1932

Abstract

Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-102522-121410
2023-07-10
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-102522-121410.html?itemId=/content/journals/10.1146/annurev-neuro-102522-121410&mimeType=html&fmt=ahah

Literature Cited

  1. Abassi E, Papeo L. 2020. The representation of two-body shapes in the human visual cortex. J. Neurosci. 40:852–63
    [Google Scholar]
  2. Addis DR, Wong AT, Schacter DL. 2007. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45:1363–77
    [Google Scholar]
  3. Anzellotti S, Young LL. 2020. The acquisition of person knowledge. Annu. Rev. Psychol. 71:613–34
    [Google Scholar]
  4. Arcaro MJ, Livingstone MS. 2021. On the relationship between maps and domains in inferotemporal cortex. Nat. Rev. Neurosci. 22:573–83
    [Google Scholar]
  5. Báez-Mendoza R, Mastrobattista EP, Wang AJ, Williams ZM. 2021. Social agent identity cells in the prefrontal cortex of interacting groups of primates. Science 374:eabb4149
    [Google Scholar]
  6. Baker CL, Jara-Ettinger J, Saxe R, Tenenbaum JB 2017. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nat. Hum. Behav. 1:0064
    [Google Scholar]
  7. Baldassano C, Beck DM, Li F-F. 2017. Human–object interactions are more than the sum of their parts. Cereb. Cortex 27:2276–88
    [Google Scholar]
  8. Bao P, She L, McGill M, Tsao DY. 2020. A map of object space in primate inferotemporal cortex. Nature 583:103–8
    [Google Scholar]
  9. Barrett LF, Satpute AB. 2013. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 23:361–72
    [Google Scholar]
  10. Bergman TJ, Beehner JC, Cheney DL, Seyfarth RM. 2003. Hierarchical classification by rank and kinship in baboons. Science 302:1234–36
    [Google Scholar]
  11. Bernstein M, Erez Y, Blank I, Yovel G. 2018. An integrated neural framework for dynamic and static face processing. Sci. Rep. 8:7036
    [Google Scholar]
  12. Braga RM, Buckner RL. 2017. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:457–71.e5
    [Google Scholar]
  13. Buckner RL, Andrews-Hanna JR, Schacter DL. 2008. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124:1–38
    [Google Scholar]
  14. Buckner RL, Carroll DC. 2007. Self-projection and the brain. Trends Cogn. Sci. 11:49–57
    [Google Scholar]
  15. Buckner RL, Margulies DS. 2019. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey. Nat. Commun. 10:1976
    [Google Scholar]
  16. Call J, Hare B, Carpenter M, Tomasello M. 2004. ‘Unwilling’ versus ‘unable’: chimpanzees’ understanding of human intentional action. Dev. Sci. 7:488–98
    [Google Scholar]
  17. Call J, Tomasello M. 2008. Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn. Sci. 12:187–92
    [Google Scholar]
  18. Chang L, Tsao DY. 2017. The code for facial identity in the primate brain. Cell 169:1013–28.e14
    [Google Scholar]
  19. Cheney D, Seyfarth RM. 1980. Vocal recognition in free-ranging vervet monkeys. Anim. Behav. 28:362–67
    [Google Scholar]
  20. Cheney D, Seyfarth R, Smuts B. 1986. Social relationships and social cognition in nonhuman primates. Science 234:1361–66
    [Google Scholar]
  21. Cléry JC, Hori Y, Schaeffer DJ, Menon RS, Everling S. 2021. Neural network of social interaction observation in marmosets. eLife 10:e65012
    [Google Scholar]
  22. Conway BR. 2018. The organization and operation of inferior temporal cortex. Annu. Rev. Vis. Sci. 4:381–402
    [Google Scholar]
  23. Currie TE, Little AC. 2009. The relative importance of the face and body in judgments of human physical attractiveness. Evol. Hum. Behav. 30:409–16
    [Google Scholar]
  24. Dasser V. 1988. A social concept in Java monkeys. Anim. Behav. 36:225–30
    [Google Scholar]
  25. Deen B, Freiwald W. 2021. Parallel systems for social and spatial reasoning within the cortical apex. bioRxiv 2021.09.23.461550. https://doi.org/10.1101/2021.09.23.461550
  26. Deen B, Koldewyn K, Kanwisher N, Saxe R 2015. Functional organization of social perception and cognition in the superior temporal sulcus. Cereb. Cortex 25:4596–609
    [Google Scholar]
  27. di Oleggio Castello MV, Halchenko YO, Guntupalli JS, Gors JD, Gobbini MI. 2017. The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception. Sci. Rep. 7:12237
    [Google Scholar]
  28. DiCarlo JJ, Cox DD. 2007. Untangling invariant object recognition. Trends Cogn. Sci. 11:333–41
    [Google Scholar]
  29. DiNicola LM, Braga RM, Buckner RL. 2020. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123:1144–79
    [Google Scholar]
  30. Dobs K, Martinez J, Kell AJE, Kanwisher N. 2022. Brain-like functional specialization emerges spontaneously in deep neural networks. Sci. Adv. 8:eabl8913
    [Google Scholar]
  31. Dunbar RI. 1998. The social brain hypothesis. Evol. Anthropol. 6:178–90
    [Google Scholar]
  32. Eifuku S, De Souza WC, Tamura R, Nishijo H, Ono T. 2004. Neuronal correlates of face identification in the monkey anterior temporal cortical areas. J. Neurophysiol. 91:358–71
    [Google Scholar]
  33. Elias LJ, Succi IK, Schaffler MD, Foster W, Gradwell MA et al. 2023. Touch neurons underlying dopaminergic pleasurable touch and sexual receptivity. Cell 186:577–90.e16
    [Google Scholar]
  34. Emery NJ, Lorincz EN, Perrett DI, Oram MW, Baker CI. 1997. Gaze following and joint attention in rhesus monkeys (Macaca mulatta). J. Comp. Psychol. 111:286–93
    [Google Scholar]
  35. Esmailpour H, Raman R, Vogels R. 2023. Inferior temporal cortex leads prefrontal cortex in response to a violation of a learned sequence. Cereb. Cortex 33:3124–41
    [Google Scholar]
  36. Etchells DB, Brooks JL, Johnston RA. 2017. Evidence for view-invariant face recognition units in unfamiliar face learning. Q. J. Exp. Psychol. 70:874–89
    [Google Scholar]
  37. Fedorenko E. 2021. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40:105–12
    [Google Scholar]
  38. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  39. Ferrario VF, Sforza C, Serrao G, Grassi G, Mossi E. 2002. Active range of motion of the head and cervical spine: a three-dimensional investigation in healthy young adults. J. Orthop. Res. 20:122–29
    [Google Scholar]
  40. Fisher C, Freiwald WA. 2015. Contrasting specializations for facial motion within the macaque face-processing system. Curr. Biol. 25:261–66
    [Google Scholar]
  41. Fiske ST, Cuddy AJ, Glick P. 2007. Universal dimensions of social cognition: warmth and competence. Trends Cogn. Sci. 11:77–83
    [Google Scholar]
  42. Fletcher PC, Happe F, Frith U, Baker SC, Dolan RJ et al. 1995. Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition 57:109–28
    [Google Scholar]
  43. Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque face processing system. Science 330:845–51
    [Google Scholar]
  44. Garin CM, Hori Y, Everling S, Whitlow CT, Calabro FJ et al. 2022. An evolutionary gap in primate default mode network organization. Cell Rep. 39:110669
    [Google Scholar]
  45. Gavrilov N, Nieder A. 2021. Distinct neural networks for the volitional control of vocal and manual actions in the monkey homologue of Broca's area. eLife 10:e62797
    [Google Scholar]
  46. Georgescu AL, Kuzmanovic B, Santos NS, Tepest R, Bente G et al. 2014. Perceiving nonverbal behavior: neural correlates of processing movement fluency and contingency in dyadic interactions. Hum. Brain Mapp. 35:1362–78
    [Google Scholar]
  47. Gobbini MI, Haxby JV. 2007. Neural systems for recognition of familiar faces. Neuropsychologia 45:32–41
    [Google Scholar]
  48. Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG. 2007. Neural responses to facial expression and face identity in the monkey amygdala. J. Neurophysiol. 97:1671–83
    [Google Scholar]
  49. Grahe JE, Bernieri FJ. 1999. The importance of nonverbal cues in judging rapport. J. Nonverbal Behav. 23:253–69
    [Google Scholar]
  50. Grimaldi P, Saleem KS, Tsao D. 2016. Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90:1325–42
    [Google Scholar]
  51. Hare B, Call J, Tomasello M. 2001. Do chimpanzees know what conspecifics know?. Anim. Behav. 61:139–51
    [Google Scholar]
  52. Hasselmo ME, Rolls ET, Baylis GC, Nalwa V. 1989. Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. Exp. Brain Res. 75:417–29
    [Google Scholar]
  53. Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends Cogn. Sci. 4:223–33
    [Google Scholar]
  54. Heyes C. 2015. Animal mindreading: What's the problem?. Psychon. Bull. Rev. 22:313–27
    [Google Scholar]
  55. Huang Y, Rao RPN. 2011. Predictive coding. Wiley Interdiscip. Rev. Cogn. Sci. 2:580–93
    [Google Scholar]
  56. Isik L, Koldewyn K, Beeler D, Kanwisher N. 2017. Perceiving social interactions in the posterior superior temporal sulcus. PNAS 114:E9145–52
    [Google Scholar]
  57. Isik L, Mynick A, Pantazis D, Kanwisher N. 2020. The speed of human social interaction perception. NeuroImage 215:116844
    [Google Scholar]
  58. Issa EB, Cadieu CF, DiCarlo JJ. 2018. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals. eLife 7:e42870
    [Google Scholar]
  59. Itakura S, Anderson JR. 1996. Learning to use experimenter-given cues during an object-choice task by a capuchin monkey. Curr. Psychol. Cogn. 15:103–12
    [Google Scholar]
  60. Jozwik KM, O'Keeffe J, Storrs KR, Guo W, Golan T, Kriegeskorte N. 2022. Face dissimilarity judgments are predicted by representational distance in morphable and image-computable models. PNAS 119:e2115047119
    [Google Scholar]
  61. Kano F, Krupenye C, Hirata S, Tomonaga M, Call J. 2019. Great apes use self-experience to anticipate an agent's action in a false-belief test. PNAS 116:20904–9
    [Google Scholar]
  62. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11
    [Google Scholar]
  63. Koski JE, Collins JA, Olson IR. 2017. The neural representation of social status in the extended face processing network. Eur. J. Neurosci. 46:2795–806
    [Google Scholar]
  64. Koster-Hale J, Saxe R 2013. Theory of mind: a neural prediction problem. Neuron 79:836–48
    [Google Scholar]
  65. Landi SM, Freiwald WA. 2017. Two areas for familiar face recognition in the primate brain. Science 357:591–95
    [Google Scholar]
  66. Landi SM, Viswanathan P, Serene S, Freiwald WA 2021. A fast link between face perception and memory in the temporal pole. Science 373:581–85
    [Google Scholar]
  67. Landsiedel J, Daughters K, Downing PE, Koldewyn K. 2022. The role of motion in the neural representation of social interactions in the posterior temporal cortex. NeuroImage 262:119533
    [Google Scholar]
  68. Langton SRH, Bruce V. 1999. Reflexive visual orienting in response to the social attention of others. Vis. Cogn. 6:541–67
    [Google Scholar]
  69. Langton SRH, Bruce V. 2000. You must see the point: automatic processing of cues to the direction of social attention. J. Exp. Psychol. Hum. Percept. Perform. 26:747–57
    [Google Scholar]
  70. Lee Masson H, Isik L 2021. Functional selectivity for social interaction perception in the human superior temporal sulcus during natural viewing. NeuroImage 245:118741
    [Google Scholar]
  71. Leibo JZ, Liao Q, Anselmi F, Freiwald WA, Poggio T. 2017. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. Curr. Biol. 27:62–67
    [Google Scholar]
  72. Liu C, Yen CC-C, Szczupak D, Ye FQ, Leopold DA, Silva AC. 2019. Anatomical and functional investigation of the marmoset default mode network. Nat. Commun. 10:1975
    [Google Scholar]
  73. Lockwood PL, Apps MA, Chang SW. 2020. Is there a ‘social’ brain? Implementations and algorithms. Trends Cogn. Sci. 24:802–13
    [Google Scholar]
  74. Mantini D, Gerits A, Nelissen K, Durand J-B, Joly O et al. 2011. Default mode of brain function in monkeys. J. Neurosci. 31:12954–62
    [Google Scholar]
  75. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM et al. 2016. Situating the default-mode network along a principal gradient of macroscale cortical organization. PNAS 113:12574–79
    [Google Scholar]
  76. Mars RB, Sallet J, Neubert F-X, Rushworth MFS. 2013. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. PNAS 110:10806–11
    [Google Scholar]
  77. Marshall P, Bartolacci A, Burke D. 2020. Human face tilt is a dynamic social signal that affects perceptions of dimorphism, attractiveness, and dominance. Evol. Psychol. 18: https://doi.org/10.1177/1474704920910403
    [Crossref] [Google Scholar]
  78. Mason M, Magee JC, Fiske ST. 2014. Neural substrates of social status inference: roles of medial prefrontal cortex and superior temporal sulcus. J. Cogn. Neurosci. 26:1131–40
    [Google Scholar]
  79. McMahon DB, Russ BE, Elnaiem HD, Kurnikova AI, Leopold DA 2015. Single-unit activity during natural vision: diversity, consistency, and spatial sensitivity among AF face patch neurons. J. Neurosci. 35:5537–48
    [Google Scholar]
  80. Meyer T, Olson CR. 2011. Statistical learning of visual transitions in monkey inferotemporal cortex. PNAS 108:4819401–6
    [Google Scholar]
  81. Mignault A, Chaudhuri A. 2003. The many faces of a neutral face: head tilt and perception of dominance and emotion. J. Nonverbal Behav. 27:111–32
    [Google Scholar]
  82. Mitchell JP. 2009. Social psychology as a natural kind. Trends Cogn. Sci. 13:246–51
    [Google Scholar]
  83. Moeller S, Crapse T, Chang L, Tsao DY. 2017. The effect of face patch microstimulation on perception of faces and objects. Nat. Neurosci. 20:743–52
    [Google Scholar]
  84. Moeller S, Freiwald WA, Tsao DY. 2008. Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–59
    [Google Scholar]
  85. Mumford D. 1992. On the computational architecture of the neocortex. Biol. Cybern. 66:241–51
    [Google Scholar]
  86. Murphy AP, Leopold DA 2019. A parameterized digital 3D model of the Rhesus macaque face for investigating the visual processing of social cues. J. Neurosci. Methods 324:108309
    [Google Scholar]
  87. Ninomiya T, Noritake A, Isoda M. 2021. Live agent preference and social action monitoring in the macaque mid-superior temporal sulcus region. PNAS 118:e2109653118
    [Google Scholar]
  88. Niu M, Palomero-Gallagher N. 2023. Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Struct. Funct 228:47–61
    [Google Scholar]
  89. Oram MW, Perrett DI. 1992. Time course of neural responses discriminating different views of the face and head. J. Neurophysiol. 68:70–84
    [Google Scholar]
  90. Parr LA, Winslow JT, Hopkins WD, de Waal FBM. 2000. Recognizing facial cues: Individual discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). J. Comp. Psychol. 114:47–60
    [Google Scholar]
  91. Penn DC, Povinelli DJ. 2007. On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind. ’. Philos. Trans. R. Soc. B 362:731–44
    [Google Scholar]
  92. Perrett DI, Oram MW, Ashbridge E 1998. Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations. Cognition 67:111–45
    [Google Scholar]
  93. Perrett DI, Oram MW, Harries MH, Bevan R, Hietanen JK et al. 1991. Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain Res. 86:159–73
    [Google Scholar]
  94. Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS et al. 1984. Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Hum. Neurobiol. 3:197–208
    [Google Scholar]
  95. Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS et al. 1985. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. R. Soc. B 223:293–317
    [Google Scholar]
  96. Pfefferle D, Heistermann M, Hodges JK, Fischer J. 2008. Male Barbary macaques eavesdrop on mating outcome: a playback study. Anim. Behav. 75:1885–91
    [Google Scholar]
  97. Phillips J, Buckwalter W, Cushman F, Friedman O, Martin A et al. 2021. Knowledge before belief. Behav. Brain Sci. 44:e140
    [Google Scholar]
  98. Phillips W, Barnes JL, Mahajan N, Yamaguchi M, Santos LR. 2009. ‘Unwilling’ versus ‘unable’: capuchin monkeys' (Cebus apella) understanding of human intentional action. Dev. Sci. 12:938–45
    [Google Scholar]
  99. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. 2011. Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56:2356–63
    [Google Scholar]
  100. Pitcher D, Ungerleider LG. 2021. Evidence for a third visual pathway specialized for social perception. Trends Cogn. Sci. 25:100–10
    [Google Scholar]
  101. Quadflieg S, Koldewyn K. 2017. The neuroscience of people watching: how the human brain makes sense of other people's encounters. Ann. N. Y. Acad. Sci. 1396:166–82
    [Google Scholar]
  102. Raichle ME. 2015. The brain's default mode network. Annu. Rev. Neurosci. 38:433–47
    [Google Scholar]
  103. Rosenfeld SA, Van Hoesen GW. 1979. Face recognition in the rhesus monkey. Neuropsychologia 17:503–9
    [Google Scholar]
  104. Roumazeilles L, Schurz M, Lojkiewiez M, Verhagen L, Schüffelgen U et al. 2021. Social prediction modulates activity of macaque superior temporal cortex. Sci. Adv. 7:eabh2392
    [Google Scholar]
  105. Saether L, Laeng B. 2008. On facial expertise: processing strategies of twins' parents. Perception 37:1227–40
    [Google Scholar]
  106. Santana SE, Lynch Alfaro J, Alfaro ME. 2012. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. Biol. Sci. 279:2204–11
    [Google Scholar]
  107. Santos LR, Nissen AG, Ferrugia JA. 2006. Rhesus monkeys, Macaca mulatta, know what others can and cannot hear. Anim. Behav. 71:1175–81
    [Google Scholar]
  108. Saxe R, Brett M, Kanwisher N. 2006. Divide and conquer: a defense of functional localizers. Neuroimage 30:1088–96
    [Google Scholar]
  109. Saxe R, Kanwisher N. 2003. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind. .” NeuroImage 19:1835–42
    [Google Scholar]
  110. Saxe R, Powell LJ. 2006. It's the thought that counts: specific brain regions for one component of theory of mind. Psychol. Sci. 17:692–99
    [Google Scholar]
  111. Schell A, Rieck K, Schell K, Hammerschmidt K, Fischer J. 2011. Adult but not juvenile Barbary macaques spontaneously recognize group members from pictures. Anim. Cogn. 14:503–9
    [Google Scholar]
  112. Schino G, Tiddi B, Di Sorrentino EP. 2006. Simultaneous classification by rank and kinship in Japanese macaques. Anim. Behav. 71:1069–74
    [Google Scholar]
  113. Schwiedrzik CM, Freiwald WA. 2017. High-level prediction signals in a low-level area of the macaque face processing hierarchy. Neuron 96:89–97.e4
    [Google Scholar]
  114. Schwiedrzik CM, Zarco W, Everling S, Freiwald WA. 2015. Face patch resting state networks link face processing to social cognition. PLOS Biol. 13:e1002245
    [Google Scholar]
  115. Seltzer B, Pandya DN. 1989. Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 290:451–71
    [Google Scholar]
  116. Sheehan MJ, Nachman MW. 2014. Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nat. Commun. 5:4800
    [Google Scholar]
  117. Shutts K, Pemberton CK, Spelke ES. 2013. Children's use of social categories in thinking about people and social relationships. J. Cogn. Dev. 14:35–62
    [Google Scholar]
  118. Silk JB. 1999. Male bonnet macaques use information about third-party rank relationships to recruit allies. Anim. Behav. 58:45–51
    [Google Scholar]
  119. Silson EH, Steel A, Kidder A, Gilmore AW, Baker CI. 2019. Distinct subdivisions of human medial parietal cortex support recollection of people and places. eLife 8:e47391
    [Google Scholar]
  120. Sliwa J, Duhamel JR, Pascalis O, Wirth S. 2011. Spontaneous voice–face identity matching by rhesus monkeys for familiar conspecifics and humans. PNAS 108:1735–40
    [Google Scholar]
  121. Sliwa J, Freiwald WA. 2017. A dedicated network for social interaction processing in the primate brain. Science 356:745–49
    [Google Scholar]
  122. Spreng RN, Mar RA, Kim AS. 2009. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21:489–510
    [Google Scholar]
  123. Srull TK, Wyer RS. 1989. Person memory and judgment. Psychol. Rev. 96:58
    [Google Scholar]
  124. Stevenage SV. 1998. Which twin are you? A demonstration of induced categorical perception of identical twin faces. Br. J. Psychol. 89:39–57
    [Google Scholar]
  125. Su J, van Boxtel JJA, Lu H. 2016. Social interactions receive priority to conscious perception. PLOS ONE 11:e0160468
    [Google Scholar]
  126. Szpunar KK, Watson JM, McDermott KB. 2007. Neural substrates of envisioning the future. PNAS 104:642–47
    [Google Scholar]
  127. Tamir DI, Thornton MA, Contreras JM, Mitchell JP. 2016. Neural evidence that three dimensions organize mental state representation: rationality, social impact, and valence. PNAS 113:194–99
    [Google Scholar]
  128. Thornton MA, Mitchell JP. 2017. Consistent neural activity patterns represent personally familiar people. J. Cogn. Neurosci. 29:1583–94
    [Google Scholar]
  129. Tibbetts EA, Dale J. 2007. Individual recognition: It is good to be different. Trends Ecol. Evol. 22:529–37
    [Google Scholar]
  130. Torrance JS, Holzleitner IJ, Lee AJ, DeBruine LM, Jones BC. 2020. Evidence head tilt has dissociable effects on dominance and trustworthiness judgments, but does not have category-contingent effects on hypothetical leadership judgments. Perception 49:199–209
    [Google Scholar]
  131. Troje NF, Siebeck U. 1998. Illumination-induced apparent shift in orientation of human heads. Perception 27:671–80
    [Google Scholar]
  132. Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB. 2003. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6:989–95
    [Google Scholar]
  133. Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. 2006. A cortical region consisting entirely of face-selective cells. Science 311:670–4
    [Google Scholar]
  134. Tsao DY, Moeller S, Freiwald WA. 2008. Comparing face patch systems in macaques and humans. PNAS 105:19514–19
    [Google Scholar]
  135. Vernon RJ, Sutherland CA, Young AW, Hartley T. 2014. Modeling first impressions from highly variable facial images. PNAS 111:E3353–61
    [Google Scholar]
  136. Vincent J, Patel G, Fox M, Snyder A, Baker J et al. 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86
    [Google Scholar]
  137. Walbrin J, Downing P, Koldewyn K. 2018. Neural responses to visually observed social interactions. Neuropsychologia 112:31–39
    [Google Scholar]
  138. Whitehouse J, Meunier H. 2020. An understanding of third-party friendships in a tolerant macaque. Sci. Rep. 10:9777
    [Google Scholar]
  139. Wilson HR, Wilkinson F, Lin L-M, Castillo M. 2000. Perception of head orientation. Vision Res. 40:459–72
    [Google Scholar]
  140. Witkower Z, Tracy JL. 2019. A facial-action imposter: How head tilt influences perceptions of dominance from a neutral face. Psychol. Sci. 30:893–906
    [Google Scholar]
  141. Wurm MF, Caramazza A, Lingnau A. 2017. Action categories in lateral occipitotemporal cortex are organized along sociality and transitivity. J. Neurosci. 37:562–75
    [Google Scholar]
  142. Zhou C, Han M, Liang Q, Hu YF, Kuai SG. 2019. A social interaction field model accurately identifies static and dynamic social groupings. Nat. Hum. Behav. 3:847–55
    [Google Scholar]
  143. Zumpe D, Michael RP. 1970. Redirected aggression and gonadal hormones in captive rhesus monkeys (Macaca mulatta). Anim. Behav. 18:11–19
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-102522-121410
Loading
/content/journals/10.1146/annurev-neuro-102522-121410
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error