Scholar]
  46. Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P et al. 2010. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 49:10166–78
    [Google Scholar]
  47. Geary RS, Norris D, Yu R, Bennett CF 2015. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87:46–51
    [Google Scholar]
  48. Geary RS, Watanabe TA, Truong L, Freier S, Lesnik EA et al. 2001. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther. 296:890–97
    [Google Scholar]
  49. Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PE et al. 2013. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–44
    [Google Scholar]
  50. Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ et al. 2017. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 9:eaai7866
    [Google Scholar]
  51. Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I et al. 2012. The modulation of amyotrophic lateral sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol. Dis. 45:356–61
    [Google Scholar]
  52. Grondin R, Ge P, Chen Q, Sutherland JE, Zhang Z et al. 2015. Onset time and durability of huntingtin suppression in rhesus putamen after direct infusion of antihuntingtin siRNA. Mol. Ther. Nucleic Acids 4:e245
    [Google Scholar]
  53. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G et al. 2017. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3:17071
    [Google Scholar]
  54. Harper SQ, Staber PD, He X, Eliason SL, Martins IH et al. 2005. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. PNAS 102:5820–25
    [Google Scholar]
  55. Heier CR, Satta R, Lutz C, DiDonato CJ 2010. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum. Mol. Genet. 19:3906–18
    [Google Scholar]
  56. Hu J, Liu J, Yu D, Chu Y, Corey DR 2012. Mechanism of allele-selective inhibition of huntingtin expression by duplex RNAs that target CAG repeats: function through the RNAi pathway. Nucleic Acids Res 40:11270–80
    [Google Scholar]
  57. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S et al. 2009. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat. Biotechnol. 27:478–84
    [Google Scholar]
  58. Hua Y, Liu YH, Sahashi K, Rigo F, Bennett CF, Krainer AR 2015. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev 29:288–97
    [Google Scholar]
  59. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA et al. 2010. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–44
    [Google Scholar]
  60. Hua Y, Sahashi K, Rigo F, Hung G, Bennett CF, Krainer AR 2012. Correction of RNA splicing with antisense oligonucleotides as therapeutic strategy for a neurodegenerative disease. Chembiomolecular Science: At the Frontier of Chemistry and Biology M Shibasaki, M Ino, H Osada 301–14 Tokyo: Springer
    [Google Scholar]
  61. Hua Y, Sahashi K, Rigo F, Hung G, Horev G et al. 2011. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478:123–26
    [Google Scholar]
  62. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR 2007. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLOS Biol 5:e73
    [Google Scholar]
  63. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR 2008. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82:834–48
    [Google Scholar]
  64. Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M et al. 2016. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–50
    [Google Scholar]
  65. Kashima T, Manley JL 2003. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34:460–63
    [Google Scholar]
  66. Kashima T, Rao N, David CJ, Manley JL 2007. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum. Mol. Genet. 16:3149–59
    [Google Scholar]
  67. Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J et al. 2016. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812
    [Google Scholar]
  68. Kaufmann P, McDermott MP, Darras BT, Finkel R, Kang P et al. 2011. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch. Neurol. 68:779–86
    [Google Scholar]
  69. Kaufmann P, McDermott MP, Darras BT, Finkel RS, Sproule DM et al. 2012. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology 79:1889–97
    [Google Scholar]
  70. Kay C, Collins JA, Skotte NH, Southwell AL, Warby SC et al. 2015. Huntingtin haplotypes provide prioritized target panels for allele-specific silencing in Huntington disease patients of European ancestry. Mol. Ther. 23:1759–71
    [Google Scholar]
  71. Keiser MS, Kordasiewicz HB, McBride JL 2016. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia. Hum. Mol. Genet. 25:R53–64
    [Google Scholar]
  72. Kole R, Krainer AR, Altman S 2012. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11:125–40
    [Google Scholar]
  73. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM et al. 2012. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74:1031–44
    [Google Scholar]
  74. Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P et al. 2014. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–45
    [Google Scholar]
  75. Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P et al. 2013. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. PNAS 110:E4530–39
    [Google Scholar]
  76. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P et al. 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–65
    [Google Scholar]
  77. Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ 2013. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29:499–503
    [Google Scholar]
  78. Liang XH, Shen W, Sun H, Migawa MT, Vickers TA, Crooke ST 2016. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 34:875–80
    [Google Scholar]
  79. Liang XH, Sun H, Shen W, Wang S, Yao J et al. 2017. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res 45:9528–46
    [Google Scholar]
  80. Lorson CL, Hahnen E, Androphy EJ, Wirth B 1999. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. PNAS 96:6307–11
    [Google Scholar]
  81. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C et al. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–83
    [Google Scholar]
  82. Majounie E, Renton AE, Mok K, Dopper EG, Waite A et al. 2012. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–30
    [Google Scholar]
  83. McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T et al. 2011. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol. Ther. 19:2152–62
    [Google Scholar]
  84. McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A et al. 2018. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Investig. 128:3558–67
    [Google Scholar]
  85. McDade E, Bateman RJ 2018. Tau positron emission tomography in autosomal dominant Alzheimer disease: small windows, big picture. JAMA Neurol 75:536–38
    [Google Scholar]
  86. McDade E, Wang G, Gordon BA, Hassenstab J, Benzinger TLS et al. 2018. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology 91:e1295–306
    [Google Scholar]
  87. Meister G, Tuschl T 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–49
    [Google Scholar]
  88. Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378:625–35
    [Google Scholar]
  89. Miller TM, Pestronk A, David W, Rothstein J, Simpson E et al. 2013. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–42
    [Google Scholar]
  90. Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL et al. 2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345:1192–94
    [Google Scholar]
  91. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ et al. 1999. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet 8:1177–83
    [Google Scholar]
  92. Munoz-Sanjuan I, Bates GP 2011. The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J. Clin. Investig. 121:476–83
    [Google Scholar]
  93. Murphy MP 2018. Amyloid-beta solubility in the treatment of Alzheimer's disease. N. Engl. J. Med. 378:391–92
    [Google Scholar]
  94. Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X et al. 2014. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345:688–93
    [Google Scholar]
  95. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–33
    [Google Scholar]
  96. Nomakuchi TT, Rigo F, Aznarez I, Krainer AR 2016. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34:164–66
    [Google Scholar]
  97. O'Rourke JG, Bogdanik L, Yanez A, Lall D, Wolf AJ et al. 2016. C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–29
    [Google Scholar]
  98. Oskoui M, Kaufmann P 2008. Spinal muscular atrophy. Neurotherapeutics 5:499–506
    [Google Scholar]
  99. Ostergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH et al. 2013. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41:9634–50
    [Google Scholar]
  100. Palacino J, Swalley SE, Song C, Cheung AK, Shu L et al. 2015. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11:511–17
    [Google Scholar]
  101. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP et al. 2011. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3:72ra18
    [Google Scholar]
  102. Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W et al. 2009. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients. Curr. Biol. 19:774–78
    [Google Scholar]
  103. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC et al. 2009. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85:408–13
    [Google Scholar]
  104. Quiroz YT, Sperling RA, Norton DJ, Baena A, Arboleda-Velasquez JF et al. 2018. Association between amyloid and tau accumulation in young adults with autosomal dominant Alzheimer disease. JAMA Neurol 75:548–56
    [Google Scholar]
  105. Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G et al. 2005. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 11:423–28
    [Google Scholar]
  106. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–68
    [Google Scholar]
  107. Rigo F, Chun SJ, Norris DA, Hung G, Lee S et al. 2014. Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J. Pharmacol. Exp. Ther. 350:46–55
    [Google Scholar]
  108. Rochette CF, Gilbert N, Simard LR 2001. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. . Hum. Genet. 108:255–66
    [Google Scholar]
  109. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P et al. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
    [Google Scholar]
  110. Rudnik-Schoneborn S, Berg C, Zerres K, Betzler C, Grimm T et al. 2009. Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling. Clin. Genet. 76:168–78
    [Google Scholar]
  111. Sahashi K, Hua Y, Ling KK, Hung G, Rigo F et al. 2012. TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals. Genes Dev 26:1874–84
    [Google Scholar]
  112. Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S et al. 2013. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5:208ra149
    [Google Scholar]
  113. Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W et al. 2017. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544:362–66
    [Google Scholar]
  114. Scoles DR, Pulst SM 2018. Spinocerebellar ataxia type 2. Adv. Exp. Med. Biol. 1049:175–95
    [Google Scholar]
  115. Singh NK, Singh NN, Androphy EJ, Singh RN 2006. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol. Cell. Biol. 26:1333–46
    [Google Scholar]
  116. Skotte NH, Southwell AL, Ostergaard ME, Carroll JB, Warby SC et al. 2014. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLOS ONE 9:e107434
    [Google Scholar]
  117. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP et al. 2006. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Investig. 116:2290–96
    [Google Scholar]
  118. Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP et al. 2018. Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Sci. Transl. Med. 10:eear3959
    [Google Scholar]
  119. Southwell AL, Skotte NH, Kordasiewicz HB, Ostergaard ME, Watt AT et al. 2014. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol. Ther. 22:2093–106
    [Google Scholar]
  120. Strauss KA, Carson VJ, Brigatti KW, Young M, Robinson DL et al. 2018. Preliminary safety and tolerability of a novel subcutaneous intrathecal catheter system for repeated outpatient dosing of nusinersen to children and adults with spinal muscular atrophy. J. Pediatr. Orthop. 38:e610–17
    [Google Scholar]
  121. Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z et al. 2012. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur. J. Hum. Genet. 20:27–32
    [Google Scholar]
  122. Sumner CJ 2007. Molecular mechanisms of spinal muscular atrophy. J. Child Neurol. 22:979–89
    [Google Scholar]
  123. Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C et al. 2019. Targeting huntingtin expression in patients with Huntington's disease. N. Engl. J. Med. In press
    [Google Scholar]
  124. Van Mossevelde S, van der Zee J, Cruts M, Van Broeckhoven C 2017. Relationship between C9orf72 repeat size and clinical phenotype. Curr. Opin. Genet. Dev. 44:117–24
    [Google Scholar]
  125. Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM 2001. Fully modified 2′-MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 29:1293–99
    [Google Scholar]
  126. Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C 2018. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med. Genet. 30:252–58
    [Google Scholar]
  127. Wang G, Liu X, Gaertig MA, Li S, Li XJ 2016. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. PNAS 113:3359–64
    [Google Scholar]
  128. Wang N, Gray M, Lu XH, Cantle JP, Holley SM et al. 2014. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nat. Med. 20:536–41
    [Google Scholar]
  129. Wirth B, Brichta L, Schrank B, Lochmuller H, Blick S et al. 2006. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum. Genet. 119:422–28
    [Google Scholar]
  130. Wirth B, Herz M, Wetter A, Moskau S, Hahnen E et al. 1999. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am. J. Hum. Genet. 64:1340–56
    [Google Scholar]
  131. Wojciechowska M, Krzyzosiak WJ 2011. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum. Mol. Genet. 20:3811–21
    [Google Scholar]
  132. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A et al. 2016. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19:1085–92
    [Google Scholar]
  133. Xu L, Irony I, Bryan WW, Dunn B 2017. Development of gene therapies—lessons from nusinersen. Gene Ther 24:527–28
    [Google Scholar]
  134. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H et al. 2008. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11:3251–53
    [Google Scholar]
  135. Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW et al. 2012. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 150:895–908
    [Google Scholar]
  136. Yu YJ, Watts RJ 2013. Developing therapeutic antibodies for neurodegenerative disease. Neurotherapeutics 10:459–72
    [Google Scholar]
  137. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A 1995. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat. Genet. 11:155–63
    [Google Scholar]
  138. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A et al. 2011. Non-ATG-initiated translation directed by microsatellite expansions. PNAS 108:260–65
    [Google Scholar]
  139. Zuccato C, Valenza M, Cattaneo E 2010. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol. Rev. 90:905–81
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050501
Loading
/content/journals/10.1146/annurev-neuro-070918-050501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error