1932

Abstract

The extent to which we are affected by perceptual input of which we are unaware is widely debated. By measuring neural responses to sensory stimulation, neuroscientific data could complement behavioral results with valuable evidence. Here we review neuroscientific findings of processing of high-level information, as well as interactions with attention and memory. Although the results are mixed, we find initial support for processing object categories and words, possibly to the semantic level, as well as emotional expressions. Robust neural evidence for face individuation and integration of sentences or scenes is lacking. Attention affects the processing of stimuli that are not consciously perceived, and such stimuli may exogenously but not endogenously capture attention when relevant, and be maintained in memory over time. Sources of inconsistency in the literature include variability in control for awareness as well as individual differences, calling for future studies that adopt stricter measures of awareness and probe multiple processes within subjects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110920-033151
2022-07-08
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110920-033151.html?itemId=/content/journals/10.1146/annurev-neuro-110920-033151&mimeType=html&fmt=ahah

Literature Cited

  1. Ajina S, Pollard M, Bridge H. 2020.. The superior colliculus and amygdala support evaluation of face trait in blindsight. . Front. Neurol. 11::769
    [Google Scholar]
  2. Amihai I, Deouell L, Bentin S. 2011.. Conscious awareness is necessary for processing race and gender information from faces. . Conscious. Cogn. 20:(2):26979
    [Google Scholar]
  3. Andrillon T, Kouider S. 2020.. The vigilant sleeper: neural mechanisms of sensory (de)coupling during sleep. . Curr. Opin. Physiol. 15::4759
    [Google Scholar]
  4. Axelrod V, Bar M, Rees G, Yovel G. 2015.. Neural correlates of subliminal language processing. . Cereb. Cortex 25:(8):216069
    [Google Scholar]
  5. Bahrami B, Lavie N, Rees G. 2007.. Attentional load modulates responses of human primary visual cortex to invisible stimuli. . Curr. Biol. 17:(6):50913
    [Google Scholar]
  6. Baier D, Ansorge U. 2020.. Can subliminal spatial words trigger an attention shift? Evidence from event-related-potentials in visual cueing. . Vis. Cogn. 28:(1):1032
    [Google Scholar]
  7. Bareither I, Chaumon M, Bernasconi F, Villringer A, Busch NA. 2014.. Invisible visual stimuli elicit increases in alpha-band power. . J. Neurophysiol. 112:(5):108290
    [Google Scholar]
  8. Ben-Haim MS, Dal Monte O, Fagan NA, Dunham Y, Hassin RR, et al. 2021.. Disentangling perceptual awareness from nonconscious processing in rhesus monkeys (Macaca mulatta). . PNAS 118:(15):e2017543118
    [Google Scholar]
  9. Bentin S, Allison T, Puce A, Perez E, McCarthy G. 1996.. Electrophysiological studies of face perception in humans. . J. Cogn. Neurosci. 8:(6):55165
    [Google Scholar]
  10. Bergström F, Eriksson J. 2018.. Neural evidence for non-conscious working memory. . Cereb. Cortex 28:(9):321728
    [Google Scholar]
  11. Bisiach E, Rusconi ML. 1990.. Break-down of perceptual awareness in unilateral neglect. . Cortex 26:(4):64349
    [Google Scholar]
  12. Breitmeyer BG. 2015.. Psychophysical “blinding” methods reveal a functional hierarchy of unconscious visual processing. . Conscious. Cogn. 35::23450
    [Google Scholar]
  13. Chen X, Ran G, Zhang Q, Hu T. 2015.. Unconscious attention modulates the silencing effect of top-down predictions. . Conscious. Cogn. 34::6372
    [Google Scholar]
  14. Damian MF. 2001.. Congruity effects evoked by subliminally presented primes: automaticity rather than semantic processing. . J. Exp. Psychol. Hum. Percept. Perform. 27:(1):15465
    [Google Scholar]
  15. Dannlowski U, Ohrmann P, Bauer J, Kugel H, Arolt V, et al. 2007.. Amygdala reactivity predicts automatic negative evaluations for facial emotions. . Psychiatry Res. 154:(1):1320
    [Google Scholar]
  16. Davidson MJ, Alais D, van Boxtel JJA, Tsuchiya N. 2018.. Attention periodically samples competing stimuli during binocular rivalry. . eLife 7::e40868
    [Google Scholar]
  17. Davis MH, Coleman MR, Absalom AR, Rodd JM, Johnsrude IS, et al. 2007.. Dissociating speech perception and comprehension at reduced levels of awareness. . PNAS 104:(41):1603237
    [Google Scholar]
  18. Deacon D, Hewitt S, Yang CM, Nagata M. 2000.. Event-related potential indices of semantic priming using masked and unmasked words: evidence that the N400 does not reflect a post-lexical process. . Cogn. Brain Res. 9:(2):13746
    [Google Scholar]
  19. Degonda N, Mondadori CRA, Bosshardt S, Schmidt CF, Boesiger P, et al. 2005.. Implicit associative learning engages the hippocampus and interacts with explicit associative learning. . Neuron 46:(3):50520
    [Google Scholar]
  20. Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. 2006.. Conscious, preconscious, and subliminal processing: a testable taxonomy. . Trends Cogn. Sci. 10:(5):20411
    [Google Scholar]
  21. Dehaene S, Cohen L. 2011.. The unique role of the visual word form area in reading. . Trends Cogn. Sci. 15:(6):25462
    [Google Scholar]
  22. Dehaene S, Naccache L. 2001.. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. . Cognition 79:(1–2):137
    [Google Scholar]
  23. Dehaene S, Naccache L, Cohen L, Le Bihan D, Mangin JF, et al. 2001.. Cerebral mechanisms of word masking and unconscious repetition priming. . Nat. Neurosci. 4::75258
    [Google Scholar]
  24. Dehaene S, Naccache L, Le Clec'H G, Koechlin E, Mueller M, et al. 1998.. Imaging unconscious semantic priming. . Nature 395:(6702):597600
    [Google Scholar]
  25. Deouell LY, Soroker N. 2000.. What is extinguished in auditory extinction?. Neuroreport 11:(13):305962
    [Google Scholar]
  26. Desimone R, Duncan J. 1995.. Neural mechanisms of selective visual-attention. . Annu. Rev. Neurosci. 18::193222
    [Google Scholar]
  27. Diaz MT, McCarthy G. 2007.. Unconscious word processing engages a distributed network of brain regions. . J. Cogn. Neurosci. 19:(11):176875
    [Google Scholar]
  28. Doradzińska Ł, Wójcik MJ, Paź M, Nowicka MM, Nowicka A, Bola M. 2020.. Unconscious perception of one's own name modulates amplitude of the P3B ERP component. . Neuropsychologia 147::107564
    [Google Scholar]
  29. Dutta A, Shah K, Silvanto J, Soto D. 2014.. Neural basis of non-conscious visual working memory. . Neuroimage 91::33643
    [Google Scholar]
  30. Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, et al. 2004.. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. . Neuron 44:(6):104355
    [Google Scholar]
  31. Fahrenfort JJ, Snijders TM, Heinen K, Van Gaal S, Scholte HS, Lamme VAF. 2012.. Neuronal integration in visual cortex elevates face category tuning to conscious face perception. . PNAS 109:(52):21504509
    [Google Scholar]
  32. Fahrenfort JJ, van Leeuwen J, Olivers CNL, Hogendoorn H. 2017.. Perceptual integration without conscious access. . PNAS 114:(14):374449
    [Google Scholar]
  33. Faivre N, Charron S, Roux P, Lehéricy S, Kouide S. 2012.. Nonconscious emotional processing involves distinct neural pathways for pictures and videos. . Neuropsychologia 50:(14):373644
    [Google Scholar]
  34. Faivre N, Dubois J, Schwartz N, Mudrik L. 2019.. Imaging object-scene relations processing in visible and invisible natural scenes. . Sci. Rep. 9:(1):4567
    [Google Scholar]
  35. Fang F, He S. 2005.. Cortical responses to invisible objects in the human dorsal and ventral pathways. . Nat. Neurosci. 8:(10):138085
    [Google Scholar]
  36. Fang Z, Li H, Chen G, Yang J. 2016.. Unconscious processing of negative animals and objects: role of the amygdala revealed by fMRI. . Front. Hum. Neurosci. 10::146
    [Google Scholar]
  37. Fiebelkorn IC, Saalmann YB, Kastner S. 2013.. Rhythmic sampling within and between objects despite sustained attention at a cued location. . Curr. Biol. 23::255358
    [Google Scholar]
  38. Forschack N, Nierhaus T, Müller MM, Villringer A. 2017.. Alpha-band brain oscillations shape the processing of perceptible as well as imperceptible somatosensory stimuli during selective attention. . J. Neurosci. 37:(29):698394
    [Google Scholar]
  39. Forschack N, Nierhaus T, Müller MM, Villringer A. 2020.. Dissociable neural correlates of stimulation intensity and detection in somatosensation. . Neuroimage 217::116908
    [Google Scholar]
  40. Freeman JB, Stolier RM, Ingbretsen ZA, Hehman EA. 2014.. Amygdala responsivity to high-level social information from unseen faces. . J. Neurosci. 34:(32):10573581
    [Google Scholar]
  41. Freud S. 2005.. The Unconscious. London:: Penguin
    [Google Scholar]
  42. Ganesh G, Nakamura K, Saetia S, Tobar AM, Yoshida E, et al. 2018.. Utilizing sensory prediction errors for movement intention decoding: a new methodology. . Sci. Adv. 4:(5):eaaq0183
    [Google Scholar]
  43. Geng H, Zhang S, Li Q, Tao R, Xu S. 2012.. Dissociations of subliminal and supraliminal self-face from other-face processing: behavioral and ERP evidence. . Neuropsychologia 50:(12):293342
    [Google Scholar]
  44. Harris JA, Donohue SE, Schoenfeld MA, Hopf J-M, Heinze H-J, Woldorff MG. 2016.. Reward-associated features capture attention in the absence of awareness: evidence from object-substitution masking. . Neuroimage 137::11623
    [Google Scholar]
  45. Harris JA, McMahon AR, Woldorff MG. 2013.. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing. . J. Cogn. Neurosci. 25:(11):186374
    [Google Scholar]
  46. Haxby JV, Hoffman EA, Gobbini MI. 2000.. The distributed human neural system for face perception. . Trends Cogn. Sci. 4:(6):22333
    [Google Scholar]
  47. Hesselmann G, Malach R. 2011.. The link between fMRI-BOLD activation and perceptual awareness is “stream-invariant” in the human visual system. . Cereb. Cortex 21:(12):282937
    [Google Scholar]
  48. Hoffmann M, Lipka J, Mothes-Lasch M, Miltner WHR, Straube T. 2012.. Awareness modulates responses of the amygdala and the visual cortex to highly arousing visual threat. . Neuroimage 62:(3):143944
    [Google Scholar]
  49. Hoffmann M, Mothes-Lasch M, Miltner WHR, Straube T. 2015.. Brain activation to briefly presented emotional words: effects of stimulus awareness. . Hum. Brain Mapp. 36:(2):65565
    [Google Scholar]
  50. Holcomb PJ, Reder L, Misra M, Grainger J. 2005.. The effects of prime visibility on ERP measures of masked priming. . Cogn. Brain Res. 24:(1):15572
    [Google Scholar]
  51. Ibáñez AM, Martín RS, Hurtado E, López V. 2009.. ERPs studies of cognitive processing during sleep. . Int. J. Psychol. 44:(4):290304
    [Google Scholar]
  52. Ilse A, Donohue SE, Schoenfeld MA, Hopf JM, Heinze HJ, Harris JA. 2020.. Unseen food images capture the attention of hungry viewers: evidence from event-related potentials. . Appetite 155::104828
    [Google Scholar]
  53. Jiang Y, He S. 2006.. Cortical responses to invisible faces: dissociating subsystems for facial-information processing. . Curr. Biol. 16:(20):202329
    [Google Scholar]
  54. Kang MS, Blake R, Woodman GF. 2011.. Semantic analysis does not occur in the absence of awareness induced by interocular suppression. . J. Neurosci. 31:(38):1353545
    [Google Scholar]
  55. Kiefer M. 2002.. The N400 is modulated by unconsciously perceived masked words: further evidence for an automatic spreading activation account of N400 priming effects. . Cogn. Brain Res. 13:(1):2739
    [Google Scholar]
  56. Kiefer M, Liegel N, Zovko M, Wentura D. 2017.. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially. . Soc. Cogn. Affect. Neurosci. 12:(4):596608
    [Google Scholar]
  57. Killgore WDS, Yurgelun-Todd DA. 2004.. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. . Neuroimage 21:(4):121523
    [Google Scholar]
  58. Kim CY, Blake R. 2005.. Psychophysical magic: rendering the visible ‘invisible. Trends Cogn. Sci. 9:(8):38188
    [Google Scholar]
  59. King JR, Pescetelli N, Dehaene S. 2016.. Brain mechanisms underlying the brief maintenance of seen and unseen sensory information. . Neuron 92:(5):112234
    [Google Scholar]
  60. Kouider S, Andrillon T, Barbosa LS, Goupil L, Bekinschtein TA. 2014.. Inducing task-relevant responses to speech in the sleeping brain. . Curr. Biol. 24:(18):220814
    [Google Scholar]
  61. Kouider S, Dehaene S. 2007.. Levels of processing during non-conscious perception: a critical review of visual masking. . Philos. Trans. R. Soc. B 362:(1481):85775
    [Google Scholar]
  62. Kouider S, Eger E, Dolan R, Henson RN. 2009.. Activity in face-responsive brain regions is modulated by invisible, attended faces: evidence from masked priming. . Cereb. Cortex 19:(1):1323
    [Google Scholar]
  63. Kreiman G, Fried I, Koch C. 2002.. Single-neuron correlates of subjective vision in the human medial temporal lobe. . PNAS 99:(12):837883
    [Google Scholar]
  64. Kutas M, Federmeier KD. 2011.. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). . Annu. Rev. Psychol. 62::62147
    [Google Scholar]
  65. Làdavas E, Paladini R, Cubelli R. 1993.. Implicit associative priming in a patient with left visual neglect. . Neuropsychologia 31:(12):130720
    [Google Scholar]
  66. Lamme VAF. 2020.. Visual functions generating conscious seeing. . Front. Psychol. 11::83
    [Google Scholar]
  67. Landau AN, Fries P. 2012.. Attention samples stimuli rhythmically. . Curr. Biol. 22:(11):10004
    [Google Scholar]
  68. Lapate RC, Rokers B, Tromp DPM, Orfali NS, Oler JA, et al. 2016.. Awareness of emotional stimuli determines the behavioral consequences of amygdala activation and amygdala-prefrontal connectivity. . Sci. Rep. 6:(1):25826
    [Google Scholar]
  69. Larsson J, Smith AT. 2012.. fMRI repetition suppression: neuronal adaptation or stimulus expectation?. Cereb. Cortex 22:(3):56776
    [Google Scholar]
  70. Liddell BJ, Brown KJ, Kemp AH, Barton MJ, Das P, et al. 2005.. A direct brainstem–amygdala–cortical ‘alarm’ system for subliminal signals of fear. . Neuroimage 24:(1):23543
    [Google Scholar]
  71. Ludwig K, Sterzer P, Kathmann N, Hesselmann G. 2016.. Differential modulation of visual object processing in dorsal and ventral stream by stimulus visibility. . Cortex 83::11323
    [Google Scholar]
  72. Makov S, Sharon O, Ding N, Ben-Shachar M, Nir Y, Golumbic Zion E. 2017.. Sleep disrupts high-level speech parsing despite significant basic auditory processing. . J. Neurosci. 37:(32):777281
    [Google Scholar]
  73. Maresch J, Mudrik L, Donchin O. 2021.. Measures of explicit and implicit in motor learning: what we know and what we don't. . Neurosci. Biobehav. Rev. 128::55868
    [Google Scholar]
  74. Marshall JC, Halligan PW. 1988.. Blindsight and insight in visuo-spatial neglect. . Nature 336:(6201):76667
    [Google Scholar]
  75. Mattingley JB, Davis G, Driver J. 1997.. Preattentive filling-in of visual surfaces in parietal extinction. . Science 275:(5300):67174
    [Google Scholar]
  76. McGlinchey-Berroth R, Milberg WP, Verfaellie M, Alexander M, Kilduff PT. 1993.. Semantic processing in the neglected visual field: evidence from a lexical decision task. . Cogn. Neuropsychol. 10:(1):79108
    [Google Scholar]
  77. Merikle P, Reingold E. 1998.. On demonstrating unconscious perception: comment on Draine and Greenwald (1998). . J. Exp. Psychol. Gen. 127:(3):30410
    [Google Scholar]
  78. Milner AD, Goodale MA. 1995.. The Visual Brain in Action. New York:: Oxford Univ. Press
    [Google Scholar]
  79. Mongelli V, Meijs EL, Van Gaal S, Hagoort P. 2019.. No language unification without neural feedback: how awareness affects sentence processing. . Neuroimage 202::116063
    [Google Scholar]
  80. Moors P, Hesselmann G, Wagemans J, van Ee R. 2017.. Continuous flash suppression: stimulus fractionation rather than integration. . Trends Cogn. Sci. 21::71921
    [Google Scholar]
  81. Morgan ST, Hansen JC, Hillyard SA. 1996.. Selective attention to stimulus location modulates the steady-state visual evoked potential. . PNAS 93:(10):477074
    [Google Scholar]
  82. Morris JS, DeGelder B, Weiskrantz L, Dolan RJ. 2001.. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. . Brain 124:(6):124152
    [Google Scholar]
  83. Morris JS, Öhman A, Dolan RJ. 1998.. Conscious and unconscious emotional learning in the human amygdala. . Nature 393:(6684):46770
    [Google Scholar]
  84. Moutoussis K, Zeki S. 2006.. Seeing invisible motion: a human fMRI study. . Curr. Biol. 16:(6):57479
    [Google Scholar]
  85. Mudrik L, Faivre N, Koch C. 2014.. Information integration without awareness. . Trends Cogn. Sci. 18:(9):48896
    [Google Scholar]
  86. Nakamura K, Dehaene S, Jobert A, Le Bihan D, Kouider S. 2005.. Subliminal convergence of Kanji and Kana words: further evidence for functional parcellation of the posterior temporal cortex in visual word perception. . J. Cogn. Neurosci. 17:(6):95468
    [Google Scholar]
  87. Nakamura K, Dehaene S, Jobert A, Le Bihan D, Kouider S. 2007.. Task-specific change of unconscious neural priming in the cerebral language network. . PNAS 104:(49):1964348
    [Google Scholar]
  88. Nakamura K, Kouider S, Makuuchi M, Kuroki C, Hanajima R, et al. 2010.. Neural control of cross-language asymmetry in the bilingual brain. . Cereb. Cortex 20:(9):224451
    [Google Scholar]
  89. Nakamura K, Makuuchi M, Oga T, Mizuochi-Endo T, Iwabuchi T, et al. 2018.. Neural capacity limits during unconscious semantic processing. . Eur. J. Neurosci. 47:(8):92937
    [Google Scholar]
  90. Nomura M, Ohira H, Haneda K, Iidaka T, Sadato N, et al. 2004.. Functional association of the amygdala and ventral prefrontal cortex during cognitive evaluation of facial expressions primed by masked angry faces: an event-related fMRI study. . Neuroimage 21:(1):35263
    [Google Scholar]
  91. Novak LR, Gitelman DR, Schuyler B, Li W. 2015.. Olfactory-visual integration facilitates perception of subthreshold negative emotion. . Neuropsychologia 77::28897
    [Google Scholar]
  92. Oei NYL, Arb Rombouts S, Soeter RP, Van Gerven JM, Both S. 2012.. Dopamine modulates reward system activity during subconscious processing of sexual stimuli. . Neuropsychopharmacology 37:(7):172937
    [Google Scholar]
  93. Pasley BN, Mayes LC, Schultz RT. 2004.. Subcortical discrimination of unperceived objects during binocular rivalry. . Neuron 42:(1):16372
    [Google Scholar]
  94. Perrin F, Garcı́a-Larrea L, Mauguière F, Bastuji H. 1999.. A differential brain response to the subject's own name persists during sleep. . Clin. Neurophysiol. 110:(12):215364
    [Google Scholar]
  95. Persuh M, LaRock E, Berger J. 2018.. Working memory and consciousness: the current state of play. . Front. Hum. Neurosci. 12::78
    [Google Scholar]
  96. Pessoa L, Adolphs R. 2010.. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. . Nat. Rev. Neurosci. 11:(11):77382
    [Google Scholar]
  97. Pessoa L, Japee S, Sturman D, Ungerleider LG. 2006.. Target visibility and visual awareness modulate amygdala responses to fearful faces. . Cereb. Cortex 16:(3):36675
    [Google Scholar]
  98. Phelps EA, LeDoux JE. 2005.. Contributions of the amygdala to emotion processing: from animal models to human behavior. . Neuron 48:(2):17587
    [Google Scholar]
  99. Phillips ML, Williams LM, Heining M, Herba CM, Russell T, et al. 2004.. Differential neural responses to overt and covert presentations of facial expressions of fear and disgust. . Neuroimage 21:(4):148496
    [Google Scholar]
  100. Pitts MA, Martínez A, Hillyard SA. 2012.. Visual processing of contour patterns under conditions of inattentional blindness. . J. Cogn. Neurosci. 24:(2):287303
    [Google Scholar]
  101. Pitts MA, Padwal J, Fennelly D, Martínez A, Hillyard SA. 2014.. Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. . Neuroimage 101::33750
    [Google Scholar]
  102. Poldrack RA. 2006.. Can cognitive processes be inferred from neuroimaging data?. Trends Cogn. Sci. 10:(2):5963
    [Google Scholar]
  103. Quiroga RQ. 2012.. Concept cells: the building blocks of declarative memory functions. . Nat. Rev. Neurosci. 13:(8):58797
    [Google Scholar]
  104. Quiroga RQ, Mukamel R, Isham EA, Malach R, Fried I. 2008.. Human single-neuron responses at the threshold of conscious recognition. . PNAS 105:(9):3599604
    [Google Scholar]
  105. Ran G, Chen X, Cao X, Zhang Q. 2016.. Prediction and unconscious attention operate synergistically to facilitate stimulus processing: an fMRI study. . Conscious. Cogn. 44::4150
    [Google Scholar]
  106. Reber TP, Faber J, Niediek J, Boström J, Elger CE, Mormann F. 2017.. Single-neuron correlates of conscious perception in the human medial temporal lobe. . Curr. Biol. 27:(19):299198.e2
    [Google Scholar]
  107. Rodríguez V, Thompson R, Stokes M, Brett M, Alvarez I, et al. 2012.. Absence of face-specific cortical activity in the complete absence of awareness: converging evidence from functional magnetic resonance imaging and event-related potentials. . J. Cogn. Neurosci. 24:(2):396415
    [Google Scholar]
  108. Rosenthal CR., Andrews SK, Antoniades CA, Kennard C, Soto D. 2016.. Learning and recognition of a non-conscious sequence of events in human primary visual cortex. . Curr. Biol. 26:(6):83441
    [Google Scholar]
  109. Rothkirch M, Hesselmann G. 2017.. What we talk about when we talk about unconscious processing—a plea for best practices. . Front. Psychol. 8::835
    [Google Scholar]
  110. Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, et al. 2012.. Modelling neural correlates of working memory: a coordinate-based meta-analysis. . Neuroimage 60:(1):83046
    [Google Scholar]
  111. Ruz M, Worden MS, Tudela P, McCandliss BD. 2005.. Inattentional amnesia to words in a high attentional load task. . J. Cogn. Neurosci. 17:(5):76876
    [Google Scholar]
  112. Sabatini E, Della Penna S, Franciotti R, Ferretti A, Zoccolotti P, et al. 2009.. Brain structures activated by overt and covert emotional visual stimuli. . Brain Res. Bull. 79:(5):25864
    [Google Scholar]
  113. Sandberg K, Timmermans B, Overgaard M, Cleeremans A. 2010.. Measuring consciousness: Is one measure better than the other?. Conscious. Cogn. (19):106978
    [Google Scholar]
  114. Sato W, Kochiyama T, Uono S, Toichi M. 2016.. Neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze. . Neuroimage 124::11826
    [Google Scholar]
  115. Schelling FWJ. 1993.. System of Transcendental Idealism (1800). Charlottesville, VA:: Univ. Va. Press
    [Google Scholar]
  116. Schlossmacher I, Junghöfer M, Straube T, Bruchmann M. 2017.. No differential effects to facial expressions under continuous flash suppression: an event-related potentials study. . Neuroimage 163::27685
    [Google Scholar]
  117. Schneider E, Züst MA, Wuethrich S, Schmidig F, Klöppel S, et al. 2021.. Larger capacity for unconscious versus conscious episodic memory. . Curr. Biol. 31:(16):355163.e9
    [Google Scholar]
  118. Schweinberger SR, Stief V. 2001.. Implicit perception in patients with visual neglect: lexical specificity in repetition priming. . Neuropsychologia 39:(4):42029
    [Google Scholar]
  119. Sculthorpe LD, Ouellet DR, Campbell KB. 2009.. MMN elicitation during natural sleep to violations of an auditory pattern. . Brain Res. 1290::5262
    [Google Scholar]
  120. Shafto JP, Pitts MA. 2015.. Neural signatures of conscious face perception in an inattentional blindness paradigm. . J. Neurosci. 35:(31):1094048
    [Google Scholar]
  121. Shanks DR. 2017.. Regressive research: the pitfalls of post hoc data selection in the study of unconscious mental processes. . Psychon. Bull. Rev. 24::75275
    [Google Scholar]
  122. Sheikh UA, Carreiras M, Soto D. 2019.. Decoding the meaning of unconsciously processed words using fMRI-based MVPA. . Neuroimage 191::43040
    [Google Scholar]
  123. Sklar A, Deouell LY, Hassin R. 2018.. Integration despite fractionation: continuous flash suppression. . Trends Cogn. Sci. 22::95657
    [Google Scholar]
  124. Smout CA, Mattingley JB. 2018.. Spatial attention enhances the neural representation of invisible signals embedded in noise. . J. Cogn. Neurosci. 30:(8):111929
    [Google Scholar]
  125. Soto D, Silvanto J. 2016.. Is conscious awareness needed for all working memory processes?. Neurosci. Conscious. 2016::niw009
    [Google Scholar]
  126. Sreenivasan KK, Curtis CE, D'Esposito M. 2014.. Revisiting the role of persistent neural activity during working memory. . Trends Cogn. Sci. 18:(2):8289
    [Google Scholar]
  127. Stein T, Kaiser D, Fahrenfort JJ, Van Gaal S. 2021.. The human visual system differentially represents subjectively and objectively invisible stimuli. . PLOS Biol. 19:(5):e3001241
    [Google Scholar]
  128. Stein T, Kaiser D, Hesselmann G. 2016.. Can working memory be non-conscious?. Neurosci. Conscious. 2016::niv011
    [Google Scholar]
  129. Sterzer P, Jalkanen L, Rees G. 2009.. Electromagnetic responses to invisible face stimuli during binocular suppression. . Neuroimage 46:(3):8038
    [Google Scholar]
  130. Straube T, Dietrich C, Mothes-Lasch M, Mentzel HJ, Miltner WHR. 2010.. The volatility of the amygdala response to masked fearful eyes. . Hum. Brain Mapp. 31:(10):16018
    [Google Scholar]
  131. Suzuki M, Noguchi Y. 2013.. Reversal of the face-inversion effect in N170 under unconscious visual processing. . Neuropsychologia 51:(3):4009
    [Google Scholar]
  132. Suzuki M, Noguchi Y, Kakigi R. 2014.. Temporal dynamics of neural activity underlying unconscious processing of manipulable objects. . Cortex 50::10014
    [Google Scholar]
  133. Tettamanti M, Conca F, Falini A, Perani D. 2017.. Unaware processing of tools in the neural system for object-directed action representation. . J. Neurosci. 37:(44):1071224
    [Google Scholar]
  134. Tipura E, Renaud O, Pegna AJ. 2019.. Attention shifting and subliminal cueing under high attentional load: an EEG study using emotional faces. . Neuroreport 30:(18):125155
    [Google Scholar]
  135. Travis SL, Dux PE, Mattingley JB. 2019.. Neural correlates of goal-directed enhancement and suppression of visual stimuli in the absence of conscious perception. . Attention Percept. Psychophys. 81:(5):134664
    [Google Scholar]
  136. Trubutschek D, Marti S, Ueberschar H, Dehaene S. 2019.. Probing the limits of activity-silent non-conscious working memory. . PNAS 116:(28):1435867
    [Google Scholar]
  137. van Gaal S, Naccache L, Meuwese JD, van Loon AM, Leighton AH, et al. 2014.. Can the meaning of multiple words be integrated unconsciously?. Philos. Trans. R. Soc. B 369:(1641):20130212
    [Google Scholar]
  138. Vandenbroucke ARE, Fahrenfort JJ, Sligte IG, Lamme VAF. 2014.. Seeing without knowing: neural signatures of perceptual inference in the absence of report. . J. Cogn. Neurosci. 26:(5):95569
    [Google Scholar]
  139. Viggiano MP, Marzi T, Forni M, Righi S, Franceschini R, Peru A. 2012.. Semantic category effects modulate visual priming in neglect patients. . Cortex 48:(9):112837
    [Google Scholar]
  140. Vizueta N, Patrick CJ, Jiang Y, Thomas KM, He S. 2012.. Dispositional fear, negative affectivity, and neuroimaging response to visually suppressed emotional faces. . Neuroimage 59:(1):76171
    [Google Scholar]
  141. Vuilleumier P. 2000.. Faces call for attention: evidence from patients with visual extinction. . Neuropsychologia 38:(5):693700
    [Google Scholar]
  142. Vuilleumier P, Armony JL, Clarke K, Husain M, Driver J, Dolan RJ. 2002a.. Neural response to emotional faces with and without awareness: event-related fMRI in a parietal patient with visual extinction and spatial neglect. . Neuropsychologia 40:(12):215666
    [Google Scholar]
  143. Vuilleumier P, Schwartz S, Clarke K, Husain M, Driver J. 2002b.. Testing memory for unseen visual stimuli in patients with extinction and spatial neglect. . J. Cogn. Neurosci. 14:(6):87586
    [Google Scholar]
  144. Vuilleumier P, Valenza N, Landis T. 2001.. Explicit and implicit perception of illusory contours in unilateral spatial neglect: behavioural and anatomical correlates of preattentive grouping mechanisms. . Neuropsychologia 39:(6):59710
    [Google Scholar]
  145. Whalen PJ, Kagan J, Cook RG, Davis FC, Kim H, et al. 2004.. Human amygdala responsivity to masked fearful eye whites. . Science 306:(5704):206161
    [Google Scholar]
  146. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA. 1998.. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. . J. Neurosci. 18:(1):41118
    [Google Scholar]
  147. Williams LM, Das P, Liddell BJ, Kemp AH, Rennie CJ, Gordon E. 2006.. Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. . J. Neurosci. 26:(36):926471
    [Google Scholar]
  148. Williams MA, Morris AP, McGlone F, Abbott DF, Mattingley JB. 2004.. Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression. . J. Neurosci. 24:(12):2898904
    [Google Scholar]
  149. Wójcik MJ, Nowicka MM, Bola M, Nowicka A. 2019.. Unconscious detection of one's own image. . Psychol. Sci. 30:(4):47180
    [Google Scholar]
  150. Wyart V, Tallon-Baudry C. 2008.. Neural dissociation between visual awareness and spatial attention. . J. Neurosci. 28:(10):266779
    [Google Scholar]
  151. Yang J, Cao Z, Xu X, Chen G. 2012.. The amygdala is involved in affective priming effect for fearful faces. . Brain Cogn. 80:(1):1522
    [Google Scholar]
  152. Zhang X, Zhaoping L, Zhou T, Fang F. 2012.. Neural activities in V1 create a bottom-up saliency map. . Neuron 73:(1):18392
    [Google Scholar]
  153. Zou J, He S, Zhang P. 2016.. Binocular rivalry from invisible patterns. . PNAS 113:(30):840813
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110920-033151
Loading
/content/journals/10.1146/annurev-neuro-110920-033151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error