1932

Abstract

Nearly all infectious agents contain DNA or RNA genomes, making sequencing an attractive approach for pathogen detection. The cost of high-throughput or next-generation sequencing has been reduced by several orders of magnitude since its advent in 2004, and it has emerged as an enabling technological platform for the detection and taxonomic characterization of microorganisms in clinical samples from patients. This review focuses on the application of untargeted metagenomic next-generation sequencing to the clinical diagnosis of infectious diseases, particularly in areas in which conventional diagnostic approaches have limitations. The review covers () next-generation sequencing technologies and common platforms, () next-generation sequencing assay workflows in the clinical microbiology laboratory, () bioinformatics analysis of metagenomic next-generation sequencing data, () validation and use of metagenomic next-generation sequencing for diagnosing infectious diseases, and () significant case reports and studies in this area. Next-generation sequencing is a new technology that has the promise to enhance our ability to diagnose, interrogate, and track infectious diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012751
2019-01-24
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012751.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012751&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H et al. 2014. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 370:252408–17
    [Google Scholar]
  2. 2.  Doan T, Wilson MR, Crawford ED, Chow ED, Khan LM et al. 2016. Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens. Genome Med 8:90
    [Google Scholar]
  3. 3.  Langelier C, Zinter MS, Kalantar K, Yanik GA, Christenson S et al. 2017. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am. J. Respir. Crit. Care Med. 197:4524–28
    [Google Scholar]
  4. 4.  Wilson MR, Suan D, Duggins A, Schubert RD, Khan LM et al. 2017. A novel cause of chronic viral meningoencephalitis: Cache Valley virus. Ann. Neurol. 82:1105–14
    [Google Scholar]
  5. 5.  Wilson MR, Zimmermann LL, Crawford ED, Sample HA, Soni PR et al. 2017. Acute West Nile virus meningoencephalitis diagnosed via metagenomic deep sequencing of cerebrospinal fluid in a renal transplant patient. Am. J. Transplant. 17:3803–8
    [Google Scholar]
  6. 6.  Wilson MR, Shanbhag NM, Reid MJ, Singhal NS, Gelfand JM et al. 2015. Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann. Neurol. 78:5722–30
    [Google Scholar]
  7. 7.  Gu W, Crawford ED, O'Donovan BD, Wilson MR, Chow ED et al. 2016. Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol 17:41
    [Google Scholar]
  8. 8.  Greninger AL, Naccache SN, Federman S, Yu G, Mbala P et al. 2015. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:99
    [Google Scholar]
  9. 9.  Grumaz S, Stevens P, Grumaz C, Decker SO, Weigand MA et al. 2016. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med 8:73
    [Google Scholar]
  10. 10.  Long Y, Zhang Y, Gong Y, Sun R, Su L et al. 2016. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients. Arch. Med. Res. 47:5365–71
    [Google Scholar]
  11. 11.  De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H et al. 2013. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155:51178–87
    [Google Scholar]
  12. 12.  Vlaminck ID, Martin L, Kertesz M, Patel K, Kowarsky M et al. 2015. Noninvasive monitoring of infection and rejection after lung transplantation. PNAS 112:4313336–41
    [Google Scholar]
  13. 13.  Wilson MR, O'Donovan BD, Gelfand JM, Sample HA, Chow FC et al. 2018. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol 75:8947–55
    [Google Scholar]
  14. 14.  Rossen JWA, Friedrich AW, Moran-Gilad J, ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD). 2017. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin. Microbiol. Infect 24:4355–60
    [Google Scholar]
  15. 15.  Popovich KJ, Snitkin ES 2017. Whole genome sequencing—implications for infection prevention and outbreak investigations. Curr. Infect. Dis. Rep. 19:415
    [Google Scholar]
  16. 16.  Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M et al. 2017. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clin. Microbiol. Infect. 23:12–22
    [Google Scholar]
  17. 17.  Gardy JL, Loman NJ 2018. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19:9–20
    [Google Scholar]
  18. 18.  Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW 2007. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17:81195–1201
    [Google Scholar]
  19. 19.  Lefterova MI, Suarez CJ, Banaei N, Pinsky BA 2015. Next-generation sequencing for infectious disease diagnosis and management: a report of the Association for Molecular Pathology. J. Mol. Diagn. 17:6623–34
    [Google Scholar]
  20. 20.  Sahoo MK, Lefterova MI, Yamamoto F, Waggoner JJ, Chou S et al. 2013. Detection of cytomegalovirus drug resistance mutations by next-generation sequencing. J. Clin. Microbiol. 51:113700–10
    [Google Scholar]
  21. 21.  Weinstock GM 2012. Genomic approaches to studying the human microbiota. Nature 489:7415250–56
    [Google Scholar]
  22. 22.  Chiu C, Miller S 2016. Next-generation sequencing. Molecular Microbiology: Diagnostic Principles and Practice DH Persing, FC Tenover, RT Hayden, M Ieven, MB Miller et al.68–79 Washington, DC: ASM
    [Google Scholar]
  23. 23.  Goodwin S, McPherson JD, McCombie WR 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:6333–51
    [Google Scholar]
  24. 24.  Schlaberg R, Chiu CY, Miller S, Procop GW, Weinstock G 2017. Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Arch. Pathol. Lab. Med. 141:6776–86
    [Google Scholar]
  25. 25.  Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:721853–59
    [Google Scholar]
  26. 26.  Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ et al. 2017. Index switching causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA sequencing. bioRxiv 125724. https://doi.org/10.1101/125724
    [Crossref]
  27. 27.  Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W et al. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:7356348–52
    [Google Scholar]
  28. 28.  Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL et al. 2010. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327:596178–81
    [Google Scholar]
  29. 29.  Fang C, Zhong H, Lin Y, Chen B, Han M et al. 2018. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. GigaScience 7:3gix133
    [Google Scholar]
  30. 30.  Bleeker-Rovers CP, Vos FJ, de Kleijn EMHA, Mudde AH, Dofferhoff TSM et al. 2007. A prospective multicenter study on fever of unknown origin: the yield of a structured diagnostic protocol. Medicine 86:126–38
    [Google Scholar]
  31. 31.  Ewig S, Torres A, Angeles Marcos M, Angrill J, Rañó A et al. 2002. Factors associated with unknown aetiology in patients with community-acquired pneumonia. Eur. Respir. J. 20:51254–62
    [Google Scholar]
  32. 32.  Chiu CY 2013. Viral pathogen discovery. Curr. Opin. Microbiol. 16:4468–78
    [Google Scholar]
  33. 33.  Cummings LA, Kurosawa K, Hoogestraat DR, SenGupta DJ, Candra F et al. 2016. Clinical next generation sequencing outperforms standard microbiological culture for characterizing polymicrobial samples. Clin. Chem. 62:111465–73
    [Google Scholar]
  34. 34.  Salipante SJ, Hoogestraat DR, Abbott AN, SenGupta DJ, Cummings LA et al. 2014. Coinfection of Fusobacterium nucleatum and Actinomyces israelii in mastoiditis diagnosed by next-generation DNA sequencing. J. Clin. Microbiol. 52:51789–92
    [Google Scholar]
  35. 35.  Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ et al. 2014. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345:62021369–72
    [Google Scholar]
  36. 36.  Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT 2015. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 53:41072–79
    [Google Scholar]
  37. 37.  Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M et al. 2017. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 243:16–24
    [Google Scholar]
  38. 38.  Hasan MR, Rawat A, Tang P, Jithesh PV, Thomas E et al. 2016. Depletion of human DNA in spiked clinical specimens to improve the sensitivity of pathogen detection by next generation sequencing. J. Clin. Microbiol. 54:4919–27
    [Google Scholar]
  39. 39.  Cummings LA, Kurosawa K, Hoogestraat DR, SenGupta DJ, Candra F et al. 2016. Clinical next generation sequencing outperforms standard microbiological culture for characterizing polymicrobial samples. Clin. Chem. 62:111465–73
    [Google Scholar]
  40. 40.  Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J et al. 2013. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLOS ONE 8:5e65226
    [Google Scholar]
  41. 41.  He S, Wurtzel O, Singh K, Froula JL, Yilmaz S et al. 2010. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat. Methods 7:10807–12
    [Google Scholar]
  42. 42.  Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J et al. 2012. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:r23
    [Google Scholar]
  43. 43.  Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA et al. 2013. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat. Methods 10:7623–29
    [Google Scholar]
  44. 44.  Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K 2018. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6:42
    [Google Scholar]
  45. 45.  Strong MJ, Xu G, Morici L, Bon-Durant SS, Baddoo M et al. 2014. Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLOS Pathog 10:11e1004437
    [Google Scholar]
  46. 46.  Gu W, Lee M, Arevalo S, Federman S, Whitman J et al. 2017. Pathogen detection by metagenomic next generation sequencing of purulent body fluids. J. Mol. Diagn. 19:6943–1067
    [Google Scholar]
  47. 47.  Bukowska-Ośko I, Perlejewski K, Nakamura S, Motooka D, Stokowy T et al. 2016. Sensitivity of next-generation sequencing metagenomic analysis for detection of RNA and DNA viruses in cerebrospinal fluid: the confounding effect of background contamination. Respiratory Treatment and Prevention M Pokorski 53–62 Adv. Exp. Med. Biol. Cham, Switz.: Springer Int.
    [Google Scholar]
  48. 48.  Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K 1999. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 27:224436–43
    [Google Scholar]
  49. 49.  Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:245294–99
    [Google Scholar]
  50. 50.  Dohm JC, Lottaz C, Borodina T, Himmelbauer H 2008. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36:16e105
    [Google Scholar]
  51. 51.  Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ 2009. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes. Nat. Methods 6:4291–95
    [Google Scholar]
  52. 52.  Adey A, Morrison HG, Asan Xun X, Kitzman JO et al. 2010. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 11:R119
    [Google Scholar]
  53. 53.  Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM 2014. Comparison of RNA-seq by poly(A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genom 15:419
    [Google Scholar]
  54. 54.  Naccache SN, Federman S, Veeeraraghavan N, Zaharia M, Lee D et al. 2014. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24:71180–92
    [Google Scholar]
  55. 55.  Wood DE, Salzberg SL 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46
    [Google Scholar]
  56. 56.  Flygare S, Simmon K, Miller C, Qiao Y, Kennedy B et al. 2016. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol 17:111
    [Google Scholar]
  57. 57.  Pan W, Ngo TTM, Camunas-Soler J, Song C-X, Kowarsky M et al. 2017. Simultaneously monitoring immune response and microbial infections during pregnancy through plasma cfRNA sequencing. Clin. Chem. 63:111695–704
    [Google Scholar]
  58. 58.  Bolger AM, Lohse M, Usadel B 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:152114–20
    [Google Scholar]
  59. 59.  Ruby JG, Bellare P, Derisi JL 2013. PRICE: software for the targeted assembly of components of (meta) genomic sequence data. G3 3:5865–80
    [Google Scholar]
  60. 60.  Deng X, Naccache SN, Ng T, Federman S, Li L et al. 2015. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res 43:7e46
    [Google Scholar]
  61. 61.  Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T et al. 2013. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. J. Virol. 87:2211966–77
    [Google Scholar]
  62. 62.  Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO et al. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87
    [Google Scholar]
  63. 63.  Mollerup S, Friis-Nielsen J, Vinner L, Hansen TA, Richter SR et al. 2016. Propionibacterium acnes: disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing. J. Clin. Microbiol. 54:4980–87
    [Google Scholar]
  64. 64.  Munro SA, Lund SP, Pine PS, Binder H, Clevert D-A et al. 2014. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat. Commun. 5:5125
    [Google Scholar]
  65. 65.  Hardwick SA, Deveson IW, Mercer TR 2017. Reference standards for next-generation sequencing. Nat. Rev. Genet. 18:473–84
    [Google Scholar]
  66. 66.  Quail MA, Smith M, Jackson D, Leonard S, Skelly T et al. 2014. SASI-Seq: sample assurance spike-ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genom 15:110
    [Google Scholar]
  67. 67.  Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW et al. 2018. Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J. Mol. Diagn. 20:14–27
    [Google Scholar]
  68. 68.  Schrijver I, Aziz N, Jennings LJ, Richards CS, Voelkerding KV, Weck KE 2014. Methods-based proficiency testing in molecular genetic pathology. J. Mol. Diagn. 16:3283–87
    [Google Scholar]
  69. 69.  Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B et al. 2014. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch. Pathol. Lab. Med. 139:4481–93
    [Google Scholar]
  70. 70.  Gentile G, Micozzi A 2016. Speculations on the clinical significance of asymptomatic viral infections. Clin. Microbiol. Infect. 22:7585–88
    [Google Scholar]
  71. 71.  Frémond M-L, Pérot P, Muth E, Cros G, Dumarest M et al. 2015. Next-generation sequencing for diagnosis and tailored therapy: a case report of astrovirus-associated progressive encephalitis. J. Pediatr. Infect. Dis. Soc. 4:3e53–57
    [Google Scholar]
  72. 72.  Chiu CY, Coffey LL, Murkey J, Symmes K, Sample HA et al. 2017. Diagnosis of fatal human case of St. Louis encephalitis virus infection by metagenomic sequencing, California, 2016. Emerg. Infect. Dis. 23:101964–68
    [Google Scholar]
  73. 73.  Murkey JA, Chew KW, Carlson M, Shannon CL, Sirohi D et al. 2017. Hepatitis E virus–associated meningoencephalitis in a lung transplant recipient diagnosed by clinical metagenomic sequencing. Open Forum Infect. Dis. 4:3ofx121
    [Google Scholar]
  74. 74.  Pan W, Gu W, Nagpal S, Gephart MH, Quake SR 2015. Brain tumor mutations detected in cerebral spinal fluid. Clin. Chem. 61:3514–22
    [Google Scholar]
  75. 75.  Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y et al. 2014. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6:224224ra24
    [Google Scholar]
  76. 76.  Vlaminck ID, Valantine HA, Snyder TM, Strehl C, Cohen G et al. 2014. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 6:241241ra77
    [Google Scholar]
  77. 77.  Gosiewski T, Ludwig-Galezowska AH, Huminska K, Sroka-Oleksiak A, Radkowski P et al. 2017. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method—the observation of DNAemia. Eur. J. Clin. Microbiol. Infect. Dis. 36:2329–36
    [Google Scholar]
  78. 78.  Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA 2012. Sequence analysis of the human virome in febrile and afebrile children. PLOS ONE 7:6e27735
    [Google Scholar]
  79. 79.  Abril MK, Barnett AS, Wegermann K, Fountain E, Strand A et al. 2016. Diagnosis of Capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing. Open Forum Infect. Dis. 3:3ofw144
    [Google Scholar]
  80. 80.  Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, Falkowski NR et al. 2017. Rapid pathogen identification in bacterial pneumonia using real-time metagenomics. Am. J. Respir. Crit. Care Med. 196:121610–12
    [Google Scholar]
  81. 81.  Graf EH, Simmon KE, Tardif KD, Hymas W, Flygare S et al. 2016. Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: a systematic comparison to a commercial PCR panel. J. Clin. Microbiol. 54:41000–7
    [Google Scholar]
  82. 82.  Zhou Y, Wylie KM, El Feghaly RE, Mihindukulasuriya KA, Elward A et al. 2016. Metagenomic approach for identification of the pathogens associated with diarrhea in stool specimens. J. Clin. Microbiol. 54:2368–75
    [Google Scholar]
  83. 83.  Kujiraoka M, Kuroda M, Asai K, Sekizuka T, Kato K et al. 2017. Comprehensive diagnosis of bacterial infection associated with acute cholecystitis using metagenomic approach. Front. Microbiol. 8:685
    [Google Scholar]
  84. 84.  Doan T, Acharya NR, Pinsky BA, Sahoo MK, Chow ED et al. 2017. Metagenomic DNA sequencing for the diagnosis of intraocular infections. Ophthalmology 124:81247–48
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012751
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error