1932

Abstract

Item response theory (IRT) is a modeling approach that links responses to test items with underlying latent constructs through formalized statistical models. This article focuses on how IRT can be used to advance science and practice in organizations. We describe established applications of IRT as a scale development tool and new applications of IRT as a research and theory testing tool that enables organizational researchers to improve their understanding of workers and organizations. We focus on IRT models and their application in four key research and practice areas: testing, questionnaire responding, construct validation, and measurement equivalence of scores. In so doing, we highlight how novel developments in IRT such as explanatory IRT, multidimensional IRT, random item models, and more complex models of response processes such as ideal point models and tree models can potentially advance existing science and practice in these areas. As a starting point for readers interested in learning IRT and applying recent developments in IRT in their research, we provide concrete examples with data and R code.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-orgpsych-012420-061705
2021-01-21
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/orgpsych/8/1/annurev-orgpsych-012420-061705.html?itemId=/content/journals/10.1146/annurev-orgpsych-012420-061705&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerman TA. 1989. Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items. Appl. Psychol. Meas. 13:113–27
    [Google Scholar]
  2. Ashby N. 2003. Relativity in the Global Positioning System. Living Rev. Relativ. 6:11
    [Google Scholar]
  3. Bafumi J, Gelman A, Park DK, Kaplan N 2005. Practical issues in implementing and understanding Bayesian ideal point estimation. Political Anal 13:2171–87
    [Google Scholar]
  4. Barr DJ, Levy R, Scheepers C, Tily HJ 2013. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68:255–78
    [Google Scholar]
  5. Bates D, Kliegl R, Vasishth S, Baayen H 2015a. Parsimonious mixed models arXiv:1506.04967 [stat.ME]
    [Google Scholar]
  6. Bates D, Mächler M, Bolker B, Walker S 2015b. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1 https://doi.org/10.18637/jss.v067.i01
    [Crossref] [Google Scholar]
  7. Binet A, Simon T. 1916. New Methods for the Diagnosis of the Intellectual Level of Subnormals. (L'Année Psych., 1905, pp. 191–244), transl. A Binet, T Simon, ES Kite, in The Development of Intelligence in Children (The Binet-Simon Scale)37–90 Philadelphia: Williams & Wilkins Co (from French) https://doi.org/10.1037/11069-002
    [Crossref] [Google Scholar]
  8. Birnbaum A. 1968. Some latent trait models and their use in inferring an examinee's ability. Statistical Theories of Mental Test Scores FM Lord, MR Novick 17–20 Reading, MA: Addison-Wesley
    [Google Scholar]
  9. Bliese PD, Wright KM, Adler AB, Cabrera O, Castro CA, Hoge CW 2008. Validating the primary care posttraumatic stress disorder screen and the posttraumatic stress disorder checklist with soldiers returning from combat. J. Consult. Clin. Psychol. 76:2272–81
    [Google Scholar]
  10. Bock RD. 1997. A brief history of item theory response. Educ. Meas. Issues Pract. 16:421–33
    [Google Scholar]
  11. Bock RD, Lieberman M. 1970. Fitting a response model for n dichotomously scored items. Psychometrika 35:2179–97
    [Google Scholar]
  12. Bock RD, Murakl E, Pfeiffenberger W 1988. Item pool maintenance in the presence of item parameter drift. J. Educ. Meas. 25:275–85
    [Google Scholar]
  13. Böckenholt U. 2001. Hierarchical modeling of paired comparison data. Psychol. Methods 6:149–66
    [Google Scholar]
  14. Böckenholt U. 2012. Modeling multiple response processes in judgment and choice. Psychol. Methods 17:665–78
    [Google Scholar]
  15. Böckenholt U, Meiser T. 2017. Response style analysis with threshold and multi-process IRT models: a review and tutorial. Br. J. Math. Stat. Psychol. 70:159–81
    [Google Scholar]
  16. Borsboom D. 2006. The attack of the psychometricians. Psychometrika 71:425–40
    [Google Scholar]
  17. Borsboom D, Mellenbergh GJ. 2007. Test validity in cognitive assessment. Cognitive Diagnostic Assessment for Education J Leighton, M Gierl 85–116 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  18. Borsboom D, Mellenbergh GJ, van Heerden J 2004. The concept of validity. Psychol. Rev. 111:1061–71
    [Google Scholar]
  19. Brown A. 2016. Item response models for forced-choice questionnaires: a common framework. Psychometrika 81:1135–60
    [Google Scholar]
  20. Cai L. 2010. Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. J. Educ. Behav. Stat. 35:3307–35
    [Google Scholar]
  21. Carter NT, Dalal DK, Boyce AS, O'Connell MS, Kung M-C, Delgado KM 2014. Uncovering curvilinear relationships between conscientiousness and job performance: how theoretically appropriate measurement makes an empirical difference. J. Appl. Psychol. 99:4564–86
    [Google Scholar]
  22. Chalmers RP. 2012. mirt: a multidimensional item response theory package for the R environment. J. Stat. Softw. 48:6 https://doi.org/10.18637/jss.v048.i06
    [Crossref] [Google Scholar]
  23. Coles P. 2019. Relativity revealed. Nature 568:7752306–7
    [Google Scholar]
  24. Davison ML. 1977. On a metric, unidimensional unfolding model for attitudinal and developmental data. Psychometrika 42:4523–48
    [Google Scholar]
  25. De Boeck P. 2008. Random item IRT models. Psychometrika 73:533–59
    [Google Scholar]
  26. De Boeck P, Bakker M, Zwitser R, Nivard M, Hofman A et al. 2011. The estimation of item response models with the lmer function from the lme4 package in R. J. Stat. Softw. 39:12 https://doi.org/10.18637/jss.v039.i12
    [Crossref] [Google Scholar]
  27. De Boeck P, Partchev I 2012. IRTrees: tree-based item response models of the GLMM family. J. Stat. Softw. 48:Code Snippet 1 https://doi.org/10.18637/jss.v048.c01
    [Crossref] [Google Scholar]
  28. De Boeck P, Wilson M 2004. Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach New York: Springer
    [Google Scholar]
  29. de la Torre J. 2009. DINA model and parameter estimation: a didactic. J. Educ. Behav. Stat. 34:115–30
    [Google Scholar]
  30. Debeer D, Janssen R. 2013. Modeling item-position effects within an IRT framework. J. Educ. Meas. 50:2164–85
    [Google Scholar]
  31. Debeer D, Janssen R, De Boeck P 2017. Modeling skipped and not-reached items using IRTrees. J. Educ. Meas. 54:3333–63
    [Google Scholar]
  32. DeSimone JA, James LR. 2015. An item analysis of the Conditional Reasoning Test of Aggression. J. Appl. Psychol. 100:61872–86
    [Google Scholar]
  33. Doran H, Bates D, Bliese P, Dowling M 2007. Estimating the multilevel Rasch model: with the lme4 package. J. Stat. Softw. 20:2 https://doi.org/10.18637/jss.v020.i02
    [Crossref] [Google Scholar]
  34. Drasgow F. 1982. Biased test items and differential validity. Psychol. Bull. 92:2526–31
    [Google Scholar]
  35. Drasgow F. 1987. Study of the measurement bias of two standardized psychological tests. J. Appl. Psychol. 72:119–29
    [Google Scholar]
  36. Drasgow F, Chernyshenko OS, Stark S 2010. Improving the measurement of psychological variables: Ideal point models rock. ! Ind. Organ. Psychol. 3:515–20
    [Google Scholar]
  37. Drasgow F, Hulin CL. 1990. Item response theory. Handbook of Industrial and Organizational Psychology MD Dunnette, LM Hough 577–636 Palo Alto, CA: Consult. Psychol. Press
    [Google Scholar]
  38. Embretson SE. 1998. A cognitive design system approach to generating valid tests: application to abstract reasoning. Psychol. Methods 3:380–96
    [Google Scholar]
  39. Eysenck HJ, Eysenck SBG. 1968. Manual for the Eysenck Personality Inventory San Diego, CA: Educ. Ind. Test. Serv.
    [Google Scholar]
  40. Fischer GH. 1973. The linear logistic test model as an instrument in educational research. Acta Psychol 37:6359–74
    [Google Scholar]
  41. Foster GC, Min H, Zickar MJ 2017. Review of item response theory practices in organizational research. Organ. Res. Methods 20:465–86
    [Google Scholar]
  42. Fox J-P, Verhagen AJ. 2010. Random item effects modeling for cross-national survey data. Cross-Cultural Analysis: Methods and Applications E Davidov, P Schmidt, J Billiet 461–82 New York: Routledge
    [Google Scholar]
  43. Gierl MJ, Gotzmann A, Boughton KA 2004. Performance of SIBTEST when the percentage of DIF items is large. Appl. Meas. Educ. 17:3241–64
    [Google Scholar]
  44. Greenwald AG. 2012. There is nothing so theoretical as a good method. Perspect. Psychol. Sci. 7:299–108
    [Google Scholar]
  45. Gulliksen H. 1950. Theory of Mental Tests New York: Wiley
    [Google Scholar]
  46. Hambleton RK, Swaminathan H, Rogers HJ 1991. Fundamentals of Item Response Theory Newbury Park, CA: Sage
    [Google Scholar]
  47. Hernández A, Drasgow F, González-Romá V 2004. Investigating the functioning of a middle category by means of a mixed-measurement model. J. Appl. Psychol. 89:687–99
    [Google Scholar]
  48. Hornke LF. 2002. Item-generation models for higher-order cognitive functions. Item Generation and Test Development SH Irvine, PC Kyllonen 159–78 Mahwah, NJ: Erlbaum
    [Google Scholar]
  49. Irtel H. 1995. An extension of the concept of specific objectivity. Psychometrika 60:1115–18
    [Google Scholar]
  50. Johnston AK, Connor RD, Stephens CE, Ceruzzi PE 2015. Time and Navigation: The Untold Story of Getting from Here to There Washington, DC: Smithson. Books
    [Google Scholar]
  51. Kim S. 2012. A note on the reliability coefficients for item response model-based ability estimates. Psychometrika 77:1153–62
    [Google Scholar]
  52. Kim S-H, Cohen AS. 1998. A comparison of linking and concurrent calibration under item response theory. Appl. Psychol. Meas. 22:131–43
    [Google Scholar]
  53. Kolen MJ, Brennan RL. 2004. Test Equating, Scaling, and Linking: Methods and Practice New York: Springer. , 2nd ed..
    [Google Scholar]
  54. Kubinger KD. 2009. Applications of the linear logistic test model in psychometric research. Educ. Psychol. Meas. 69:2232–44
    [Google Scholar]
  55. LaHuis DM, Blackmore CE, Bryant-Lees KB, Delgado K 2019. Applying item response trees to personality data in the selection context. Organ. Res. Methods 22:41007–18
    [Google Scholar]
  56. LaHuis DM, Copeland D. 2009. Investigating faking using a multilevel logistic regression approach to measuring person fit. Organ. Res. Methods 12:2296–319
    [Google Scholar]
  57. Lang JWB. 2014. A dynamic Thurstonian item response theory of motive expression in the picture story exercise: solving the internal consistency paradox of the PSE. Psychol. Rev. 121:481–500
    [Google Scholar]
  58. Lang JWB, Lievens F, De Fruyt F, Zettler I, Tackett JL 2019. Assessing meaningful within-person variability in Likert-scale rated personality descriptions: an IRT tree approach. Psychol. Assess. 31:4474–87
    [Google Scholar]
  59. Lee TW, Mitchell TR. 1994. An alternative approach: the unfolding model of voluntary employee turnover. Acad. Manag. Rev. 19:151–89
    [Google Scholar]
  60. Lievens F. 2017. Construct-driven SJTs: toward an agenda for future research. Int. J. Test. 17:3269–76
    [Google Scholar]
  61. Lievens F, Burke E. 2011. Dealing with the threats inherent in unproctored Internet testing of cognitive ability: results from a large-scale operational test program. J. Occup. Organ. Psychol. 84:4817–24
    [Google Scholar]
  62. Lievens F, Lang JWB, De Fruyt F, Corstjens J, Van De Vijver M, Bledow R 2018. The predictive power of people's intra-individual variability across situations: implementing whole trait theory in assessment. J. Appl. Psychol. 103:753–71
    [Google Scholar]
  63. Lievens F, Sackett PR. 2017. The effects of predictor method factors on selection outcomes: a modular approach to personnel selection procedures. J. Appl. Psychol. 102:43–66
    [Google Scholar]
  64. Lord FM. 1980. Applications of Item Response Theory to Practical Testing Problems Mahwah, NJ: Erlbaum
    [Google Scholar]
  65. Lord FM, Novick MR. 1968. Statistical Theories of Mental Test Scores Reading, MA: Addison-Wesley
    [Google Scholar]
  66. Lord RG, Kanfer R. 2002. Emotions and organizational behavior. Emotions in the Workplace: Understanding the Structure and Role of Emotions in Organizational Behavior RG Lord, RJ Klimoski, R Kanfer 5–19 San Francisco: Jossey-Bass
    [Google Scholar]
  67. Marsh HW, Hau K-T. 2007. Applications of latent-variable models in educational psychology: the need for methodological-substantive synergies. Contemp. Educ. Psychol. 32:1151–70
    [Google Scholar]
  68. Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D 2017. Balancing Type I error and power in linear mixed models. J. Mem. Lang. 94:305–15
    [Google Scholar]
  69. Maydeu-Olivares A, Brown A. 2010. Item response modeling of paired comparison and ranking data. Multivar. Behav. Res. 45:935–74
    [Google Scholar]
  70. McClimans L, Browne J, Cano S 2017. Clinical outcome measurement: models, theory, psychometrics and practice. Stud. Hist. Philos. Sci. A 65–66:67–73
    [Google Scholar]
  71. McCloy RA, Heggestad ED, Reeve CL 2005. A silk purse from the sow's ear: retrieving normative information from multidimensional forced-choice items. Organ. Res. Methods 8:2222–48
    [Google Scholar]
  72. McFadden D. 2001. Economic choices. Am. Econ. Rev. 91:351–78
    [Google Scholar]
  73. McHorney CA, Monahan PO. 2004. Postscript: applications of Rasch analysis in health care. Med. Care 42:Suppl.1–73
    [Google Scholar]
  74. Meade AW, Wright NA. 2012. Solving the measurement invariance anchor item problem in item response theory. J. Appl. Psychol. 97:51016–31
    [Google Scholar]
  75. Meijer RR, Sijtsma K. 2001. Methodology review: evaluating person fit. Appl. Psychol. Meas. 25:107–35
    [Google Scholar]
  76. Messick S. 1989a. Meaning and values in test validation: the science and ethics of assessment. Educ. Res. 18:25–11
    [Google Scholar]
  77. Messick S. 1989b. Validity. Educational Measurement RL Linn 13–103 New York: Am. Counc. Educ./Macmillan Publ.
    [Google Scholar]
  78. Michell J. 2015. Measurement theory: history and philosophy. International Encyclopedia of the Social & Behavioral Sciences JD Wright 868–72 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  79. Mitchell DJ, Tal E, Chang H 2017. The making of measurement: Editors’ introduction. Stud. Hist. Philos. Sci. A 65–66:1–7
    [Google Scholar]
  80. Muthén LK, Muthén BO. 2015. Mplus User's Guide Los Angeles: Muthén & Muthén. , 7th ed..
    [Google Scholar]
  81. Nye CD, Joo S-H, Zhang B, Stark S 2019. Advancing and evaluating IRT model data fit indices in organizational research. Organ. Res. Methods 23:457–86
    [Google Scholar]
  82. Oswald FL, Shaw A, Farmer WL 2015. Comparing simple scoring with IRT scoring of personality measures. Appl. Psychol. Meas. 39:144–54
    [Google Scholar]
  83. Paulhus DL, Williams KM. 2002. The Dark Triad of personality: Narcissism, Machiavellianism, and psychopathy. J. Res. Personal. 36:6556–63
    [Google Scholar]
  84. Peterson C, Park N. 2004. Classification and measurement of character strengths: implications for practice. Positive Psychology in Practice PA Linley, S Joseph 433–46 Hoboken, NJ: Wiley
    [Google Scholar]
  85. Plieninger H. 2020. Developing and applying IR-Tree models: guidelines, caveats, and an extension to multiple groups. Organ. Res. Methods. In press. https://doi.org/10.1177/1094428120911096
    [Crossref] [Google Scholar]
  86. Podsakoff PM, Organ DW. 1986. Self-reports in organizational research: problems and prospects. J. Manag. 12:4531–44
    [Google Scholar]
  87. Reckase MD. 2009. Multidimensional Item Response Theory New York: Springer
    [Google Scholar]
  88. Reeve BB, Hays RD, Bjorner JB, Cook KF, Crane PK et al. 2007. Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Med. Care 45:5S22–31
    [Google Scholar]
  89. Reise SP, Yu J. 1990. Parameter recovery in the graded response model using MULTILOG. J. Educ. Meas. 27:2133–44
    [Google Scholar]
  90. Revelle W. 2020. psych: procedures for psychological, psychometric, and personality research. R Package Version 2.07. https://CRAN.R-project.org/package=psych
    [Google Scholar]
  91. Revelle W, Zinbarg RE. 2009. Coefficients alpha, beta, omega, and the glb: comments on Sijtsma. Psychometrika 74:1145–54
    [Google Scholar]
  92. Rizopoulos D. 2006. ltm: an R package for latent variable modeling and item response theory analyses. J. Stat. Softw. 17:5 https://doi.org/10.18637/jss.v017.i05
    [Crossref] [Google Scholar]
  93. Roberts JS. 2001. GGUM2000: estimation of parameters in the generalized graded unfolding model. Appl. Psychol. Meas. 25:138
    [Google Scholar]
  94. Roberts JS, Donoghue JR, Laughlin JE 2000. A general item response theory model for unfolding unidimensional polytomous responses. Appl. Psychol. Meas. 24:13–32
    [Google Scholar]
  95. Robitzsch A. 2020. sirt: supplementary item response theory models. R Package, Version 3.9-4 https://cran.r-project.org/package=sirt
    [Google Scholar]
  96. Rogelberg SG, Church AH, Waclawski J, Stanton JM 2008. Organizational survey research. Handbook of Research Methods in Industrial and Organizational Psychology SG Rogelberg 140–60 Hoboken, NJ: Blackwell Publ https://doi.org/10.1002/9780470756669.ch7
    [Crossref] [Google Scholar]
  97. Rosseel Y. 2012. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48:2 https://doi.org/10.18637/jss.v048.i02
    [Crossref] [Google Scholar]
  98. Runge JM, Lang JWB. 2019. Can people recognize their implicit thoughts? The motive self-categorization test. Psychol. Assess. 31:7939–51
    [Google Scholar]
  99. Runge JM, Lang JWB, Chasiotis A, Hofer J 2019. Improving the assessment of implicit motives using IRT: cultural differences and differential item functioning. J. Personal. Assess. 101:4414–24
    [Google Scholar]
  100. Sackett PR, Lievens F, Van Iddekinge CH, Kuncel NR 2017. Individual differences and their measurement: a review of 100 years of research. J. Appl. Psychol. 102:3254–73
    [Google Scholar]
  101. Sen S, Bradshaw L. 2017. Comparison of relative fit indices for diagnostic model selection. Appl. Psychol. Meas. 41:6422–38
    [Google Scholar]
  102. Sijtsma K. 2009. On the use, the misuse, and the very limited usefulness of Cronbach's alpha. Psychometrika 74:1107–20
    [Google Scholar]
  103. Smith AG, Burns TM. 2014. Reevaluating clinical measurement tools in therapeutic trials: Time to make a Rasch decision. ? Neurology 83:232104–5
    [Google Scholar]
  104. Smith PC, Kendall L, Hulin CL 1969. The Measurement of Satisfaction in Work and Retirement: A Strategy for the Study of Attitudes Chicago: Rand McNally
    [Google Scholar]
  105. Sorrel MA, Olea J, Abad FJ, de la Torre J, Aguado D, Lievens F 2016. Validity and reliability of situational judgement test scores. Organ. Res. Methods 19:3506–32
    [Google Scholar]
  106. Stark S, Chernyshenko OS, Drasgow F, Williams BA 2006. Examining assumptions about item responding in personality assessment: Should ideal point methods be considered for scale development and scoring. ? J. Appl. Psychol. 91:125–39
    [Google Scholar]
  107. Tal E. 2017. Measurement in science. The Stanford Encyclopedia of Philosophy EN Zalta Stanford, CA: Metaphys. Res. Lab., Stanford Cent. Stud. Lang. Inf. Fall 2017 Ed. https://plato.stanford.edu/archives/fall2017/entries/measurement-science/
    [Google Scholar]
  108. Tay L, Diener E, Drasgow F, Vermunt JK 2011. Multilevel mixed-measurement IRT analysis: an explication and application to self-reported emotions across the world. Organ. Res. Methods 14:1177–207
    [Google Scholar]
  109. Tay L, Drasgow F, Rounds J, Williams BA 2009. Fitting measurement models to vocational interest data: Are dominance models ideal. ? J. Appl. Psychol. 94:51287–304
    [Google Scholar]
  110. Tay L, Huang Q, Vermunt JK 2016. Item response theory with covariates (IRT-C): assessing item recovery and differential item functioning for the three-parameter logistic model. Educ. Psychol. Meas. 76:122–42
    [Google Scholar]
  111. Tay L, Jebb AT. 2018. Establishing construct continua in construct validation: the process of continuum specification. Adv. Methods Pract. Psychol. Sci. 1:3375–88
    [Google Scholar]
  112. Tay L, Kuykendall L. 2017. Why self-reports of happiness and sadness may not necessarily contradict bipolarity: a psychometric review and proposal. Emot. Rev. 9:2146–54
    [Google Scholar]
  113. Tay L, Meade AW, Cao M 2015. An overview and practical guide to IRT measurement equivalence analysis. Organ. Res. Methods 18:3–46
    [Google Scholar]
  114. Tay L, Newman DA, Vermunt JK 2011. Using mixed-measurement item response theory with covariates (MM-IRT-C) to ascertain observed and unobserved measurement equivalence. Organ. Res. Methods 14:1147–76
    [Google Scholar]
  115. Tay L, Ng V. 2018. Ideal point modeling of non-cognitive constructs: review and recommendations for research. Front. Psychol. 9: https://doi.org/10.3389/fpsyg.2018.02423
    [Crossref] [Google Scholar]
  116. Terman LM. 1916. The Measurement of Intelligence: An Explanation of and a Complete Guide for the Use of the Stanford Revision and Extension of the Binet-Simon Intelligence Scale Cambridge, MA: Houghton Mifflin
    [Google Scholar]
  117. Thissen D, Reeve BB, Bjorner JB, Chang C-H 2007. Methodological issues for building item banks and computerized adaptive scales. Qual. Life Res. 16:S1109–19
    [Google Scholar]
  118. Thurstone LL. 1927. A law of comparative judgment. Psychol. Rev. 34:4273–86
    [Google Scholar]
  119. Thurstone LL. 1928. Attitudes can be measured. Am. J. Sociol. 33:4529–54
    [Google Scholar]
  120. van der Linden W, Hambleton RK 1997. Handbook of Modern Item Response Theory New York: Springer
    [Google Scholar]
  121. van Rijn PW, Rijmen F 2012. A note on explaining away and paradoxical results in multidimensional item response theory. ETS Res. Rep. Ser. 2012:2i–10
    [Google Scholar]
  122. Vandenberg RJ, Lance CE. 2000. A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 3:14–70
    [Google Scholar]
  123. Verhelst ND, Glas CAW. 1993. A dynamic generalization of the Rasch model. Psychometrika 58:3395–415
    [Google Scholar]
  124. Wainer H, Bradlow ET, Wang X 2007. Testlet Response Theory and Its Applications Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  125. Wang X, Berger JO, Burdick DS 2013. Bayesian analysis of dynamic item response models in educational testing. Ann. Appl. Stat. 7:1126–53
    [Google Scholar]
  126. Weiss DJ. 1982. Improving measurement quality and efficiency with adaptive testing. Appl. Psychol. Meas. 6:4473–92
    [Google Scholar]
  127. Weiss DJ. 2004. Computerized adaptive testing for effective and efficient measurement in counseling and education. Meas. Eval. Couns. Dev. 37:270–84
    [Google Scholar]
  128. Weiss J. 1987. The Golden Rule bias reduction principle: a practical reform. Educ. Meas. Issues Pract. 6:223–25
    [Google Scholar]
  129. Whitney DJ, Schmitt N. 1997. Relationship between culture and responses to biodata employment items. J. Appl. Psychol. 82:1113–29
    [Google Scholar]
  130. Wilson MR. 2005. Constructing Measures: An Item Response Modeling Approach Mahwah, NJ: Erlbaum
    [Google Scholar]
  131. Wilson MR, De Boeck P, Carstensen CH 2008. Explanatory item response models. Assessment of Competencies in Educational Contexts J Hartig, E Klieme, D Leutner 83–110 Göttingen, Ger: Hogrefe & Huber
    [Google Scholar]
  132. Yerkes RM. 1917. The Binet versus the Point Scale method of measuring intelligence. J. Appl. Psychol. 1:2111–22
    [Google Scholar]
  133. Yoakum CS, Yerkes RM. 1920. Army Mental Tests New York: Henry Holt
    [Google Scholar]
  134. Zettler I, Lang JWB, Hülsheger UR, Hilbig BE 2016. Dissociating indifferent, directional, and extreme responding in personality data: applying the three-process model to self- and observer reports. J. Personal. 84:461–72
    [Google Scholar]
  135. Zickar MJ. 1998. Modeling item-level data with item response theory. Curr. Dir. Psychol. Sci. 7:4104–9
    [Google Scholar]
/content/journals/10.1146/annurev-orgpsych-012420-061705
Loading
/content/journals/10.1146/annurev-orgpsych-012420-061705
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error