1932

Abstract

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092823-104810
2024-08-08
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-092823-104810.html?itemId=/content/journals/10.1146/annurev-neuro-092823-104810&mimeType=html&fmt=ahah

Literature Cited

  1. Accolla EA, Herrojo Ruiz M, Horn A, Schneider G-H, Schmitz-Hübsch T, et al. 2016.. Brain networks modulated by subthalamic nucleus deep brain stimulation. . Brain 139:(9):250315
    [Crossref] [Google Scholar]
  2. Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, et al. 2014.. Coordinated reset neuromodulation for Parkinson's disease: proof-of-concept study. . Mov. Disord. 29:(13):167984
    [Crossref] [Google Scholar]
  3. Albin RL, Surmeier DJ, Tubert C, Sarter M, Müller MLTM, et al. 2018.. Targeting the pedunculopontine nucleus in Parkinson's disease: time to go back to the drawing board. . Mov. Disord. 33:(12):187175
    [Crossref] [Google Scholar]
  4. Albin RL, Young AB, Penney JB. 1989.. The functional anatomy of basal ganglia disorders. . Trends Neurosci. 12:(10):36675
    [Crossref] [Google Scholar]
  5. Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA. 2017.. Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. . J. Clin. Investig. 127:(2):72034
    [Crossref] [Google Scholar]
  6. Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C. 2010.. The effect of spatially inhomogeneous extracellular electric fields on neurons. . J. Neurosci. 30:(5):192536
    [Crossref] [Google Scholar]
  7. Arber S, Costa RM. 2022.. Networking brainstem and basal ganglia circuits for movement. . Nat. Rev. Neurosci. 23:(6):34260
    [Crossref] [Google Scholar]
  8. Aristieta A, Barresi M, Lindi SA, Barriere G, Courtand G, et al. 2021.. A disynaptic circuit in the globus pallidus controls locomotion inhibition. . Curr. Biol. 31:(4):70721
    [Crossref] [Google Scholar]
  9. Asmus F, Gasser T. 2010.. Dystonia-plus syndromes. . Eur. J. Neurol. 17:(Suppl. 1):3745
    [Crossref] [Google Scholar]
  10. Baker KB, Plow EB, Nagel S, Rosenfeldt AB, Gopalakrishnan R, et al. 2023.. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase I trial. . Nat. Med. 29:(9):236674
    [Crossref] [Google Scholar]
  11. Baufreton J, Atherton JF, Surmeier DJ, Bevan MD. 2005.. Enhancement of excitatory synaptic integration by GABAergic inhibition in the subthalamic nucleus. . J. Neurosci. 25:(37):850517
    [Crossref] [Google Scholar]
  12. Beeler JA. 2011.. Preservation of function in Parkinson's disease: What's learning got to do with it?. Brain Res. 1423::96113
    [Crossref] [Google Scholar]
  13. Beeler JA, Frank MJ, McDaid J, Alexander E, Turkson S, et al. 2012.. A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson's disease. . Cell Rep. 2:(6):174761
    [Crossref] [Google Scholar]
  14. Benabid AL, Benazzouz A, Hoffmann D, Limousin P, Krack P, Pollak P. 1998.. Long-term electrical inhibition of deep brain targets in movement disorders. . Mov. Disord. 13:(S3):11925
    [Crossref] [Google Scholar]
  15. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, et al. 1991.. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. . Lancet 337:(8738):4036
    [Crossref] [Google Scholar]
  16. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. 1987.. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. . Appl. Neurophysiol. 50:(1–6):34446
    [Google Scholar]
  17. Brazhnik E, Novikov N, McCoy AJ, Ilieva NM, Ghraib MW, Walters JR. 2021.. Early decreases in cortical mid-gamma peaks coincide with the onset of motor deficits and precede exaggerated beta build-up in rat models for Parkinson's disease. . Neurobiol. Dis. 155::105393
    [Crossref] [Google Scholar]
  18. Brown AM, White JJ, van der Heijden ME, Zhou J, Lin T, Sillitoe RV. 2020.. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. . eLife 9::e51928
    [Crossref] [Google Scholar]
  19. Caggiano V, Leiras R, Goñi-Erro H, Masini D, Bellardita C, et al. 2018.. Midbrain circuits that set locomotor speed and gait selection. . Nature 553:(7689):45560
    [Crossref] [Google Scholar]
  20. Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. 2011.. The neural substrates of rapid-onset dystonia-parkinsonism. . Nat. Neurosci. 14:(3):35765
    [Crossref] [Google Scholar]
  21. Caligiore D, Helmich RC, Hallett M, Moustafa AA, Timmermann L, et al. 2016.. Parkinson's disease as a system-level disorder. . NPJ Parkinson's Dis. 2:(1):16025
    [Crossref] [Google Scholar]
  22. Cantello R, Tarletti R, Civardi C. 2002.. Transcranial magnetic stimulation and Parkinson's disease. . Brain Res. Rev. 38:(3):30927
    [Crossref] [Google Scholar]
  23. Cavallo A, Neumann W-J. 2023.. Dopaminergic reinforcement in the motor system: implications for Parkinson's disease and deep brain stimulation. . Authorea. https://doi.org/10.22541/au.169536617.79800198/v1
    [Google Scholar]
  24. Chen Y, Gong C, Tian Y, Orlov N, Zhang J, et al. 2020.. Neuromodulation effects of deep brain stimulation on beta rhythm: a longitudinal local field potential study. . Brain Stimul. 13:(6):178492
    [Crossref] [Google Scholar]
  25. Cheung THC, Ding Y, Zhuang X, Kang UJ. 2023.. Learning critically drives parkinsonian motor deficits through imbalanced striatal pathway recruitment. . PNAS 120:(12):e2213093120
    [Crossref] [Google Scholar]
  26. Chu HY, Atherton JF, Wokosin D, Surmeier DJ, Bevan MD. 2015.. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. . Neuron 85:(2):36476
    [Crossref] [Google Scholar]
  27. Connolly AT, Jensen AL, Bello EM, Netoff TI, Baker KB, et al. 2015.. Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity. . J. Neurosci. 35:(15):623140
    [Crossref] [Google Scholar]
  28. Cooperrider J, Furmaga H, Plow E, Park H-J, Chen Z, et al. 2014.. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. . J. Neurosci. 34:(27):904050
    [Crossref] [Google Scholar]
  29. Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH. 2016.. Pallidostriatal projections promote beta oscillations in a dopamine-depleted biophysical network model. . J. Neurosci. 36:(20):555671
    [Crossref] [Google Scholar]
  30. Costa RM, Lin S-C, Sotnikova TD, Cyr M, Gainetdinov RR, et al. 2006.. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. . Neuron 52:(2):35969
    [Crossref] [Google Scholar]
  31. Courtney CD, Pamukcu A, Chan CS. 2023.. Cell and circuit complexity of the external globus pallidus. . Nat. Neurosci. 26:(7):114759
    [Crossref] [Google Scholar]
  32. Creed M, Pascoli VJ, Luscher C. 2015.. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. . Science 347:(6222):65964
    [Crossref] [Google Scholar]
  33. Cui Q, Pamukcu A, Cherian S, Chang IYM, Berceau BL, et al. 2021.. Dissociable roles of pallidal neuron subtypes in regulating motor patterns. . J. Neurosci. 41:(18):403659
    [Crossref] [Google Scholar]
  34. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, et al. 2013.. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. . PNAS 110:(12):478085
    [Crossref] [Google Scholar]
  35. de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, et al. 2015.. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease. . Nat. Neurosci. 18:(5):77986
    [Crossref] [Google Scholar]
  36. de la Crompe B, Aristieta A, Leblois A, Elsherbiny S, Boraud T, Mallet NP. 2020.. The globus pallidus orchestrates abnormal network dynamics in a model of parkinsonism. . Nat. Commun. 11:(1):1570
    [Crossref] [Google Scholar]
  37. Delaville C, Cruz AV, McCoy AJ, Brazhnik E, Avila I, et al. 2014.. Oscillatory activity in basal ganglia and motor cortex in an awake behaving rodent model of Parkinson's disease. . Basal Ganglia 3:(4):22127
    [Crossref] [Google Scholar]
  38. Dell'Orco JM, Pulst SM, Shakkottai VG. 2017.. Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. . Hum. Mol. Genet. 26:(20):393545
    [Crossref] [Google Scholar]
  39. DeLong MR. 1990.. Primate models of movement disorders of basal ganglia origin. . Trends Neurosci. 13:(7):28185
    [Crossref] [Google Scholar]
  40. Dong J, Hawes S, Wu J, Le W, Cai H. 2021.. Connectivity and functionality of the globus pallidus externa under normal conditions and Parkinson's disease. . Front. Neural Circuits 15::645287
    [Crossref] [Google Scholar]
  41. Dorval AD, Kuncel AM, Birdno MJ, Turner DA, Grill WM. 2010.. Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. . J. Neurophysiol. 104:(2):91121
    [Crossref] [Google Scholar]
  42. Ebert M, Hauptmann C, Tass PA. 2014.. Coordinated reset stimulation in a large-scale model of the STN-GPe circuit. . Front. Comput. Neurosci. 8::154
    [Crossref] [Google Scholar]
  43. Fan KY, Baufreton J, Surmeier DJ, Chan CS, Bevan MD. 2012.. Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. . J. Neurosci. 32:(40):1371828
    [Crossref] [Google Scholar]
  44. Feldmann LK, Lofredi R, Neumann W-J, Al-Fatly B, Roediger J, et al. 2022.. Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. . NPJ Parkinson's Dis. 8:(1):44
    [Crossref] [Google Scholar]
  45. Ferreira-Pinto MJ, Kanodia H, Falasconi A, Sigrist M, Esposito MS, Arber S. 2021.. Functional diversity for body actions in the mesencephalic locomotor region. . Cell 184:(17):456478
    [Crossref] [Google Scholar]
  46. Filip P, Jech R, Fečíková A, Havránková P, Růžička F, et al. 2022.. Restoration of functional network state towards more physiological condition as the correlate of clinical effects of pallidal deep brain stimulation in dystonia. . Brain Stimul. 15:(5):126978
    [Crossref] [Google Scholar]
  47. Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr., Hawkes R, et al. 1996.. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. . Cell 87:(4):60717
    [Crossref] [Google Scholar]
  48. França C, de Andrade DC, Teixeira MJ, Galhardoni R, Silva V, et al. 2018.. Effects of cerebellar neuromodulation in movement disorders: a systematic review. . Brain Stimul. 11:(2):24960
    [Crossref] [Google Scholar]
  49. Freeman DK, Eddington DK, Rizzo JF 3rd, Fried SI. 2010.. Selective activation of neuronal targets with sinusoidal electric stimulation. . J. Neurophysiol. 104:(5):277891
    [Crossref] [Google Scholar]
  50. Fremont R, Calderon DP, Maleki S, Khodakhah K. 2014.. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. . J. Neurosci. 34:(35):1172332
    [Crossref] [Google Scholar]
  51. Fremont R, Tewari A, Angueyra C, Khodakhah K. 2017.. A role for cerebellum in the hereditary dystonia DYT1. . eLife 6::e22775
    [Crossref] [Google Scholar]
  52. Fremont R, Tewari A, Khodakhah K. 2015.. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. . Neurobiol. Dis. 82::20012
    [Crossref] [Google Scholar]
  53. Garcia-Rill E, Hyde J, Kezunovic N, Urbano FJ, Petersen E. 2015.. The physiology of the pedunculopontine nucleus—implications for deep brain stimulation. . J. Neural Transm. 122:(2):22535
    [Crossref] [Google Scholar]
  54. Gay M, Belaid H, Rogers A, Pérez-García F, Roustan M, et al. 2020.. Anatomo-functional mapping of the primate mesencephalic locomotor region using stereotactic lesions. . Mov. Disord. 35:(5):78999
    [Crossref] [Google Scholar]
  55. Geng X, Zhang J, Jiang Y, Ashkan K, Foltynie T, et al. 2017.. Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia. . Neurobiol. Dis. 98::1007
    [Crossref] [Google Scholar]
  56. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, et al. 1990.. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. . Science 250:(4986):142932
    [Crossref] [Google Scholar]
  57. Gittis AH, Kreitzer AC. 2012.. Striatal microcircuitry and movement disorders. . Trends Neurosci. 35:(9):55764
    [Crossref] [Google Scholar]
  58. Gittis AH, Yttri EA. 2018.. Translating insights from optogenetics into therapies for Parkinson's disease. . Curr. Opin. Biomed. Eng. 8::1419
    [Crossref] [Google Scholar]
  59. Gong R, Wegscheider M, Mühlberg C, Gast R, Fricke C, et al. 2021.. Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson's disease derived from scalp EEG. . Brain 144:(2):487503
    [Crossref] [Google Scholar]
  60. Goñi-Erro H, Selvan R, Leiras R, Kiehn O. 2023.. Pedunculopontine Chx10+ neurons control global motor arrest in mice. . Nat. Neurosci. 26::151628
    [Crossref] [Google Scholar]
  61. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. 2009.. Optical deconstruction of parkinsonian neural circuitry. . Science 324:(5925):35459
    [Crossref] [Google Scholar]
  62. Grill WM. 2015.. Model-based analysis and design of waveforms for efficient neural stimulation. . In Progress in Brain Research, Vol. 222: Computational Neurostimulation, ed. S Bestmann , pp. 14762. Amsterdam:: Elsevier
    [Google Scholar]
  63. Gut NK, Winn P. 2015.. Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. . J. Neurosci. 35:(12):4792803
    [Crossref] [Google Scholar]
  64. Hallett M. 2009.. Dystonia: a sensory and motor disorder of short latency inhibition. . Ann. Neurol. 66:(2):12557
    [Crossref] [Google Scholar]
  65. Hammond C, Ammari R, Bioulac B, Garcia L. 2008.. Latest view on the mechanism of action of deep brain stimulation. . Mov. Disord. 23:(15):211121
    [Crossref] [Google Scholar]
  66. Hammond C, Bergman H, Brown P. 2007.. Pathological synchronization in Parkinson's disease: networks, models and treatments. . Trends Neurosci. 30:(7):35764
    [Crossref] [Google Scholar]
  67. Hansen ST, Meera P, Otis TS, Pulst SM. 2013.. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. . Hum. Mol. Genet. 22:(2):27183
    [Crossref] [Google Scholar]
  68. Haumesser JK, Beck MH, Pellegrini F, Kühn J, Neumann W-J, et al. 2021.. Subthalamic beta oscillations correlate with dopaminergic degeneration in experimental parkinsonism. . Exp. Neurol. 335::113513
    [Crossref] [Google Scholar]
  69. Hendrix CM, Vitek JL. 2012.. Toward a network model of dystonia. . Ann. N. Y. Acad. Sci. 1265::4655
    [Crossref] [Google Scholar]
  70. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, et al. 2017.. Connectivity predicts deep brain stimulation outcome in Parkinson disease. . Ann. Neurol. 82:(1):6778
    [Crossref] [Google Scholar]
  71. Horn A, Wenzel G, Irmen F, Huebl J, Li N, et al. 2019.. Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease. . Brain 142:(10):312943
    [Crossref] [Google Scholar]
  72. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. 2005.. The cerebellum communicates with the basal ganglia. . Nat. Neurosci. 8:(11):149193
    [Crossref] [Google Scholar]
  73. Ichinohe N, Mori F, Shoumura K. 2000.. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. . Brain Res. 880:(1–2):19197
    [Crossref] [Google Scholar]
  74. Isett BR, Nguyen KP, Schwenk JC, Yurek JR, Snyder CN, et al. 2023.. The indirect pathway of the basal ganglia promotes transient punishment but not motor suppression. . Neuron 111:(14):221831.e4
    [Crossref] [Google Scholar]
  75. Jakobs M, Fomenko A, Lozano AM, Kiening KL. 2019.. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments. . EMBO Mol. Med. 11:(4):e9575
    [Crossref] [Google Scholar]
  76. Jayabal S, Ljungberg L, Watt AJ. 2017.. Transient cerebellar alterations during development prior to obvious motor phenotype in a mouse model of spinocerebellar ataxia type 6. . J. Physiol. 595:(3):94966
    [Crossref] [Google Scholar]
  77. Ji Y-W, Zhang X, Fan J-P, Gu W-X, Shen Z-L, et al. 2023.. Differential remodeling of subthalamic projections to basal ganglia output nuclei and locomotor deficits in 6-OHDA-induced hemiparkinsonian mice. . Cell Rep. 42:(3):112178
    [Crossref] [Google Scholar]
  78. Johnson LA, Wang J, Nebeck SD, Zhang J, Johnson MD, Vitek JL. 2020.. Direct activation of primary motor cortex during subthalamic but not pallidal deep brain stimulation. . J. Neurosci. 40:(10):216677
    [Crossref] [Google Scholar]
  79. Kim H-J, Jeon BS, Paek SH. 2015.. Nonmotor symptoms and subthalamic deep brain stimulation in Parkinson's disease. . J. Mov. Disord. 8:(2):8391
    [Crossref] [Google Scholar]
  80. King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. 2021.. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. . Eur. J. Neurosci. 54:(10):7688709
    [Crossref] [Google Scholar]
  81. Kovaleski RF, Callahan JW, Chazalon M, Wokosin DL, Baufreton J, Bevan MD. 2020.. Dysregulation of external globus pallidus-subthalamic nucleus network dynamics in parkinsonian mice during cortical slow-wave activity and activation. . J. Physiol. 598:(10):1897927
    [Crossref] [Google Scholar]
  82. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, et al. 2014.. Consensus paper: The cerebellum's role in movement and cognition. . Cerebellum 13::15177
    [Crossref] [Google Scholar]
  83. Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, et al. 2021.. Technology of deep brain stimulation: current status and future directions. . Nat. Rev. Neurol. 17:(2):7587
    [Crossref] [Google Scholar]
  84. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, et al. 2010.. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. . Nature 466:(7306):62226
    [Crossref] [Google Scholar]
  85. Kravitz AV, Tye LD, Kreitzer AC. 2012.. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. . Nat. Neurosci. 15:(6):81618
    [Crossref] [Google Scholar]
  86. Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. 2007.. Translational principles of deep brain stimulation. . Nat. Rev. Neurosci. 8:(8):62335
    [Crossref] [Google Scholar]
  87. Larson PS. 2014.. Deep brain stimulation for movement disorders. . Neurotherapeutics 11:(3):46574
    [Crossref] [Google Scholar]
  88. LeDoux MS, Hurst DC, Lorden JF. 1998.. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. . Neuroscience 86:(2):53345
    [Crossref] [Google Scholar]
  89. LeDoux MS, Lorden JF. 2002.. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. . Exp. Brain Res. 145:(4):45767
    [Crossref] [Google Scholar]
  90. Lee J, Wang W, Sabatini BL. 2020.. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. . Nat. Neurosci. 23:(11):138898
    [Crossref] [Google Scholar]
  91. Lees AJ, Tolosa E, Olanow CW. 2015.. Four pioneers of l-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. . Mov. Disord. 30:(1):1936
    [Crossref] [Google Scholar]
  92. Lempka SF, Patil PG. 2018.. Innovations in spinal cord stimulation for pain. . Curr. Opin. Biomed. Eng. 8::5160
    [Crossref] [Google Scholar]
  93. Leventhal DK, Gage GJ, Schmidt R, Pettibone JR, Case AC, Berke JD. 2012.. Basal ganglia beta oscillations accompany cue utilization. . Neuron 73:(3):52336
    [Crossref] [Google Scholar]
  94. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. 2002.. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. . Brain 125:(Pt. 6):1196209
    [Crossref] [Google Scholar]
  95. Lilascharoen V, Wang EH-J, Do N, Pate SC, Tran AN, et al. 2021.. Divergent pallidal pathways underlying distinct parkinsonian behavioral deficits. . Nat. Neurosci. 24:(4):50415
    [Crossref] [Google Scholar]
  96. Little S, Brown P. 2014.. The functional role of beta oscillations in Parkinson's disease. . Parkinsonism Relat. Disord. 20:(Suppl. 1):S4448
    [Crossref] [Google Scholar]
  97. Liu D, Li W, Ma C, Zheng W, Yao Y, et al. 2020.. A common hub for sleep and motor control in the substantia nigra. . Science 367:(6476):44045
    [Crossref] [Google Scholar]
  98. Liu YB, Tewari A, Salameh J, Arystarkhova E, Hampton TG, et al. 2015.. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1. . eLife 4::e11102
    [Crossref] [Google Scholar]
  99. Lourens MAJ, Schwab BC, Nirody JA, Meijer HGE, van Gils SA. 2015.. Exploiting pallidal plasticity for stimulation in Parkinson's disease. . J. Neural Eng. 12:(2):026005
    [Crossref] [Google Scholar]
  100. Lozano AM, Lipsman N. 2013.. Probing and regulating dysfunctional circuits using deep brain stimulation. . Neuron 77:(3):40624
    [Crossref] [Google Scholar]
  101. Luna-Cancalon K, Sikora KM, Pappas SS, Singh V, Wulff H, et al. 2014.. Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcayji-hes mice. . Neurobiol. Dis. 67::14048
    [Crossref] [Google Scholar]
  102. Mallet N, Delgado L, Chazalon M, Miguelez C, Baufreton J. 2019.. Cellular and synaptic dysfunctions in Parkinson's disease: stepping out of the striatum. . Cells 8:(9):1005
    [Crossref] [Google Scholar]
  103. Mallet N, Pogosyan A, Marton LF, Bolam JP, Brown P, Magill PJ. 2008.. Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. . J Neurosci. 28:(52):1424558
    [Crossref] [Google Scholar]
  104. Manto M, Bower JM, Bastos Conforto A, Delgado-Garcia JM, Faria da Guarda SN, et al. 2012.. Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. . Cerebellum 11::45787
    [Crossref] [Google Scholar]
  105. Martinez-Gonzalez C, van Andel J, Bolam JP, Mena-Segovia J. 2014.. Divergent motor projections from the pedunculopontine nucleus are differentially regulated in parkinsonism. . Brain Struct. Funct. 219:(4):145162
    [Google Scholar]
  106. Masini D, Kiehn O. 2022.. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. . Nat. Commun. 13:(1):504
    [Crossref] [Google Scholar]
  107. Mastro KJ, Zitelli KT, Willard AM, Leblanc KH, Kravitz AV, Gittis AH. 2017.. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. . Nat. Neurosci. 20:(6):81523
    [Crossref] [Google Scholar]
  108. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, et al. 2005.. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease. . NeuroReport 16:(17):187781
    [Crossref] [Google Scholar]
  109. McConnell GC, So RQ, Grill WM. 2016.. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation. . J. Neurophysiol. 115::2791802
    [Crossref] [Google Scholar]
  110. McConnell GC, So RQ, Hilliard JD, Lopomo P, Grill WM. 2012.. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. . J. Neurosci. 32:(45):1565768
    [Crossref] [Google Scholar]
  111. McElvain LE, Chen Y, Moore JD, Brigidi GS, Bloodgood BL, et al. 2021.. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. . Neuron 109:(10):172138
    [Crossref] [Google Scholar]
  112. McGregor MM, Nelson AB. 2019.. Circuit mechanisms of Parkinson's disease. . Neuron 101:(6):104256
    [Crossref] [Google Scholar]
  113. McIntyre CC, Grill WM. 2000.. Selective microstimulation of central nervous system neurons. . Ann. Biomed. Eng. 28:(3):21933
    [Crossref] [Google Scholar]
  114. Mena-Segovia J, Bolam JP. 2017.. Rethinking the pedunculopontine nucleus: from cellular organization to function. . Neuron 94:(1):718
    [Crossref] [Google Scholar]
  115. Miguelez C, Morin S, Martinez A, Goillandeau M, Bezard E, et al. 2012.. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease. . J. Physiol. 590:(Pt. 22):586175
    [Crossref] [Google Scholar]
  116. Milosevic L, Kalia SK, Hodaie M, Lozano AM, Fasano A, et al. 2018.. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease. . Brain 141:(1):17790
    [Crossref] [Google Scholar]
  117. Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, et al. 2019.. Consensus paper: experimental neurostimulation of the cerebellum. . Cerebellum 18:(6):106497
    [Crossref] [Google Scholar]
  118. Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, et al. 2021.. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. . Nat. Commun. 12:(1):1295
    [Crossref] [Google Scholar]
  119. Morris ME, Iansek R, Galna B. 2008.. Gait festination and freezing in Parkinson's disease: pathogenesis and rehabilitation. . Mov. Disord. 23:(Suppl. 2):S45160
    [Crossref] [Google Scholar]
  120. Müller U. 2009.. The monogenic primary dystonias. . Brain 132:(Pt. 8):200525
    [Crossref] [Google Scholar]
  121. Musacchio T, Rebenstorff M, Fluri F, Brotchie JM, Volkmann J, et al. 2017.. STN-DBS is neuroprotective in the A53T α-synuclein Parkinson's disease rat model. . Ann. Neurol. 81:(6):82536
    [Crossref] [Google Scholar]
  122. Nelson AB, Kreitzer AC. 2014.. Reassessing models of basal ganglia function and dysfunction. . Annu. Rev. Neurosci. 37::11735
    [Crossref] [Google Scholar]
  123. Neumann W-J, Horn A, Kühn AA. 2023.. Insights and opportunities for deep brain stimulation as a brain circuit intervention. . Trends Neurosci. 46:(6):47287
    [Crossref] [Google Scholar]
  124. Ozelius LJ, Bressman SB. 2011.. Genetic and clinical features of primary torsion dystonia. . Neurobiol. Dis. 42:(2):12735
    [Crossref] [Google Scholar]
  125. Pappas SS, Darr K, Holley SM, Cepeda C, Mabrouk OS, et al. 2015.. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. . eLife 4::e08352
    [Crossref] [Google Scholar]
  126. Parker JG, Marshall JD, Ahanonu B, Wu Y-W, Kim TH, et al. 2018.. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. . Nature 557:(7704):17782
    [Crossref] [Google Scholar]
  127. Parolari L, Schneeberger M, Heintz N, Friedman JM. 2021.. Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson's disease and OCD-like behaviors in mice. . Mol. Psychiatry 26:(11):702946
    [Crossref] [Google Scholar]
  128. Penfield W, Rasmussen T. 1950.. The Cerebral Cortex of Man: A Clinical Study of Localization of Function. Oxford, UK:: Macmillan
    [Google Scholar]
  129. Perlmutter JS, Mink JW. 2006.. Deep brain stimulation. . Annu. Rev. Neurosci. 29::22957
    [Crossref] [Google Scholar]
  130. Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, et al. 2018.. Toward adaptive deep brain stimulation for dystonia. . Neurosurg. Focus 45:(2):E3
    [Crossref] [Google Scholar]
  131. Plenz D, Kital ST. 1999.. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. . Nature 400:(6745):67782
    [Crossref] [Google Scholar]
  132. Popovych OV, Tass PA. 2014.. Control of abnormal synchronization in neurological disorders. . Front. Neurol. 5::268
    [Crossref] [Google Scholar]
  133. Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD. 2009.. Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients. . Brain 132:(Pt. 2):30918
    [Crossref] [Google Scholar]
  134. Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, et al. 2023.. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. . J. Neurophysiol. 129:(6):1492504
    [Crossref] [Google Scholar]
  135. Radman T, Ramos RL, Brumberg JC, Bikson M. 2009.. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. . Brain Stimul. 2:(4):21528
    [Crossref] [Google Scholar]
  136. Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. 2022.. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. . Exp. Neurol. 355::114140
    [Crossref] [Google Scholar]
  137. Reeber SL, Otis TS, Sillitoe RV. 2013.. New roles for the cerebellum in health and disease. . Front. Syst. Neurosci. 7::83
    [Crossref] [Google Scholar]
  138. Rizzi G, Tan KR. 2019.. Synergistic nigral output pathways shape movement. . Cell Rep. 27:(7):218498
    [Crossref] [Google Scholar]
  139. Ryan MB, Bair-Marshall C, Nelson AB. 2018.. Aberrant striatal activity in parkinsonism and levodopa-induced dyskinesia. . Cell Rep. 23:(12):343846.e5
    [Crossref] [Google Scholar]
  140. Sadnicka A, Hoffland BS, Bhatia KP, van de Warrenburg BP, Edwards MJ. 2012.. The cerebellum in dystonia—help or hindrance?. Clin. Neurophysiol. 123:(1):6570
    [Crossref] [Google Scholar]
  141. Sanders TH, Jaeger D. 2016.. Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. . Neurobiol. Dis. 95::22537
    [Crossref] [Google Scholar]
  142. Schapira AHV, Chaudhuri KR, Jenner P. 2017.. Non-motor features of Parkinson disease. . Nat. Rev. Neurosci. 18:(7):43550
    [Crossref] [Google Scholar]
  143. Scheller U, Lofredi R, van Wijk BCM, Saryyeva A, Krauss JK, et al. 2019.. Pallidal low-frequency activity in dystonia after cessation of long-term deep brain stimulation. . Mov. Disord. 34:(11):173439
    [Crossref] [Google Scholar]
  144. Schor JS, Gonzalez Montalvo I, Spratt PWE, Brakaj RJ, Stansil JA, et al. 2022.. Therapeutic deep brain stimulation disrupts movement-related subthalamic nucleus activity in parkinsonian mice. . eLife 11::e75253
    [Crossref] [Google Scholar]
  145. Schwab BC, Heida T, Zhao Y, Marani E, van Gils SA, van Wezel RJA. 2013.. Synchrony in Parkinson's disease: importance of intrinsic properties of the external globus pallidus. . Front. Syst. Neurosci. 7::60
    [Crossref] [Google Scholar]
  146. Serra GP, Guillaumin A, Vlcek B, Delgado-Zabalza L, Ricci A, et al. 2023.. Into the deep: The subthalamic and para-subthalamic nuclei in behavioral avoidance. . bioRxiv 2023.07.18.549513. https://doi.org/10.1101/2023.07.18.549513
  147. Shah AM, Ishizaka S, Cheng MY, Wang EH, Bautista AR, et al. 2017.. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. . Sci. Rep. 7::46612
    [Crossref] [Google Scholar]
  148. Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P. 2005.. Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. . Eur. J. Neurosci. 21:(5):141322
    [Crossref] [Google Scholar]
  149. Shashidharan P, Sandu D, Potla U, Armata IA, Walker RH, et al. 2005.. Transgenic mouse model of early-onset DYT1 dystonia. . Hum. Mol. Genet. 14:(1):12533
    [Crossref] [Google Scholar]
  150. Shetty AS, Bhatia KP, Lang AE. 2019.. Dystonia and Parkinson's disease: What is the relationship?. Neurobiol. Dis. 132::104462
    [Crossref] [Google Scholar]
  151. Shih LC, Vanderhorst VG, Lozano AM, Hamani C, Moro E. 2013.. Improvement of Pisa syndrome with contralateral pedunculopontine stimulation. . Mov. Disord. 28:(4):55556
    [Crossref] [Google Scholar]
  152. Silberstein P, Kühn AA, Kupsch A, Trottenberg T, Krauss JK, et al. 2003.. Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. . Brain 126:(12):2597608
    [Crossref] [Google Scholar]
  153. Spix TA, Nanivadekar S, Toong N, Kaplow IM, Isett BR, et al. 2021.. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. . Science 374:(6564):2016
    [Crossref] [Google Scholar]
  154. Steel D, Kurian MA. 2020.. Recent genetic advances in early-onset dystonia. . Curr. Opin. Neurol. 33:(4):5007
    [Crossref] [Google Scholar]
  155. Su J-H, Hu Y-W, Yang Y, Li R-Y, Teng F, et al. 2022.. Dystonia and the pedunculopontine nucleus: current evidences and potential mechanisms. . Front. Neurol. 13::1065163
    [Crossref] [Google Scholar]
  156. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M. 2004.. Role of basal ganglia-brainstem pathways in the control of motor behaviors. . Neurosci. Res. 50:(2):13751
    [Crossref] [Google Scholar]
  157. Tass PA, Qin L, Hauptmann C, Dovero S, Bezard E, et al. 2012.. Coordinated reset has sustained aftereffects in parkinsonian monkeys. . Ann. Neurol. 72:(5):81620
    [Crossref] [Google Scholar]
  158. Teixeira MJ, Cury RG, Galhardoni R, Barboza VR, Brunoni AR, et al. 2015.. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. . Neurology 85:(23):207576
    [Crossref] [Google Scholar]
  159. Tewari A, Fremont R, Khodakhah K. 2017.. It's not just the basal ganglia: cerebellum as a target for dystonia therapeutics. . Mov. Disord. 32:(11):153745
    [Crossref] [Google Scholar]
  160. Thevathasan W, Debu B, Aziz T, Bloem BR, Blahak C, et al. 2018.. Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: a clinical review. . Mov. Disord. 33:(1):1020
    [Crossref] [Google Scholar]
  161. Tolosa E, Compta Y. 2006.. Dystonia in Parkinson's disease. . J. Neurol. 253:(Suppl. 7):VII713
    [Google Scholar]
  162. Tseng Y-T, Zhao B, Chen S, Ye J, Liu J, et al. 2022.. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. . Neuron 110:(7):122339
    [Crossref] [Google Scholar]
  163. van den Berg KRE, Helmich RC. 2021.. The role of the cerebellum in tremor—evidence from neuroimaging. . Tremor Other Hyperkinet. Mov. 11::49
    [Crossref] [Google Scholar]
  164. Vidailhet M, Vercueil L, Houeto J-L, Krystkowiak P, Benabid A-L, et al. 2005.. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. . N. Engl. J. Med. 352:(5):45967
    [Crossref] [Google Scholar]
  165. Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, et al. 2017.. Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. . Neuron 94:(1):13852.e5
    [Crossref] [Google Scholar]
  166. Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K. 2006.. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. . Nat. Neurosci. 9:(3):38997
    [Crossref] [Google Scholar]
  167. Walters JR, Hu D, Itoga CA, Parr-Brownlie LC, Bergstrom DA. 2007.. Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine. . Neuroscience 144:(2):76276
    [Crossref] [Google Scholar]
  168. Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, et al. 2018.. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson's disease. . J. Neurosci. 38:(19):455668
    [Crossref] [Google Scholar]
  169. Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB. 2016.. Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of parkinsonism. . Brain Stimul. 9:(4):60917
    [Crossref] [Google Scholar]
  170. Wathen CA, Frizon LA, Maiti TK, Baker KB, Machado AG. 2018.. Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. . Neurosurg. Focus 45:(2):E13
    [Crossref] [Google Scholar]
  171. Weinberger M, Hutchison WD, Dostrovsky JO. 2009.. Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia?. Exp. Neurol. 219:(1):5861
    [Crossref] [Google Scholar]
  172. Whalen TC, Willard AM, Rubin JE, Gittis AH. 2020.. Delta oscillations are a robust biomarker of dopamine depletion severity and motor dysfunction in awake mice. . J. Neurophysiol. 124:(2):31229
    [Crossref] [Google Scholar]
  173. White JJ, Sillitoe RV. 2017.. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. . Nat. Commun. 8::14912
    [Crossref] [Google Scholar]
  174. Wilson CJ. 2013.. Active decorrelation in the basal ganglia. . Neuroscience 250::46782
    [Crossref] [Google Scholar]
  175. Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P. 2011.. Effective connectivity of brain networks during self-initiated movement in Parkinson's disease. . Neuroimage 55:(1):20415
    [Crossref] [Google Scholar]
  176. Xiao J, Ledoux MS. 2005.. Caytaxin deficiency causes generalized dystonia in rats. . Brain Res. Mol. Brain Res. 141:(2):18192
    [Crossref] [Google Scholar]
  177. Yin Z, Zhu G, Liu Y, Zhao B, Liu D, et al. 2022.. Cortical phase-amplitude coupling is key to the occurrence and treatment of freezing of gait. . Brain 145:(7):240721
    [Crossref] [Google Scholar]
  178. Yttri EA, Dudman JT. 2016.. Opponent and bidirectional control of movement velocity in the basal ganglia. . Nature 533:(7603):4026
    [Crossref] [Google Scholar]
  179. Yu C, Cassar IR, Sambangi J, Grill WM. 2020.. Frequency-specific optogenetic deep brain stimulation of subthalamic nucleus improves parkinsonian motor behaviors. . J. Neurosci. 40:(22):432334
    [Crossref] [Google Scholar]
  180. Yu Y, Sanabria DE, Wang J, Hendrix CM, Zhang J, et al. 2021.. Parkinsonism alters beta burst dynamics across the basal ganglia-motor cortical network. . J. Neurosci. 41:(10):227486
    [Crossref] [Google Scholar]
  181. Zhuang Q-X, Li G-Y, Li B, Zhang C-Z, Zhang X-Y, et al. 2018.. Regularizing firing patterns of rat subthalamic neurons ameliorates parkinsonian motor deficits. . J. Clin. Investig. 128:(12):541327
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-092823-104810
Loading
/content/journals/10.1146/annurev-neuro-092823-104810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error