1932

Abstract

Pregnancy stimulates an elaborate assortment of dynamic changes, allowing intimate approximation of genetically discordant maternal and fetal tissues. Although the cellular and molecular details about how this works remain largely undefined, important clues arise from evaluating how a prior pregnancy influences the outcome of a future pregnancy. The risk of complications is consistently increased when complications occurred in a prior pregnancy. Reciprocally, a prior successful pregnancy protects against complications in a future pregnancy. Here, we summarize immunological perturbations associated with fetal loss, with particular focus on how both harmful and protective adaptations may persist in mothers. Immunological aberrancy as a root cause of pregnancy complications is also considered, given their shared overlapping risk factors and the sustained requirement for averting maternal–fetal conflict throughout pregnancy. Understanding pregnancy-induced immunological changes may expose not only new therapeutic strategies for improving pregnancy outcomes but also new facets of how immune tolerance works that may be applicable to other physiological and pathological contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012743
2019-01-24
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012743.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012743&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Maynard CL, Elson CO, Hatton RD, Weaver CT 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–41
    [Google Scholar]
  2. 2.  Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY 2012. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal–fetal conflict. Cell 150:29–38
    [Google Scholar]
  3. 3.  Paul WE 2010. Self/Nonself—Immune Recognition and Signaling: a new journal tackles a problem at the center of immunological science. Self Nonself 1:2–3
    [Google Scholar]
  4. 4.  Janeway CA Jr 1992. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13:11–16
    [Google Scholar]
  5. 5.  Medawar PB 1953. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7:320–38
    [Google Scholar]
  6. 6.  Collins MK, Tay CS, Erlebacher A 2009. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J. Clin. Investig. 119:2062–73
    [Google Scholar]
  7. 7.  Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A 2012. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal–fetal interface. Science 336:1317–21
    [Google Scholar]
  8. 8.  Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H 2000. A critical role for murine complement regulator Crry in fetomaternal tolerance. Science 287:498–501
    [Google Scholar]
  9. 9.  Nelson JL 2012. The otherness of self: microchimerism in health and disease. Trends Immunol 33:421–27
    [Google Scholar]
  10. 10.  Kinder JM, Stelzer IA, Arck PC, Way SS 2017. Immunological implications of pregnancy-induced microchimerism. Nat. Rev. Immunol. 17:483–94
    [Google Scholar]
  11. 11.  Hunt JS, Andrews GK, Wood GW 1987. Normal trophoblasts resist induction of class I HLA. J. Immunol. 138:2481–87
    [Google Scholar]
  12. 12.  Fisher SJ, Damsky CH 1993. Human cytotrophoblast invasion. Semin. Cell Biol. 4:183–88
    [Google Scholar]
  13. 13.  Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED 1997. Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. PNAS 94:11520–25
    [Google Scholar]
  14. 14.  Blaschitz A, Hutter H, Dohr G 2001. HLA class I protein expression in the human placenta. Early Pregnancy 5:67–69
    [Google Scholar]
  15. 15.  Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A 2009. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127:26–39
    [Google Scholar]
  16. 16.  Sunderland CA, Redman CW, Stirrat GM 1981. HLA A, B, C antigens are expressed on nonvillous trophoblast of the early human placenta. J. Immunol. 127:2614–15
    [Google Scholar]
  17. 17.  Casro MJ, Morales P, Rojo-Amigo R, Martinez-Laso J, Allende L et al. 2000. Homozygous HLA-G*0105N healthy individuals indicate that membrane-anchored HLA-G1 molecule is not necessary for survival. Tissue Antigens 56:232–39
    [Google Scholar]
  18. 18.  Moreau P, Dausset J, Carosella ED, Rouas-Freiss N 2002. Viewpoint on the functionality of the human leukocyte antigen–G null allele at the fetal–maternal interface. Biol. Reprod. 67:1375–78
    [Google Scholar]
  19. 19.  Tafuri A, Alferink J, Moller P, Hammerling GJ, Arnold B 1995. T cell awareness of paternal alloantigens during pregnancy. Science 270:630–33
    [Google Scholar]
  20. 20.  Erlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH 2007. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Investig. 117:1399–411
    [Google Scholar]
  21. 21.  Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T 1998. Rate of pregnancy-related relapse in multiple sclerosis. N. Engl. J. Med. 339:285–91
    [Google Scholar]
  22. 22.  Finkelsztejn A, Brooks JB, Paschoal FM Jr., Fragoso YD 2011. What can we really tell women with multiple sclerosis regarding pregnancy? A systematic review and meta-analysis of the literature. BJOG 118:790–97
    [Google Scholar]
  23. 23.  Ostensen M, Villiger PM 2007. The remission of rheumatoid arthritis during pregnancy. Semin. Immunopathol. 29:185–91
    [Google Scholar]
  24. 24.  Buchel E, Van Steenbergen W, Nevens F, Fevery J 2002. Improvement of autoimmune hepatitis during pregnancy followed by flare-up after delivery. Am. J. Gastroenterol. 97:3160–65
    [Google Scholar]
  25. 25.  Langer-Gould A, Garren H, Slansky A, Ruiz PJ, Steinman L 2002. Late pregnancy suppresses relapses in experimental autoimmune encephalomyelitis: evidence for a suppressive pregnancy-related serum factor. J. Immunol. 169:1084–91
    [Google Scholar]
  26. 26.  McClain MA, Gatson NN, Powell ND, Papenfuss TL, Gienapp IE et al. 2007. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J. Immunol. 179:8146–52
    [Google Scholar]
  27. 27.  Munoz-Suano A, Kallikourdis M, Sarris M, Betz AG 2012. Regulatory T cells protect from autoimmune arthritis during pregnancy. J. Autoimmun. 38:J103–8
    [Google Scholar]
  28. 28.  Steinhoff MC, Omer SB, Roy E, Arifeen SE, Raqib R et al. 2010. Influenza immunization in pregnancy—antibody responses in mothers and infants. N. Engl. J. Med. 362:1644–46
    [Google Scholar]
  29. 29.  Englund JA, Mbawuike IN, Hammill H, Holleman MC, Baxter BD, Glezen WP 1993. Maternal immunization with influenza or tetanus toxoid vaccine for passive antibody protection in young infants. J. Infect. Dis. 168:647–56
    [Google Scholar]
  30. 30.  Littman DR, Rudensky AY 2010. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–58
    [Google Scholar]
  31. 31.  Wing K, Sakaguchi S 2010. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11:7–13
    [Google Scholar]
  32. 32.  Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T et al. 2001. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182:18–32
    [Google Scholar]
  33. 33.  Hori S, Nomura T, Sakaguchi S 2003. Control of regulatory T cell development by the transcription factor Foxp3. . Science 299:1057–61
    [Google Scholar]
  34. 34.  Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ et al. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. . Genet 27:20–21
    [Google Scholar]
  35. 35.  Fontenot JD, Gavin MA, Rudensky AY 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330–36
    [Google Scholar]
  36. 36.  Kim JM, Rasmussen JP, Rudensky AY 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8:191–97
    [Google Scholar]
  37. 37.  Sakaguchi S 2000. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–58
    [Google Scholar]
  38. 38.  Fu S, Zhang N, Yopp AC, Chen D, Mao M et al. 2004. TGF-β induces Foxp3+ T-regulatory cells from CD4+ CD25 – precursors. Am. J. Transplant. 4:1614–27
    [Google Scholar]
  39. 39.  Erlebacher A 2013. Immunology of the maternal–fetal interface. Annu. Rev. Immunol. 31:387–411
    [Google Scholar]
  40. 40.  Jiang TT, Chaturvedi V, Ertelt JM, Kinder JM, Clark DR et al. 2014. Regulatory T cells: new keys for further unlocking the enigma of fetal tolerance and pregnancy complications. J. Immunol. 192:4949–56
    [Google Scholar]
  41. 41.  Aluvihare VR, Betz AG 2006. The role of regulatory T cells in alloantigen tolerance. Immunol. Rev. 212:330–43
    [Google Scholar]
  42. 42.  Guerin LR, Prins JR, Robertson SA 2009. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment?. Hum. Reprod. Update 15:517–35
    [Google Scholar]
  43. 43.  Robertson SA, Sharkey DJ 2001. The role of semen in induction of maternal immune tolerance to pregnancy. Semin. Immunol. 13:243–54
    [Google Scholar]
  44. 44.  Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA 2011. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol. Reprod. 85:397–408
    [Google Scholar]
  45. 45.  Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S et al. 2009. Human chorionic gonadotropin attracts regulatory T cells into the fetal–maternal interface during early human pregnancy. J. Immunol. 182:5488–97
    [Google Scholar]
  46. 46.  Schumacher A, Heinze K, Witte J, Poloski E, Linzke N et al. 2013. Human chorionic gonadotropin as a central regulator of pregnancy immune tolerance. J. Immunol. 190:2650–58
    [Google Scholar]
  47. 47.  Moldenhauer LM, Diener KR, Thring DM, Brown MP, Hayball JD, Robertson SA 2009. Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J. Immunol. 182:8080–93
    [Google Scholar]
  48. 48.  Saito S, Nakashima A, Shima T, Ito M 2010. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 63:601–10
    [Google Scholar]
  49. 49.  McCloskey ML, Curotto de Lafaille MA, Carroll MC, Erlebacher A 2011. Acquisition and presentation of follicular dendritic cell–bound antigen by lymph node–resident dendritic cells. J. Exp. Med. 208:135–48
    [Google Scholar]
  50. 50.  Du MR, Guo PF, Piao HL, Wang SC, Sun C et al. 2014. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J. Immunol. 192:1502–11
    [Google Scholar]
  51. 51.  Vignali DA, Collison LW, Workman CJ 2008. How regulatory T cells work. Nat. Rev. Immunol. 8:523–32
    [Google Scholar]
  52. 52.  Sojka DK, Huang YH, Fowell DJ 2008. Mechanisms of regulatory T-cell suppression—a diverse arsenal for a moving target. Immunology 124:13–22
    [Google Scholar]
  53. 53.  La Rocca C, Carbone F, Longobardi S, Matarese G 2014. The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus. Immunol. Lett. 162:41–48
    [Google Scholar]
  54. 54.  Heikkinen J, Mottonen M, Alanen A, Lassila O 2004. Phenotypic characterization of regulatory T cells in the human decidua. Clin. Exp. Immunol. 136:373–78
    [Google Scholar]
  55. 55.  Miwa N, Hayakawa S, Miyazaki S, Myojo S, Sasaki Y et al. 2005. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-γ increase in normal pregnancy but decrease in spontaneous abortion. Mol. Hum. Reprod. 11:865–70
    [Google Scholar]
  56. 56.  Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ et al. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–93
    [Google Scholar]
  57. 57.  Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS et al. 2007. A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med. 13:1450–57
    [Google Scholar]
  58. 58.  Habicht A, Dada S, Jurewicz M, Fife BT, Yagita H et al. 2007. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J. Immunol. 179:5211–19
    [Google Scholar]
  59. 59.  van der Zwan A, Bi K, Norwitz ER, Crespo AC, Claas FHJ et al. 2018. Mixed signature of activation and dysfunction allows human decidual CD8+ T cells to provide both tolerance and immunity. PNAS 115:385–90
    [Google Scholar]
  60. 60.  Pohanka M, Hampl R, Sterzl I, Starka L 2002. Steroid hormones in human semen with particular respect to dehydroepiandrosterone and its immunomodulatory metabolites. Endocr. Regul. 36:79–86
    [Google Scholar]
  61. 61.  Robertson SA, Ingman WV, O'Leary S, Sharkey DJ, Tremellen KP 2002. Transforming growth factor β—a mediator of immune deviation in seminal plasma. J. Reprod. Immunol. 57:109–28
    [Google Scholar]
  62. 62.  Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, Care AS 2009. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol. Reprod. 80:1036–45
    [Google Scholar]
  63. 63.  Sharkey DJ, Tremellen KP, Jasper MJ, Gemzell-Danielsson K, Robertson SA 2012. Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. J. Immunol. 188:2445–54
    [Google Scholar]
  64. 64.  LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP 2007. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr. Hypertens. Rep. 9:480–85
    [Google Scholar]
  65. 65.  Pinheiro MB, Martins-Filho OA, Mota AP, Alpoim PN, Godoi LC et al. 2013. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine 62:165–73
    [Google Scholar]
  66. 66.  Fisher SJ 2015. Why is placentation abnormal in preeclampsia?. Am. J. Obstet. Gynecol. 213:S115–22
    [Google Scholar]
  67. 67.  Redman CW, Sargent IL 2010. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 63:534–43
    [Google Scholar]
  68. 68.  Saito S, Sakai M, Sasaki Y, Nakashima A, Shiozaki A 2007. Inadequate tolerance induction may induce pre-eclampsia. J. Reprod. Immunol. 76:30–39
    [Google Scholar]
  69. 69.  Kho EM, McCowan LM, North RA, Roberts CT, Chan E et al. 2009. Duration of sexual relationship and its effect on preeclampsia and small for gestational age perinatal outcome. J. Reprod. Immunol. 82:66–73
    [Google Scholar]
  70. 70.  Robillard PY, Hulsey TC, Perianin J, Janky E, Miri EH, Papiernik E 1994. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet 344:973–75
    [Google Scholar]
  71. 71.  Einarsson JI, Sangi-Haghpeykar H, Gardner MO 2003. Sperm exposure and development of preeclampsia. Am. J. Obstet. Gynecol. 188:1241–43
    [Google Scholar]
  72. 72.  Dekker GA, Robillard PY, Hulsey TC 1998. Immune maladaptation in the etiology of preeclampsia: a review of corroborative epidemiologic studies. Obstet. Gynecol. Surv. 53:377–82
    [Google Scholar]
  73. 73.  Saftlas AF, Levine RJ, Klebanoff MA, Martz KL, Ewell MG et al. 2003. Abortion, changed paternity, and risk of preeclampsia in nulliparous women. Am. J. Epidemiol. 157:1108–14
    [Google Scholar]
  74. 74.  Klonoff-Cohen HS, Savitz DA, Cefalo RC, McCann MF 1989. An epidemiologic study of contraception and preeclampsia. JAMA 262:3143–47
    [Google Scholar]
  75. 75.  Koelman CA, Coumans AB, Nijman HW, Doxiadis II, Dekker GA, Claas FH 2000. Correlation between oral sex and a low incidence of preeclampsia: a role for soluble HLA in seminal fluid?. J. Reprod. Immunol. 46:155–66
    [Google Scholar]
  76. 76.  Kyrou D, Kolibianakis EM, Devroey P, Fatemi HM 2010. Is the use of donor sperm associated with a higher incidence of preeclampsia in women who achieve pregnancy after intrauterine insemination?. Fertil. Steril. 93:1124–27
    [Google Scholar]
  77. 77.  Crawford G, Ray A, Gudi A, Shah A, Homburg R 2015. The role of seminal plasma for improved outcomes during in vitro fertilization treatment: review of the literature and meta-analysis. Hum. Reprod. Update 21:275–84
    [Google Scholar]
  78. 78.  Saito S, Shima T, Nakashima A, Inada K, Yoshino O 2016. Role of paternal antigen-specific Treg cells in successful implantation. Am. J. Reprod. Immunol. 75:310–16
    [Google Scholar]
  79. 79.  Robertson SA, Guerin LR, Moldenhauer LM, Hayball JD 2009. Activating T regulatory cells for tolerance in early pregnancy—the contribution of seminal fluid. J. Reprod. Immunol. 83:109–16
    [Google Scholar]
  80. 80.  Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S 2004. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10:347–53
    [Google Scholar]
  81. 81.  Inada K, Shima T, Nakashima A, Aoki K, Ito M, Saito S 2013. Characterization of regulatory T cells in decidua of miscarriage cases with abnormal or normal fetal chromosomal content. J. Reprod. Immunol. 97:104–11
    [Google Scholar]
  82. 82.  Aluvihare VR, Kallikourdis M, Betz AG 2004. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5:266–71
    [Google Scholar]
  83. 83.  Shima T, Sasaki Y, Itoh M, Nakashima A, Ishii N et al. 2010. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 85:121–29
    [Google Scholar]
  84. 84.  Rowe JH, Ertelt JM, Aguilera MN, Farrar MA, Way SS 2011. Foxp3+ regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe 10:54–64
    [Google Scholar]
  85. 85.  Darrasse-Jeze G, Klatzmann D, Charlotte F, Salomon BL, Cohen JL 2006. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol. Lett. 102:106–9
    [Google Scholar]
  86. 86.  Arruvito L, Sanz M, Banham AH, Fainboim L 2007. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 178:2572–78
    [Google Scholar]
  87. 87.  Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA et al. 2004. Cutting edge: Estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol. 173:2227–30
    [Google Scholar]
  88. 88.  Prieto GA, Rosenstein Y 2006. Oestradiol potentiates the suppressive function of human CD4+ CD25+ regulatory T cells by promoting their proliferation. Immunology 118:58–65
    [Google Scholar]
  89. 89.  Lee JH, Lydon JP, Kim CH 2012. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur. J. Immunol. 42:2683–96
    [Google Scholar]
  90. 90.  Jasper MJ, Tremellen KP, Robertson SA 2006. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol. Hum. Reprod. 12:301–8
    [Google Scholar]
  91. 91.  Winger EE, Reed JL 2011. Low circulating CD4+ CD25+ Foxp3+ T regulatory cell levels predict miscarriage risk in newly pregnant women with a history of failure. Am. J. Reprod. Immunol. 66:320–28
    [Google Scholar]
  92. 92.  Wu L, Luo LH, Zhang YX, Li Q, Xu B et al. 2014. Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reprod. Biol. Endocrinol. 12:74
    [Google Scholar]
  93. 93.  Bao SH, Wang XP, De Lin Q, Wang WJ, Yin GJ, Qiu LH 2011. Decidual CD4+CD25+CD127dim/− regulatory T cells in patients with unexplained recurrent spontaneous miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol. 155:94–98
    [Google Scholar]
  94. 94.  Liu C, Wang XZ, Sun XB 2013. Assessment of sperm antigen specific T regulatory cells in women with recurrent miscarriage. Early Hum. Dev. 89:95–100
    [Google Scholar]
  95. 95.  Yue CY, Zhang B, Ying CM 2015. Elevated serum level of IL-35 associated with the maintenance of maternal–fetal immune tolerance in normal pregnancy. PLOS ONE 10:e0128219
    [Google Scholar]
  96. 96.  Wu M, Liu P, Cheng L 2015. Galectin-1 reduction and changes in T regulatory cells may play crucial roles in patients with unexplained recurrent spontaneous abortion. Int. J. Clin. Exp. Pathol. 8:1973–78
    [Google Scholar]
  97. 97.  Toldi G, Saito S, Shima T, Halmos A, Veresh Z et al. 2012. The frequency of peripheral blood CD4+ CD25high FoxP3+ and CD4+ CD25 FoxP3+ regulatory T cells in normal pregnancy and pre-eclampsia. Am. J. Reprod. Immunol. 68:175–80
    [Google Scholar]
  98. 98.  Prins JR, Boelens HM, Heimweg J, Van der Heide S, Dubois AE et al. 2009. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens. Pregnancy 28:300–11
    [Google Scholar]
  99. 99.  Steinborn A, Haensch GM, Mahnke K, Schmitt E, Toermer A et al. 2008. Distinct subsets of regulatory T cells during pregnancy: Is the imbalance of these subsets involved in the pathogenesis of preeclampsia?. Clin. Immunol. 129:401–12
    [Google Scholar]
  100. 100.  Toldi G, Svec P, Vasarhelyi B, Meszaros G, Rigo J et al. 2008. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet. Gynecol. Scand. 87:1229–33
    [Google Scholar]
  101. 101.  Darmochwal-Kolarz D, Saito S, Rolinski J, Tabarkiewicz J, Kolarz B et al. 2007. Activated T lymphocytes in pre-eclampsia. Am. J. Reprod. Immunol. 58:39–45
    [Google Scholar]
  102. 102.  Wang WJ, Hao CF, Yi L, Yin GJ, Bao SH et al. 2010. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol. 84:164–70
    [Google Scholar]
  103. 103.  Lee SK, Kim JY, Hur SE, Kim CJ, Na BJ et al. 2011. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum. Reprod. 26:2964–71
    [Google Scholar]
  104. 104.  Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Bertoja AZ et al. 2005. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: Adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol. 166:811–22
    [Google Scholar]
  105. 105.  Zenclussen AC, Gerlof K, Zenclussen ML, Ritschel S, Zambon Bertoja A et al. 2006. Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface. Eur. J. Immunol. 36:82–94
    [Google Scholar]
  106. 106.  Chen T, Darrasse-Jeze G, Bergot AS, Courau T, Churlaud G et al. 2013. Self-specific memory regulatory T cells protect embryos at implantation in mice. J. Immunol. 191:2273–81
    [Google Scholar]
  107. 107.  Zhao JX, Zeng YY, Liu Y 2007. Fetal alloantigen is responsible for the expansion of the CD4+CD25+ regulatory T cell pool during pregnancy. J. Reprod. Immunol. 75:71–81
    [Google Scholar]
  108. 108.  Chaturvedi V, Ertelt JM, Jiang TT, Kinder JM, Xin L et al. 2015. CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage. J. Clin. Investig. 125:1713–25
    [Google Scholar]
  109. 109.  Rowe JH, Ertelt JM, Xin L, Way SS 2012. Listeria monocytogenes cytoplasmic entry induces fetal wastage by disrupting maternal Foxp3+ regulatory T cell–sustained fetal tolerance. PLOS Pathog 8:e1002873
    [Google Scholar]
  110. 110.  Andersen KG, Nissen JK, Betz AG 2012. Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution. Front. Immunol. 3:113
    [Google Scholar]
  111. 111.  Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–12
    [Google Scholar]
  112. 112.  Rowe JH, Ertelt JM, Xin L, Way SS 2012. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490:102–6
    [Google Scholar]
  113. 113.  Xin L, Ertelt JM, Rowe JH, Jiang TT, Kinder JM et al. 2014. Cutting edge: Committed Th1 CD4+ T cell differentiation blocks pregnancy-induced Foxp3 expression with antigen-specific fetal loss. J. Immunol. 192:2970–74
    [Google Scholar]
  114. 114.  Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ 1982. Early embryonic mortality in women. Fertil. Steril. 38:447–53
    [Google Scholar]
  115. 115.  Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP et al. 1988. Incidence of early loss of pregnancy. N. Engl. J. Med. 319:189–94
    [Google Scholar]
  116. 116.  Ananth CV, Keyes KM, Wapner RJ 2013. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ 347:f6564
    [Google Scholar]
  117. 117.  Hamilton BE, Martin JA, Osterman MJ, Curtin SC, Matthews TJ 2015. Births: final data for 2014. Natl. Vital Stat. Rep. 64:1–64
    [Google Scholar]
  118. 118.  Barker DJ, Osmond C 1986. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 327:1077–81
    [Google Scholar]
  119. 119.  Barton JR, Barton LA, Istwan NB, Desch CN, Rhea DJ et al. Elective delivery at 340/7 to 366/7 weeks' gestation and its impact on neonatal outcomes in women with stable mild gestational hypertension. Am. J. Obstet. Gynecol. 204:44.e1–.e5
    [Google Scholar]
  120. 120.  Smulian JC, Ananth CV, Vintzileos AM, Scorza WE, Knuppel RA 2002. Fetal deaths in the United States: influence of high-risk conditions and implications for management. Obstet. Gynecol. 100:1183–89
    [Google Scholar]
  121. 121.  Pineles BL, Park E, Samet JM 2014. Systematic review and meta-analysis of miscarriage and maternal exposure to tobacco smoke during pregnancy. Am. J. Epidemiol. 179:807–23
    [Google Scholar]
  122. 122.  Cui H, Gong TT, Liu CX, Wu QJ 2016. Associations between passive maternal smoking during pregnancy and preterm birth: evidence from a meta-analysis of observational studies. PLOS ONE 11:e0147848
    [Google Scholar]
  123. 123.  Koike T, Minakami H, Izumi A, Watanabe T, Matsubara S, Sato I 2002. Recurrence risk of preterm birth due to preeclampsia. Gynecol. Obstet. Investig. 53:22–27
    [Google Scholar]
  124. 124.  Xiong X, Fraser WD, Demianczuk NN 2002. History of abortion, preterm, term birth, and risk of preeclampsia: a population-based study. Am. J. Obstet. Gynecol. 187:1013–18
    [Google Scholar]
  125. 125.  Adams MM, Elam-Evans LD, Wilson HG, Gilbertz DA 2000. Rates of and factors associated with recurrence of preterm delivery. JAMA 283:1591–96
    [Google Scholar]
  126. 126.  Rasmussen S, Ebbing C, Irgens LM 2017. Predicting preeclampsia from a history of preterm birth. PLOS ONE 12:e0181016
    [Google Scholar]
  127. 127.  Hernandez-Diaz S, Toh S, Cnattingius S 2009. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ 338:b2255
    [Google Scholar]
  128. 128.  Melve KK, Skjaerven R, Rasmussen S, Irgens LM 2010. Recurrence of stillbirth in sibships: population-based cohort study. Am. J. Epidemiol. 172:1123–30
    [Google Scholar]
  129. 129.  Lamont K, Scott NW, Jones GT, Bhattacharya S 2015. Risk of recurrent stillbirth: systematic review and meta-analysis. BMJ 350:h3080
    [Google Scholar]
  130. 130.  Smith GC, Shah I, White IR, Pell JP, Dobbie R 2007. Previous preeclampsia, preterm delivery, and delivery of a small for gestational age infant and the risk of unexplained stillbirth in the second pregnancy: a retrospective cohort study, Scotland, 1992–2001. Am. J. Epidemiol. 165:194–202
    [Google Scholar]
  131. 131.  Ananth CV, Getahun D, Peltier MR, Salihu HM, Vintzileos AM 2006. Recurrence of spontaneous versus medically indicated preterm birth. Am. J. Obstet. Gynecol. 195:643–50
    [Google Scholar]
  132. 132.  Esplin MS, O'Brien E, Fraser A, Kerber RA, Clark E et al. 2008. Estimating recurrence of spontaneous preterm delivery. Obstet. Gynecol. 112:516–23
    [Google Scholar]
  133. 133.  Mercer BM, Goldenberg RL, Moawad AH, Meis PJ, Iams JD et al. 1999. The preterm prediction study: effect of gestational age and cause of preterm birth on subsequent obstetric outcome. Am. J. Obstet. Gynecol. 181:1216–21
    [Google Scholar]
  134. 134.  Boyd HA, Poulsen G, Wohlfahrt J, Murray JC, Feenstra B, Melbye M 2009. Maternal contributions to preterm delivery. Am. J. Epidemiol. 170:1358–64
    [Google Scholar]
  135. 135.  Malacova E, Regan A, Nassar N, Raynes-Greenow C, Leonard H et al. 2018. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: systematic review and meta-analysis. BJOG 125:183–92
    [Google Scholar]
  136. 136.  Mbah AK, Alio AP, Marty PJ, Bruder K, Whiteman VE, Salihu HM 2010. Pre-eclampsia in the first pregnancy and subsequent risk of stillbirth in black and white gravidas. Eur. J. Obstet. Gynecol. Reprod. Biol. 149:165–69
    [Google Scholar]
  137. 137.  Black M, Shetty A, Bhattacharya S 2008. Obstetric outcomes subsequent to intrauterine death in the first pregnancy. BJOG 115:269–74
    [Google Scholar]
  138. 138.  Robson S, Chan A, Keane RJ, Luke CG 2001. Subsequent birth outcomes after an unexplained stillbirth: preliminary population-based retrospective cohort study. Aust. N. Z. J. Obstet. Gynaecol. 41:29–35
    [Google Scholar]
  139. 139.  Gordon A, Raynes-Greenow C, McGeechan K, Morris J, Jeffery H 2012. Stillbirth risk in a second pregnancy. Obstet. Gynecol. 119:509–17
    [Google Scholar]
  140. 140.  Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM et al. 2017. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377:1156–67
    [Google Scholar]
  141. 141.  Vilches M, Nieto A 2015. Analysis of Pregnancy-Induced Anti-HLA antibodies using Luminex platform. Transplant. Proc. 47:2608–10
    [Google Scholar]
  142. 142.  Regan L, Braude PR, Hill DP 1991. A prospective study of the incidence, time of appearance and significance of anti-paternal lymphocytotoxic antibodies in human pregnancy. Hum. Reprod. 6:294–98
    [Google Scholar]
  143. 143.  Triulzi DJ, Kleinman S, Kakaiya RM, Busch MP, Norris PJ et al. 2009. The effect of previous pregnancy and transfusion on HLA alloimmunization in blood donors: implications for a transfusion-related acute lung injury risk reduction strategy. Transfusion 49:1825–35
    [Google Scholar]
  144. 144.  Owen RD, Wood HR, Foord AG, Sturgeon P, Baldwin LG 1954. Evidence for actively acquired tolerance to Rh antigens. PNAS 40:420–24
    [Google Scholar]
  145. 145.  Barton BM, Xu R, Wherry EJ, Porrett PM 2017. Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long-lived maternal T cells. J. Leukoc. Biol. 101:975–87
    [Google Scholar]
  146. 146.  Bromberger B, Spragan D, Hashmi S, Morrison A, Thomasson A et al. 2017. Pregnancy-induced sensitization promotes sex disparity in living donor kidney transplantation. J. Am. Soc. Nephrol. 28:3025–33
    [Google Scholar]
  147. 147.  Jameson SC, Masopust D 2018. Understanding subset diversity in T cell memory. Immunity 48:214–26
    [Google Scholar]
  148. 148.  Trupin LS, Simon LP, Eskenazi B 1996. Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiology 7:240–44
    [Google Scholar]
  149. 149.  Li DK, Wi S 2000. Changing paternity and the risk of preeclampsia/eclampsia in the subsequent pregnancy. Am. J. Epidemiol. 151:57–62
    [Google Scholar]
  150. 150.  Tubbergen P, Lachmeijer AM, Althuisius SM, Vlak ME, van Geijn HP, Dekker GA 1999. Change in paternity: a risk factor for preeclampsia in multiparous women?. J. Reprod. Immunol. 45:81–88
    [Google Scholar]
  151. 151.  Feeney JG, Scott JS 1980. Pre-eclampsia and changed paternity. Eur. J. Obstet. Gynecol. Reprod. Biol. 11:35–38
    [Google Scholar]
  152. 152.  Robillard PY, Hulsey TC, Alexander GR, Keenan A, de Caunes F, Papiernik E 1993. Paternity patterns and risk of preeclampsia in the last pregnancy in multiparae. J. Reprod. Immunol. 24:1–12
    [Google Scholar]
  153. 153.  Nelson RW, McLachlan JB, Kurtz JR, Jenkins MK 2013. CD4+ T cell persistence and function after infection are maintained by low-level peptide:MHC class II presentation. J. Immunol. 190:2828–34
    [Google Scholar]
  154. 154.  Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y 2004. Role for CD4+ CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J. Exp. Med. 200:201–10
    [Google Scholar]
  155. 155.  Mold JE, McCune JM 2012. Immunological tolerance during fetal development: from mouse to man. Adv. Immunol. 115:73–111
    [Google Scholar]
  156. 156.  Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP et al. 2008. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322:1562–65
    [Google Scholar]
  157. 157.  Claas FH, Gijbels Y, van der Velden-de Munck J, van Rood JJ 1988. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 241:1815–17
    [Google Scholar]
  158. 158.  Burlingham WJ, Grailer AP, Heisey DM, Claas FH, Norman D et al. 1998. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N. Engl. J. Med. 339:1657–64
    [Google Scholar]
  159. 159.  Ichinohe T, Uchiyama T, Shimazaki C, Matsuo K, Tamaki S et al. 2004. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)–mismatched family members linked with long-term fetomaternal microchimerism. Blood 104:3821–28
    [Google Scholar]
  160. 160.  van Rood JJ, Loberiza FR Jr., Zhang MJ, Oudshoorn M, Claas F et al. 2002. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 99:1572–77
    [Google Scholar]
  161. 161.  Andrassy J, Kusaka S, Jankowska-Gan E, Torrealba JR, Haynes LD et al. 2003. Tolerance to noninherited maternal MHC antigens in mice. J. Immunol. 171:5554–61
    [Google Scholar]
  162. 162.  Matsuoka K, Ichinohe T, Hashimoto D, Asakura S, Tanimoto M, Teshima T 2006. Fetal tolerance to maternal antigens improves the outcome of allogeneic bone marrow transplantation by a CD4+ CD25+ T-cell-dependent mechanism. Blood 107:404–9
    [Google Scholar]
  163. 163.  Dutta P, Dart M, Roenneburg DA, Torrealba JR, Burlingham WJ 2011. Pretransplant immune-regulation predicts allograft tolerance. Am. J. Transplant. 11:1296–301
    [Google Scholar]
  164. 164.  Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS et al. 2015. Cross-generational reproductive fitness enforced by microchimeric maternal cells. Cell 162:505–15
    [Google Scholar]
  165. 165.  Kinder JM, Jiang TT, Clark DR, Chaturvedi V, Xin L et al. 2014. Pregnancy-induced maternal regulatory T cells, bona fide memory or maintenance by antigenic reminder from fetal cell microchimerism?. Chimerism 5:16–19
    [Google Scholar]
  166. 166.  Campbell DA Jr., Lorber MI, Sweeton JC, Turcotte JG, Niederhuber JE, Beer AE 1984. Breast feeding and maternal-donor renal allografts: possibly the original donor-specific transfusion. Transplantation 37:340–44
    [Google Scholar]
  167. 167.  Maloney S, Smith A, Furst DE, Myerson D, Rupert K et al. 1999. Microchimerism of maternal origin persists into adult life. J. Clin. Investig. 104:41–47
    [Google Scholar]
  168. 168.  Dutta P, Molitor-Dart M, Bobadilla JL, Roenneburg DA, Yan Z et al. 2009. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 114:3578–87
    [Google Scholar]
  169. 169.  Molitor-Dart ML, Andrassy J, Kwun J, Kayaoglu HA, Roenneburg DA et al. 2007. Developmental exposure to noninherited maternal antigens induces CD4+ T regulatory cells: relevance to mechanism of heart allograft tolerance. J. Immunol. 179:6749–61
    [Google Scholar]
  170. 170.  Patas K, Engler JB, Friese MA, Gold SM 2013. Pregnancy and multiple sclerosis: feto–maternal immune cross talk and its implications for disease activity. J. Reprod. Immunol. 97:140–46
    [Google Scholar]
  171. 171.  Coyle PK 2012. Pregnancy and multiple sclerosis. Neurol. Clin. 30:877–88
    [Google Scholar]
  172. 172.  Mor G, Aldo P, Alvero AB 2017. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 17:469–82
    [Google Scholar]
  173. 173.  Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ et al. 2015. Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47
    [Google Scholar]
  174. 174.  Matzinger P 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045
    [Google Scholar]
  175. 175.  Bonney EA 2016. Immune regulation in pregnancy: a matter of perspective?. Obstet. Gynecol. Clin. N. Am. 43:679–98
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012743
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012743
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error