1932

Abstract

The field of stereotactic neurosurgery developed more than 70 years ago to address a therapy gap for patients with severe psychiatric disorders. In the decades since, it has matured tremendously, benefiting from advances in clinical and basic sciences. Deep brain stimulation (DBS) for severe, treatment-resistant psychiatric disorders is currently poised to transition from a stage of empiricism to one increasingly rooted in scientific discovery. Current drivers of this transition are advances in neuroimaging, but rapidly emerging ones are neurophysiological—as we understand more about the neural basis of these disorders, we will more successfully be able to use interventions such as invasive stimulation to restore dysfunctional circuits to health. Paralleling this transition is a steady increase in the consistency and quality of outcome data. Here, we focus on obsessive-compulsive disorder and depression, two topics that have received the most attention in terms of trial volume and scientific effort.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110122-110434
2023-07-10
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-110122-110434.html?itemId=/content/journals/10.1146/annurev-neuro-110122-110434&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M et al. 2005. Deep brain stimulation for refractory obsessive-compulsive disorder. Biol. Psychiatry 57:510–16
    [Google Scholar]
  2. Admon R, Bleich-Cohen M, Weizmant R, Poyurovsky M, Faragian S, Hendler T. 2012. Functional and structural neural indices of risk aversion in obsessive-compulsive disorder (OCD). Psychiatry Res. 203:207–13
    [Google Scholar]
  3. Alexander GE, Delong MR, Strick PL. 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9:357–81
    [Google Scholar]
  4. Allawala A, Bijanki KR, Goodman W, Cohn JF, Viswanathan A et al. 2021. A novel framework for network-targeted neuropsychiatric deep brain stimulation. Neurosurgery 89:E116–21
    [Google Scholar]
  5. Anthem Blue Cross 2021. Deep brain, cortical, and cerebellar stimulation Med. Policy SURG.00026 Anthem Blue Cross Indianapolis, IN: https://www.anthem.com/dam/medpolicies/abc/active/policies/mp_pw_a050253.html
    [Google Scholar]
  6. Baldermann JC, Schuller T, Kohl S, Voon V, Li N et al. 2021. Connectomic deep brain stimulation for obsessive-compulsive disorder. Biol. Psychiatry 90:678–88
    [Google Scholar]
  7. Ballantine HT Jr., Cassidy WL, Flanagan NB, Marino R Jr. 1967. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J. Neurosurg. 26:488–95
    [Google Scholar]
  8. Benabid AL. 2003. Deep brain stimulation for Parkinson's disease. Curr. Opin. Neurobiol. 13:696–706
    [Google Scholar]
  9. Bergfeld IO, Mantione M, Hoogendoorn ML, Ruhe HG, Notten P et al. 2016. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 73:456–64
    [Google Scholar]
  10. Bijanki KR, Pathak YJ, Najera RA, Storch EA, Goodman WK et al. 2021. Defining functional brain networks underlying obsessive–compulsive disorder (OCD) using treatment-induced neuroimaging changes: a systematic review of the literature. J. Neurol. Neurosurg. Psychiatry 92:776–86
    [Google Scholar]
  11. Bourne SK, Sheth SA, Neal J, Strong C, Mian MK et al. 2013. Beneficial effect of subsequent lesion procedures after nonresponse to initial cingulotomy for severe, treatment-refractory obsessive-compulsive disorder. Neurosurgery 72:196–202
    [Google Scholar]
  12. Bouwens van der Vlis TAM, Ackermans L, Mulders AEP, Vrij CA, Schruers K et al. 2021. Ventral capsule/ventral striatum stimulation in obsessive-compulsive disorder: toward a unified connectomic target for deep brain stimulation?. Neuromodulation 24:316–23
    [Google Scholar]
  13. Brown LT, Mikell CB, Youngerman BE, Zhang Y, McKhann GM 2nd, Sheth SA. 2016. Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J. Neurosurg. 124:77–89
    [Google Scholar]
  14. Chang JG, Jung HH, Kim SJ, Chang WS, Jung NY et al. 2020. Bilateral thermal capsulotomy with magnetic resonance-guided focused ultrasound for patients with treatment-resistant depression: a proof-of-concept study. Bipolar Disord. 22:771–74
    [Google Scholar]
  15. Choi KS, Riva-Posse P, Gross RE, Mayberg HS. 2015. Mapping the “depression switch” during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 72:1252–60
    [Google Scholar]
  16. Coenen VA, Bewernick BH, Kayser S, Kilian H, Bostrom J et al. 2019. Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology 44:1224–32
    [Google Scholar]
  17. Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Madler B. 2012. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J. Neuropsychiatry Clin. Neurosci. 24:223–36
    [Google Scholar]
  18. Crowell AL, Riva-Posse P, Holtzheimer PE, Garlow SJ, Kelley ME et al. 2019. Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am. J. Psychiatry 176:949–56
    [Google Scholar]
  19. Davis RA, Giordano J, Hufford DB, Sheth SA, Warnke P et al. 2021. Restriction of access to deep brain stimulation for refractory OCD: failure to apply the federal parity act. Front. Psychiatry 12:706181
    [Google Scholar]
  20. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F et al. 2010. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch. Gen. Psychiatry 67:1061–68
    [Google Scholar]
  21. Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT et al. 2015. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiatry 78:240–48
    [Google Scholar]
  22. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F et al. 2017. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23:28–38
    [Google Scholar]
  23. Dunlop BW, Rajendra JK, Craighead WE, Kelley ME, McGrath CL et al. 2017. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am. J. Psychiatry 174:533–45
    [Google Scholar]
  24. Fenoy AJ, Schulz P, Selvaraj S, Burrows C, Spiker D et al. 2016. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J. Affect. Disord. 203:143–51
    [Google Scholar]
  25. Fenoy AJ, Schulz PE, Selvaraj S, Burrows CL, Zunta-Soares G et al. 2018. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl. Psychiatry 8:111
    [Google Scholar]
  26. Fontaine D, Mattei V, Borg M, von Langsdorff D, Magnie MN et al. 2004. Effect of subthalamic nucleus stimulation on obsessive-compulsive disorder in a patient with Parkinson disease: case report. J. Neurosurg. 100:1084–86
    [Google Scholar]
  27. Gadot R, Li N, Shofty B, Avendano-Ortega M, McKay S et al. 2023. Tractography-based modeling explains treatment outcomes in patients undergoing deep brain stimulation for obsessive compulsive disorder. Biol. Psychiatry. In press
    [Google Scholar]
  28. Gadot R, Najera RA, Hirani S, Anand A, Storch EA et al. 2022. Efficacy of deep brain stimulation for treatment-resistant obsessive-compulsive disorder: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 93:1166–173
    [Google Scholar]
  29. Gilron R, Little S, Perrone R, Wilt R, de Hemptinne C et al. 2021. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson's disease. Nat. Biotechnol. 39:1078–85
    [Google Scholar]
  30. Goodman WK, Foote KD, Greenberg BD, Ricciuti N, Bauer R et al. 2010. Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol. Psychiatry 67:535–42
    [Google Scholar]
  31. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL et al. 1989. The Yale-Brown obsessive compulsive scale. Arch. Gen. Psychiatry 46:1006–11
    [Google Scholar]
  32. Graat I, Mocking RJT, Liebrand LC, van den Munckhof P, Bot M et al. 2022. Tractography-based versus anatomical landmark-based targeting in vALIC deep brain stimulation for refractory obsessive-compulsive disorder. Mol. Psychiatry 27:5206–12
    [Google Scholar]
  33. Greenberg BD, Gabriels LA, Malone DA, Rezai AR, Friehs GM et al. 2010. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol. Psychiatry 15:64–79
    [Google Scholar]
  34. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS et al. 2006. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31:2384–93
    [Google Scholar]
  35. Grill W, Snyder AN, Miocinovic S. 2004. Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15:1137–40
    [Google Scholar]
  36. Haber SN, Yendiki A, Jbabdi S. 2020. Four deep brain stimulation targets for obsessive-compulsive disorder: Are they different?. Biol. Psychiatry 90:667–77
    [Google Scholar]
  37. Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM. 2009. Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J. Neurosurg. 111:1209–15
    [Google Scholar]
  38. Hitti FL, Yang AI, Cristancho MA, Baltuch GH. 2020. Deep brain stimulation is effective for treatment-resistant depression: a meta-analysis and meta-regression. J. Clin. Med. 9:2796
    [Google Scholar]
  39. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA et al. 2017. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4:839–49
    [Google Scholar]
  40. Holtzheimer PE, Kelley ME, Gross RE, Filkowski MM, Garlow SJ et al. 2012. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch. Gen. Psychiatry 69:150–58
    [Google Scholar]
  41. Horsley V, Clarke RH. 1908. The structure and functions of the cerebellum examined by a new method. Brain 31:45–124
    [Google Scholar]
  42. Jakobs M, Fomenko A, Lozano AM, Kiening KL. 2019. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments. EMBO Mol. Med. 11:e9575
    [Google Scholar]
  43. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y et al. 2011. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am. J. Psychiatry 168:502–10
    [Google Scholar]
  44. Leksell L. 1951. The stereotaxic method and radiosurgery of the brain. Acta Chir. Scand. 102:316–19
    [Google Scholar]
  45. Li N, Baldermann JC, Kibleur A, Treu S, Akram H et al. 2020. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat. Commun. 11:3364
    [Google Scholar]
  46. Lozano AM, Giacobbe P, Hamani C, Rizvi SJ, Kennedy SH et al. 2012. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J. Neurosurg. 116:315–22
    [Google Scholar]
  47. Luyten L, Hendrickx S, Raymaekers S, Gabriëls L, Nuttin B. 2016. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol. Psychiatry 21:1272–80
    [Google Scholar]
  48. Mallet L, Mesnage V, Houeto JL, Pelissolo A, Yelnik J et al. 2002. Compulsions, Parkinson's disease, and stimulation. Lancet 360:1302–4
    [Google Scholar]
  49. Mallet L, Polosan M, Jaafari N, Baup N, Welter M-L et al. 2008. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N. Engl. J. Med. 359:2121–34
    [Google Scholar]
  50. Malone DA Jr., Dougherty DD, Rezai AR, Carpenter LL, Friehs GM et al. 2009. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65:267–75
    [Google Scholar]
  51. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK et al. 1999. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156:675–82
    [Google Scholar]
  52. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D et al. 2005. Deep brain stimulation for treatment-resistant depression. Neuron 45:651–60
    [Google Scholar]
  53. McLaughlin NCR, Lauro PM, Patrick MT, Pucci FG, Barrios-Anderson A et al. 2021. Magnetic resonance imaging-guided laser thermal ventral capsulotomy for intractable obsessive-compulsive disorder. Neurosurgery 88:1128–35
    [Google Scholar]
  54. Miguel EC, Lopes AC, McLaughlin NCR, Norén G, Gentil AF et al. 2019. Evolution of gamma knife capsulotomy for intractable obsessive-compulsive disorder. Mol. Psychiatry 24:218–40
    [Google Scholar]
  55. Mosley PE, Windels F, Morris J, Coyne T, Marsh R et al. 2021. A randomised, double-blind, sham-controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for treatment-resistant obsessive-compulsive disorder. Transl. Psychiatry 11:190
    [Google Scholar]
  56. Najera RA, Gregory ST, Shofty B, Anand A, Gadot R et al. 2022. Cost-effectiveness analysis of radiosurgical capsulotomy versus treatment as usual for treatment-resistant obsessive-compulsive disorder. J. Neurosurg. 138:347–57
    [Google Scholar]
  57. Neumaier F, Paterno M, Alpdogan S, Tevoufouet EE, Schneider T et al. 2017. Surgical approaches in psychiatry: a survey of the world literature on psychosurgery. World Neurosurg. 97:603–34.e8
    [Google Scholar]
  58. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. 1999. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354:1526
    [Google Scholar]
  59. Nuttin BJ, Gabriels L, van Kuyck K, Cosyns P. 2003. Electrical stimulation of the anterior limbs of the internal capsules in patients with severe obsessive-compulsive disorder: anecdotal reports. Neurosurg. Clin. N. Am. 14:267–74
    [Google Scholar]
  60. Olsen ST, Basu I, Bilge MT, Kanabar A, Boggess MJ et al. 2020. Case report of dual-site neurostimulation and chronic recording of cortico-striatal circuitry in a patient with treatment refractory obsessive compulsive disorder. Front. Hum. Neurosci. 14:569973
    [Google Scholar]
  61. Papez JW. 1995 (1937). A proposed mechanism of emotion. J. Neuropsychiatry 7:103–12
    [Google Scholar]
  62. Pepper J, Hariz M, Zrinzo L 2015. Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature. J. Neurosurg. 122:1028–37
    [Google Scholar]
  63. Pinckard-Dover H, Ward H, Foote KD. 2021. The decline of deep brain stimulation for obsessive–compulsive disorder following FDA humanitarian device exemption approval. Front. Surg. 8:642503
    [Google Scholar]
  64. Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. 2014. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum. Brain Mapp. 35:2852–60
    [Google Scholar]
  65. Provenza NR, Sheth SA, Dastin-Van Rijn EM, Mathura RK, Ding Y et al. 2021. Long-term ecological assessment of intracranial electrophysiology synchronized to behavioral markers in obsessive-compulsive disorder. Nat. Med. 27:2154–64
    [Google Scholar]
  66. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ et al. 2018. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23:843–49
    [Google Scholar]
  67. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE et al. 2014. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 76:963–69
    [Google Scholar]
  68. Roet M, Boonstra J, Sahin E, Mulders AEP, Leentjens AFG, Jahanshahi A. 2020. Deep brain stimulation for treatment-resistant depression: towards a more personalized treatment approach. J. Clin. Med. 9:2729
    [Google Scholar]
  69. Saxena S, Rauch SL. 2000. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr. Clin. North Am. 23:563–86
    [Google Scholar]
  70. Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP et al. 2021. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27:1696–700
    [Google Scholar]
  71. Sheth SA, Bijanki KR, Metzger B, Allawala A, Pirtle V et al. 2022. Deep brain stimulation for depression informed by intracranial recordings. Biol. Psychiatry 92:246–51
    [Google Scholar]
  72. Sheth SA, Neal J, Tangherlini F, Mian MK, Gentil A et al. 2013. Limbic system surgery for treatment-refractory obsessive-compulsive disorder: a prospective long-term follow-up of 64 patients. J. Neurosurg. 118:491–97
    [Google Scholar]
  73. Spiegel-Adolf M, Wycis HT, Spiegel EA. 1947. Cerebrospinal fluid studies in cerebral concussion. J. Nerv. Ment. Dis. 106:359–68
    [Google Scholar]
  74. Steele JD, Christmas D, Eljamel MS, Matthews K. 2008. Anterior cingulotomy for major depression: clinical outcome and relationship to lesion characteristics. Biol. Psychiatry 63:670–77
    [Google Scholar]
  75. Talairach J, Hécaen H, David M. 1949. Lobotomie préfrontale limitée par électrocoagulation des fibres thalamo-frontales a leur émergence du bras antérieur de la capsule interne. Rev. Neurol. 83:59
    [Google Scholar]
  76. Tyagi H, Apergis-Schoute AM, Akram H, Foltynie T, Limousin P et al. 2019. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol. Psychiatry 85:726–34
    [Google Scholar]
  77. Tykocki T, Nauman P, Koziara H, Mandat T. 2013. Microlesion effect as a predictor of the effectiveness of subthalamic deep brain stimulation for Parkinson's disease. Stereotact. Funct. Neurosurg. 91:12–17
    [Google Scholar]
  78. Veerakumar A, Tiruvadi V, Howell B, Waters AC, Crowell AL et al. 2019. Field potential 1/f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J. Neurophysiol. 122:1023–35
    [Google Scholar]
  79. Vissani M, Nanda P, Bush A, Neudorfer C, Dougherty D, Richardson RM. 2022. Toward closed-loop intracranial neurostimulation in obsessive-compulsive disorder. Biol. Psychiatry. In press
    [Google Scholar]
  80. Visser-Vandewalle V, Andrade P, Mosley PE, Greenberg BD, Schuurman R et al. 2022. Deep brain stimulation for obsessive compulsive disorder: a crisis of access. Nat. Med. 28:1529–32
    [Google Scholar]
  81. Vitek JL, Jain R, Chen L, Troster AI, Schrock LE et al. 2020. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson's disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurol. 19:491–501
    [Google Scholar]
  82. Whitty CWM, Duffield JE, Tow PM, Cairns H. 1952. Anterior cingulectomy in the treatment of mental disease. Lancet 259:475–81
    [Google Scholar]
  83. Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P et al. 2021. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology 47:965–72
    [Google Scholar]
  84. Xiao J, Provenza NR, Asfouri J, Myers J, Mathura RK et al. 2023. Decoding depression severity from intracranial neural activity. Biol. Psychiatry In press
    [Google Scholar]
  85. Zavala B, Tan H, Ashkan K, Foltynie T, Limousin P et al. 2016. Human subthalamic nucleus-medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. Neuroimage 137:178–87
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110122-110434
Loading
/content/journals/10.1146/annurev-neuro-110122-110434
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error