1932

Abstract

The discovery of neural signals that reflect the dynamics of perceptual decision formation has had a considerable impact. Not only do such signals enable detailed investigations of the neural implementation of the decision-making process but they also can expose key elements of the brain's decision algorithms. For a long time, such signals were only accessible through direct animal brain recordings, and progress in human neuroscience was hampered by the limitations of noninvasive recording techniques. However, recent methodological advances are increasingly enabling the study of human brain signals that finely trace the dynamics of the unfolding decision process. In this review, we highlight how human neurophysiological data are now being leveraged to furnish new insights into the multiple processing levels involved in forming decisions, to inform the construction and evaluation of mathematical models that can explain intra- and interindividual differences, and to examine how key ancillary processes interact with core decision circuits.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092019-100200
2021-07-08
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-092019-100200.html?itemId=/content/journals/10.1146/annurev-neuro-092019-100200&mimeType=html&fmt=ahah

Literature Cited

  1. Afacan-Seref K, Steinemann NA, Blangero A, Kelly SP. 2018. Dynamic interplay of value and sensory information in high-speed decision making. Curr. Biol. 28:5795–802 e6
    [Google Scholar]
  2. Arnold NR, Bröder A, Bayen UJ. 2015. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychol. Res. 79:5882–98
    [Google Scholar]
  3. Boehm U, van Maanen L, Evans NJ, Brown SD, Wagenmakers EJ. 2020. A theoretical analysis of the reward rate optimality of collapsing decision criteria. Atten. Percept. Psychophys. 82:31520–34
    [Google Scholar]
  4. Boehm U, van Maanen L, Forstmann B, van Rijn H. 2014. Trial-by-trial fluctuations in CNV amplitude reflect anticipatory adjustment of response caution. NeuroImage 96:95–105
    [Google Scholar]
  5. Boubenec Y, Lawlor J, Górska U, Shamma S, Englitz B. 2017. Detecting changes in dynamic and complex acoustic environments. eLife 6:e24910
    [Google Scholar]
  6. Brown SD, Heathcote A. 2008. The simplest complete model of choice response time: linear ballistic accumulation. Cogn. Psychol. 57:3153–78
    [Google Scholar]
  7. Cavanagh JF, Frank MJ. 2014. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18:8414–21
    [Google Scholar]
  8. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J et al. 2011. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14:111462–67
    [Google Scholar]
  9. Cheadle S, Wyart V, Tsetsos K, Myers N, de Gardelle V et al. 2014. Adaptive gain control during human perceptual choice. Neuron 81:61429–41
    [Google Scholar]
  10. Churchland AK, Kiani R, Shadlen MN. 2008. Decision-making with multiple alternatives. Nat. Neurosci. 11:6693–702
    [Google Scholar]
  11. Cisek P, Kalaska JF. 2005. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45:5801–14
    [Google Scholar]
  12. Cisek P, Puskas GA, El-Murr S. 2009. Decisions in changing conditions: the urgency-gating model. J. Neurosci. 29:3711560–71
    [Google Scholar]
  13. Cohen JY, Heitz RP, Schall JD, Woodman GF. 2009. On the origin of event-related potentials indexing covert attentional selection during visual search. J. Neurophysiol. 102:42375–86
    [Google Scholar]
  14. Cohen MX, Donner TH. 2013. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. J. Neurophysiol. 110:122752–63
    [Google Scholar]
  15. Colizoli O, de Gee JW, Urai AE, Donner TH. 2018. Task-evoked pupil responses reflect internal belief states. Sci. Rep. 8:113702
    [Google Scholar]
  16. de Gee JW, Colizoli O, Kloosterman NA, Knapen T, Nieuwenhuis S, Donner TH. 2017. Dynamic modulation of decision biases by brainstem arousal systems. eLife 6:e23232
    [Google Scholar]
  17. de Gee JW, Knapen T, Donner TH. 2014. Decision-related pupil dilation reflects upcoming choice and individual bias. PNAS 111:5E618–25
    [Google Scholar]
  18. de Lafuente V, Jazayeri M, Shadlen MN. 2015. Representation of accumulating evidence for a decision in two parietal areas. J. Neurosci. 35:104306–18
    [Google Scholar]
  19. de Lafuente V, Romo R. 2006. Neural correlate of subjective sensory experience gradually builds up across cortical areas. PNAS 103:3914266–71
    [Google Scholar]
  20. de Lange FP, Rahnev DA, Donner TH, Lau H. 2013. Prestimulus oscillatory activity over motor cortex reflects perceptual expectations. J. Neurosci. 33:41400–10
    [Google Scholar]
  21. Debettencourt M, Goldman R, Brown T, Sajda P. 2011. Adaptive thresholding for improving sensitivity in single-trial simultaneous EEG/fMRI. Front. Psychol. 2:91
    [Google Scholar]
  22. Derosiere G, Thura D, Cisek P, Duque J. 2019. Motor cortex disruption delays motor processes but not deliberation about action choices. J. Neurophysiol. 122:41566–77
    [Google Scholar]
  23. Ding L, Gold JI. 2010. Caudate encodes multiple computations for perceptual decisions. J. Neurosci. 30:4715747–59
    [Google Scholar]
  24. Donchin E, Coles MGH. 1988. Is the P300 component a manifestation of context updating?. Behav. Brain Sci. 11:3357–427
    [Google Scholar]
  25. Donner TH, Siegel M, Fries P, Engel AK. 2009. Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr. Biol. 19:181581–85
    [Google Scholar]
  26. Dully J, McGovern DP, O'Connell RG. 2018. The impact of natural aging on computational and neural indices of perceptual decision making: a review. Behav. Brain Res. 355:48–55
    [Google Scholar]
  27. Dutilh G, Annis J, Brown SD, Cassey P, Evans NJ et al. 2019. The quality of response time data inference: A blinded, collaborative assessment of the validity of cognitive models. Psychonom. Bull. Rev. 26:41051–69
    [Google Scholar]
  28. Ebitz RB, Platt ML. 2015. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron 85:3628–40
    [Google Scholar]
  29. Eimer M 2014. The time course of spatial attention: insights from event-related brain potentials. The Oxford Handbook of Attention ed. A Nobre, S Kastner 289–317 Oxford, UK: Oxford Univ. Press, 1st ed..
    [Google Scholar]
  30. Erlich JC, Brunton BW, Duan CA, Hanks TD, Brody CD. 2015. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife 4:e05457
    [Google Scholar]
  31. Evans NJ, Hawkins GE, Brown SD. 2020. The role of passing time in decision-making. J. Exp. Psychol. Learn. Mem. Cogn. 46:2316–26
    [Google Scholar]
  32. Fetsch CR, Kiani R, Newsome WT, Shadlen MN. 2014. Effects of cortical microstimulation on confidence in a perceptual decision. Neuron 83:4797–804
    [Google Scholar]
  33. Fischer AG, Nigbur R, Klein TA, Danielmeier C, Ullsperger M. 2018. Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nat. Commun. 9:15038
    [Google Scholar]
  34. Fleming SM, Maniscalco B, Ko Y, Amendi N, Ro T, Lau H. 2015. Action-specific disruption of perceptual confidence. Psychol. Sci. 26:189–98
    [Google Scholar]
  35. Forstmann BU, Anwander A, Schäfer A, Neuman J, Brown S et al. 2010. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. PNAS 107:3615916–20
    [Google Scholar]
  36. Forstmann BU, Dutilh G, Brown S, Neuman J, von Cramon DY et al. 2008. Striatum and pre-SMA facilitate decision-making under time pressure. PNAS 105:4517538–42
    [Google Scholar]
  37. Forstmann BU, Ratcliff R, Wagenmakers EJ. 2016. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu. Rev. Psychol. 67:641–66
    [Google Scholar]
  38. Forstmann BU, Tittgemeyer M, Wagenmakers E-J, Derrfuss J, Imperati D, Brown S. 2011. The speed-accuracy tradeoff in the elderly brain: a structural model-based approach. J. Neurosci. 31:4717242–49
    [Google Scholar]
  39. Frank MJ. 2006. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19:81120–36
    [Google Scholar]
  40. Gherman S, Philiastides MG. 2018. Human VMPFC encodes early signatures of confidence in perceptual decisions. eLife 7:e38293
    [Google Scholar]
  41. Gold JI, Shadlen MN. 2007. The neural basis of decision making. Annu. Rev. Neurosci. 30:535–74
    [Google Scholar]
  42. Hanes DP, Schall JD. 1996. Neural control of voluntary movement initiation. Science 274:5286427–30
    [Google Scholar]
  43. Hanks T, Kiani R, Shadlen MN. 2014. A neural mechanism of speed-accuracy tradeoff in macaque area LIP. eLife 3:e02260
    [Google Scholar]
  44. Hanks TD, Ditterich J, Shadlen MN. 2006. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9:5682–89
    [Google Scholar]
  45. Hanks TD, Kopec CD, Brunton BW, Duan CA, Erlich JC, Brody CD. 2015. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520:7546220–23
    [Google Scholar]
  46. Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN. 2011. Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J. Neurosci. 31:176339–52
    [Google Scholar]
  47. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml KH. 2007. Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage 37:1465–73
    [Google Scholar]
  48. Hawkins GE, Forstmann BU, Wagenmakers E-J, Ratcliff R, Brown SD. 2015. Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. J. Neurosci. 35:62476–84
    [Google Scholar]
  49. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. 2004. A general mechanism for perceptual decision-making in the human brain. Nature 431:7010859–62
    [Google Scholar]
  50. Heitz RP, Schall JD. 2012. Neural mechanisms of speed-accuracy tradeoff. Neuron 76:3616–28
    [Google Scholar]
  51. Herding J, Ludwig S, von Lautz A, Spitzer B, Blankenburg F. 2019. Centro-parietal EEG potentials index subjective evidence and confidence during perceptual decision making. NeuroImage 201:116011
    [Google Scholar]
  52. Hillyard SA, Squires KC, Bauer JW, Lindsay PH. 1971. Evoked potential correlates of auditory signal detection. Science 172:39901357–60
    [Google Scholar]
  53. Ho T, Brown S, Abuyo NA, Ku E-HJ, Serences JT. 2012a. Perceptual consequences of feature-based attentional enhancement and suppression. J. Vis. 12:815
    [Google Scholar]
  54. Ho T, Brown S, van Maanen L, Forstmann BU, Wagenmakers E-J, Serences JT. 2012b. The optimality of sensory processing during the speed-accuracy tradeoff. J. Neurosci. 32:237992–8003
    [Google Scholar]
  55. Huys QJM, Maia TV, Frank MJ 2016. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19:3404–13
    [Google Scholar]
  56. Jahfari S, Waldorp L, van den Wildenberg WPM, Scholte HS, Ridderinkhof KR, Forstmann BU. 2011. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J. Neurosci. 31:186891–99
    [Google Scholar]
  57. Katz LN, Yates JL, Pillow JW, Huk AC. 2016. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535:7611285–88
    [Google Scholar]
  58. Kelly SP, Corbett EA, O'Connell RG 2021. Neurocomputational mechanisms of prior-informed perceptual decision-making in humans. Nat. Hum. Behav. 5:46781
    [Google Scholar]
  59. Kelly SP, O'Connell RG 2013. Internal and external influences on the rate of sensory evidence accumulation in the human brain. J. Neurosci. 33:5019434–41
    [Google Scholar]
  60. Kelly SP, O'Connell RG 2015. The neural processes underlying perceptual decision making in humans: recent progress and future directions. J. Physiol. 109:1–327–37
    [Google Scholar]
  61. Kiani R, Shadlen MN. 2009. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324:5928759–64
    [Google Scholar]
  62. Kim JN, Shadlen MN. 1999. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2:2176–85
    [Google Scholar]
  63. Kok A. 2001. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38:3557–77
    [Google Scholar]
  64. Kok P, Mostert P, de Lange FP. 2017. Prior expectations induce prestimulus sensory templates. PNAS 114:3910473–78
    [Google Scholar]
  65. Levine SM, Schwarzbach J. 2017. Decoding of auditory and tactile perceptual decisions in parietal cortex. NeuroImage 162:297–305
    [Google Scholar]
  66. Licata AM, Kaufman MT, Raposo D, Ryan MB, Sheppard JP, Churchland AK. 2017. Posterior parietal cortex guides visual decisions in rats. J. Neurosci. 37:194954–66
    [Google Scholar]
  67. Lin H, Saunders B, Hutcherson CA, Inzlicht M. 2018. Midfrontal theta and pupil dilation parametrically track subjective conflict (but also surprise) during intertemporal choice. NeuroImage 172:838–52
    [Google Scholar]
  68. Liu T, Pleskac TJ. 2011. Neural correlates of evidence accumulation in a perceptual decision task. J. Neurophysiol. 106:52383–98
    [Google Scholar]
  69. London D, Pourfar MH, Mogilner AY. 2019. Deep brain stimulation of the subthalamic nucleus induces impulsive responses to bursts of sensory evidence. Front. Neurosci. 13:270
    [Google Scholar]
  70. Loughnane GM, Newman DP, Bellgrove MA, Lalor EC, Kelly SP, O'Connell RG. 2016. Target selection signals influence perceptual decisions by modulating the onset and rate of evidence accumulation. Curr. Biol. 26:4496–502
    [Google Scholar]
  71. Loughnane GM, Newman DP, Tamang S, Kelly SP, O'Connell RG. 2018. Antagonistic interactions between microsaccades and evidence accumulation processes during decision formation. J. Neurosci. 38:92163–76
    [Google Scholar]
  72. Luck S 2012. Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. The Oxford Handbook of Event-Related Potential Components ed. S Luck, E Kappenman 329–60 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  73. Luo A, Sajda P. 2006. Using single-trial EEG to estimate the timing of target onset during rapid serial visual presentation. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society79–82 New York: IEEE
    [Google Scholar]
  74. Luyckx F, Nili H, Spitzer B, Summerfield C. 2019. Neural structure mapping in human probabilistic reward learning. eLife 8:e42816
    [Google Scholar]
  75. Mansfield EL, Karayanidis F, Jamadar S, Heathcote A, Forstmann BU. 2011. Adjustments of response threshold during task switching: a model-based functional magnetic resonance imaging study. J. Neurosci. 31:4114688–92
    [Google Scholar]
  76. McCarthy G, Donchin E. 1981. A metric for thought: a comparison of P300 latency and reaction time. Science 211:447777–80
    [Google Scholar]
  77. McGovern DP, Hayes A, Kelly SP, O'Connell RG. 2018. Reconciling age-related changes in behavioural and neural indices of human perceptual decision-making. Nat. Hum. Behav. 2:12955–66
    [Google Scholar]
  78. Murphy PR, Boonstra E, Nieuwenhuis S. 2016. Global gain modulation generates time-dependent urgency during perceptual choice in humans. Nat. Commun. 7:13526
    [Google Scholar]
  79. Murphy PR, Robertson IH, Harty S, O'Connell RG. 2015. Neural evidence accumulation persists after choice to inform metacognitive judgments. eLife 4:e11946
    [Google Scholar]
  80. Nieuwenhuis S, Aston-Jones G, Cohen JD 2005. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 131:4510–32
    [Google Scholar]
  81. Niyogi RK, Wong-Lin K. 2013. Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making. PLOS Comput. Biol. 9:6e1003099
    [Google Scholar]
  82. Nunez MD, Gosai A, Vandekerckhove J, Srinivasan R. 2019. The latency of a visual evoked potential tracks the onset of decision making. NeuroImage 197:93–108
    [Google Scholar]
  83. O'Connell RG, Dockree PM, Kelly SP. 2012. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat. Neurosci. 15:121729–35
    [Google Scholar]
  84. O'Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP. 2009. Uncovering the neural signature of lapsing attention: electrophysiological signals predict errors up to 20 s before they occur. J. Neurosci. 29:8604–11
    [Google Scholar]
  85. O'Connell RG, Shadlen MN, Wong-Lin K, Kelly SP. 2018. Bridging neural and computational viewpoints on perceptual decision-making. Trends Neurosci 41:11838–52
    [Google Scholar]
  86. Ossmy O, Moran R, Pfeffer T, Tsetsos K, Usher M, Donner TH. 2013. The timescale of perceptual evidence integration can be adapted to the environment. Curr. Biol. 23:11981–86
    [Google Scholar]
  87. Ouyang G, Herzmann G, Zhou C, Sommer W. 2011. Residue iteration decomposition (RIDE): a new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology 48:121631–47
    [Google Scholar]
  88. Pfurtscheller G, Lopes da Silva FH. 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110:111842–57
    [Google Scholar]
  89. Philiastides MG, Heekeren HR, Sajda P. 2014. Human scalp potentials reflect a mixture of decision-related signals during perceptual choices. J. Neurosci. 34:5016877–89
    [Google Scholar]
  90. Philiastides MG, Ratcliff R, Sajda P. 2006. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci. 26:358965–75
    [Google Scholar]
  91. Philiastides MG, Sajda P. 2006. Temporal characterization of the neural correlates of perceptual decision making in the human brain. Cereb. Cortex 16:4509–18
    [Google Scholar]
  92. Ploran EJ, Nelson SM, Velanova K, Donaldson DI, Petersen SE, Wheeler ME. 2007. Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. J. Neurosci. 27:4411912–24
    [Google Scholar]
  93. Polanía R, Krajbich I, Grueschow M, Ruff CC. 2014. Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron 82:3709–20
    [Google Scholar]
  94. Polich J. 2007. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118:102128–48
    [Google Scholar]
  95. Polich J, Criado JR. 2006. Neuropsychology and neuropharmacology of P3a and P3b. Int. J. Psychophysiol. 60:2172–85
    [Google Scholar]
  96. Purcell BA, Palmeri TJ. 2017. Relating accumulator model parameters and neural dynamics. J. Math. Psychol. 76:156–71
    [Google Scholar]
  97. Purcell BA, Schall JD, Logan GD, Palmeri TJ. 2012. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J. Neurosci. 32:103433–46
    [Google Scholar]
  98. Rae B, Heathcote A, Donkin C, Averell L, Brown S 2014. The hare and the tortoise: Emphasizing speed can change the evidence used to make decisions. J. Exp. Psychol. Learn. Mem. Cogn. 40:51226–43
    [Google Scholar]
  99. Ratcliff R, Cherian A, Segraves M. 2003. A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J. Neurophysiol. 90:31392–407
    [Google Scholar]
  100. Ratcliff R, Philiastides MG, Sajda P. 2009. Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. PNAS 106:166539–44
    [Google Scholar]
  101. Ratcliff R, Smith PL, Brown SD, McKoon G. 2016. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20:4260–81
    [Google Scholar]
  102. Roitman JD, Shadlen MN. 2002. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22:11229475–89
    [Google Scholar]
  103. Romo R, Hernández A, Zainos A. 2004. Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41:1165–73
    [Google Scholar]
  104. Rorie AE, Gao J, McClelland JL, Newsome WT. 2010. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLOS ONE 5:2e9308
    [Google Scholar]
  105. Rungratsameetaweemana N, Itthipuripat S, Salazar A, Serences JT. 2018. Expectations do not alter early sensory processing during perceptual decision-making. J. Neurosci. 38:245632–48
    [Google Scholar]
  106. Schall JD. 2003. Neural correlates of decision processes: neural and mental chronometry. Curr. Opin. Neurobiol. 13:2182–86
    [Google Scholar]
  107. Schall JD. 2004. On building a bridge between brain and behavior. Annu. Rev. Psychol. 55:23–50
    [Google Scholar]
  108. Schall JD. 2019. Accumulators, neurons, and response time. Trends Neurosci 42:12848–60
    [Google Scholar]
  109. Servant M, White C, Montagnini A, Burle B. 2015. Using covert response activation to test latent assumptions of formal decision-making models in humans. J. Neurosci. 35:2810371–85
    [Google Scholar]
  110. Servant M, White C, Montagnini A, Burle B. 2016. Linking theoretical decision-making mechanisms in the Simon task with electrophysiological data: a model-based neuroscience study in humans. J. Cogn. Neurosci. 28:101501–21
    [Google Scholar]
  111. Shadlen MN, Kiani R. 2013. Decision making as a window on cognition. Neuron 80:3791–806
    [Google Scholar]
  112. Shadlen MN, Kiani R, Hanks TD, Churchland AK 2008. Neurobiology of decision making: an intentional framework. Better Than Conscious? Decision Making, the Human Mind, and Implications for Institutions ed. C Engel, W Singer 71–101 Cambridge, MA: MIT Press
    [Google Scholar]
  113. Shadlen MN, Newsome WT. 1996. Motion perception: seeing and deciding. PNAS 93:2628–33
    [Google Scholar]
  114. Shea-Brown E, Gilzenrat MS, Cohen JD. 2008. Optimization of decision making in multilayer networks: the role of locus coeruleus. Neural Comput 20:122863–94
    [Google Scholar]
  115. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM et al. 2012. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488:7410218–21
    [Google Scholar]
  116. Siegel M, Buschman TJ, Miller EK. 2015. Cortical information flow during flexible sensorimotor decisions. Science 348(6241):1352–55:
    [Google Scholar]
  117. Smith PL, Lilburn SD. 2020. Vision for the blind: visual psychophysics and blinded inference for decision models. Psychonom. Bull. Rev. 27:882–910
    [Google Scholar]
  118. Spieser L, Servant M, Hasbroucq T, Burle B. 2017. Beyond decision! Motor contribution to speed-accuracy trade-off in decision-making. Psychonom. Bull. Rev. 24:3950–56
    [Google Scholar]
  119. Spitzer B, Waschke L, Summerfield C. 2017. Selective overweighting of larger magnitudes during noisy numerical comparison. Nat. Hum. Behav. 1:80145
    [Google Scholar]
  120. St. John-Saaltink E, Kok P, Lau HC, de Lange FP 2016. Serial dependence in perceptual decisions is reflected in activity patterns in primary visual cortex. J. Neurosci. 36:236186–92
    [Google Scholar]
  121. Starns JJ, Ratcliff R. 2012. Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks. Psychonom. Bull. Rev. 19:1139–45
    [Google Scholar]
  122. Steinemann NA, O'Connell RG, Kelly SP 2018. Decisions are expedited through multiple neural adjustments spanning the sensorimotor hierarchy. Nat. Commun. 9:13627
    [Google Scholar]
  123. Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD. 2019. Distributed coding of choice, action and engagement across the mouse brain. Nature 576:7786266–73
    [Google Scholar]
  124. Stine GM, Zylberberg A, Ditterich J, Shadlen MN. 2020. Differentiating between integration and non-integration strategies in perceptual decision making. eLife 9:e55365
    [Google Scholar]
  125. Tagliabue CF, Veniero D, Benwell CSY, Cecere R, Savazzi S, Thut G. 2019. The EEG signature of sensory evidence accumulation during decision formation closely tracks subjective perceptual experience. Sci. Rep. 9:14949
    [Google Scholar]
  126. Tang MF, Smout CA, Arabzadeh E, Mattingley JB. 2018. Prediction error and repetition suppression have distinct effects on neural representations of visual information. eLife 7:e33123
    [Google Scholar]
  127. ter Wal M, Platonov A, Cardellicchio P, Pelliccia V, LoRusso G et al. 2020. Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task. Nat. Commun. 11:13075
    [Google Scholar]
  128. Theeuwes J. 2010. Top-down and bottom-up control of visual selection. Acta Psychol 135:277–99
    [Google Scholar]
  129. Thura D, Beauregard-Racine J, Fradet C-W, Cisek P. 2012. Decision making by urgency gating: theory and experimental support. J. Neurophysiol. 108:112912–30
    [Google Scholar]
  130. Thura D, Cisek P. 2016. Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. J. Neurosci. 36:3938–56
    [Google Scholar]
  131. Tosoni A, Galati G, Romani GL, Corbetta M. 2008. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat. Neurosci. 11:121446–53
    [Google Scholar]
  132. Tuckute G, Hansen ST, Pedersen N, Steenstrup D, Hansen LK. 2019. Single-trial decoding of scalp EEG under natural conditions. Comput. Intel. Neurosci. 2019.9210785
    [Google Scholar]
  133. Turner BM, Palestro JJ, Miletić S, Forstmann BU. 2019. Advances in techniques for imposing reciprocity in brain-behavior relations. Neurosci. Biobehav. Rev. 102:327–36
    [Google Scholar]
  134. Turner BM, van Maanen L, Forstmann BU. 2015. Informing cognitive abstractions through neuroimaging: the neural drift diffusion model. Psychol. Rev. 122:2312–36
    [Google Scholar]
  135. Twomey DM, Kelly SP, O'Connell RG. 2016. Abstract and effector-selective decision signals exhibit qualitatively distinct dynamics before delayed perceptual reports. J. Neurosci. 36:287346–52
    [Google Scholar]
  136. Twomey DM, Murphy PR, Kelly SP, O'Connell RG. 2015. The classic P300 encodes a build-to-threshold decision variable. Eur. J. Neurosci. 42:11636–43
    [Google Scholar]
  137. Urai AE, Braun A, Donner TH. 2017. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat. Commun. 8:14637
    [Google Scholar]
  138. Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108:3550–92
    [Google Scholar]
  139. van Kempen J, Loughnane GM, Newman DP, Kelly SP, Thiele A et al. 2019. Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal. eLife 8:e42541
    [Google Scholar]
  140. van Maanen L, Brown SD, Eichele T, Wagenmakers E-J, Ho T et al. 2011. Neural correlates of trial-to-trial fluctuations in response caution. J. Neurosci. 31:4817488–95
    [Google Scholar]
  141. van Maanen L, Fontanesi L, Hawkins GE, Forstmann BU. 2016. Striatal activation reflects urgency in perceptual decision making. NeuroImage 139:294–303
    [Google Scholar]
  142. van Ravenzwaaij D, Donkin C, Vandekerckhove J. 2017. The EZ diffusion model provides a powerful test of simple empirical effects. Psychonom. Bull. Rev. 24:2547–56
    [Google Scholar]
  143. van Vugt MK, Beulen MA, Taatgen NA. 2019. Relation between centro-parietal positivity and diffusion model parameters in both perceptual and memory-based decision making. Brain Res 1715:1–12
    [Google Scholar]
  144. Verleger R. 1988. Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behav. Brain Sci. 11:3343–56
    [Google Scholar]
  145. von Lautz A, Herding J, Blankenburg F. 2019. Neuronal signatures of a random-dot motion comparison task. NeuroImage 193:57–66
    [Google Scholar]
  146. Voskuilen C, Ratcliff R, Smith PL. 2016. Comparing fixed and collapsing boundary versions of the diffusion model. J. Math. Psychol. 73:59–79
    [Google Scholar]
  147. White CN, Ratcliff R, Starns JJ. 2011. Diffusion models of the flanker task: discrete versus gradual attentional selection. Cogn. Psychol. 63:4210–38
    [Google Scholar]
  148. Winkel J, Hawkins GE, Ivry RB, Brown SD, Cools R, Forstmann BU. 2016. Focal striatum lesions impair cautiousness in humans. Cortex 85:37–45
    [Google Scholar]
  149. Wong KF, Wang XJ. 2006. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26:1314–28
    [Google Scholar]
  150. Wyart V, de Gardelle V, Scholl J, Summerfield C. 2012a. Rhythmic fluctuations in evidence accumulation during decision making in the human brain. Neuron 76:4847–58
    [Google Scholar]
  151. Wyart V, Myers NE, Summerfield C. 2015. Neural mechanisms of human perceptual choice under focused and divided attention. J. Neurosci. 35:83485–98
    [Google Scholar]
  152. Wyart V, Nobre AC, Summerfield C. 2012b. Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. PNAS 109:93593–98
    [Google Scholar]
  153. Yartsev MM, Hanks TD, Yoon AM, Brody CD. 2018. Causal contribution and dynamical encoding in the striatum during evidence accumulation. eLife 7:e34929
    [Google Scholar]
  154. Zheng Q, Zhu F, Heng P-A. 2018. Robust support matrix machine for single trial EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26:3551–62
    [Google Scholar]
  155. Zhou Y, Freedman DJ. 2019. Posterior parietal cortex plays a causal role in perceptual and categorical decisions. Science 365:6449180–85
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-092019-100200
Loading
/content/journals/10.1146/annurev-neuro-092019-100200
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error