1932

Abstract

Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012827
2019-01-24
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012827.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012827&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Lewis BP, Burge CB, Bartel DP 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20
    [Google Scholar]
  2. 2.  Pinzon N, Li B, Martinez L, Sergeeva A, Presumey J et al. 2017. microRNA target prediction programs predict many false positives. Genome Res 27:234–45
    [Google Scholar]
  3. 3.  Cai Y, Yu X, Hu S, Yu J 2009. A brief review on the mechanisms of miRNA regulation. Genom. Proteom. Bioinform. 7:147–54
    [Google Scholar]
  4. 4.  Bauersachs J, Thum T 2011. Biogenesis and regulation of cardiovascular microRNAs. Circ. Res. 109:334–47
    [Google Scholar]
  5. 5.  Kim VN 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6:376–85
    [Google Scholar]
  6. 6.  Kozomara A, Griffiths-Jones S 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–73
    [Google Scholar]
  7. 7.  Witwer KW, Halushka MK 2016. Toward the promise of microRNAs—enhancing reproducibility and rigor in microRNA research. RNA Biol 13:1103–16
    [Google Scholar]
  8. 8.  McCall MN, Kim MS, Adil M, Patil AH, Lu Y et al. 2017. Toward the human cellular microRNAome. Genome Res 27:1769–81
    [Google Scholar]
  9. 9.  de Rie D, Abugessaisa I, Alam T, Arner E, Arner P et al. 2017. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol. 35:872–78
    [Google Scholar]
  10. 10.  Londin E, Loher P, Telonis AG, Quann K, Clark P et al. 2015. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. PNAS 112:E1106–15
    [Google Scholar]
  11. 11.  Backes C, Meder B, Hart M, Ludwig N, Leidinger P et al. 2016. Prioritizing and selecting likely novel miRNAs from NGS data. Nucleic Acids Res 44:e53
    [Google Scholar]
  12. 12.  Backes C, Fehlmann T, Kern F, Kehl T, Lenhof HP et al. 2018. miRCarta: a central repository for collecting miRNA candidates. Nucleic Acids Res 46:D160–67
    [Google Scholar]
  13. 13.  Ludwig N, Becker M, Schumann T, Speer T, Fehlmann T et al. 2017. Bias in recent miRBase annotations potentially associated with RNA quality issues. Sci. Rep. 7:5162
    [Google Scholar]
  14. 14.  Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE et al. 2015. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49:213–42
    [Google Scholar]
  15. 15.  Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N et al. 2010. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009
    [Google Scholar]
  16. 16.  Wang X, Liu XS 2011. Systematic curation of miRBase annotation using integrated small RNA high-throughput sequencing data for C. elegans and Drosophila. Front. . Genet 2:25
    [Google Scholar]
  17. 17.  Halushka MK, Fromm B, Peterson KJ, McCall MN 2018. Big strides in cellular microRNA expression. Trends Genet 34:165–67
    [Google Scholar]
  18. 18.  Fromm B, Domanska D, Hackenberg M, Mathelier A, Hoye E et al. 2018. MirGeneDB2.0: the curated microRNA gene database. bioRxiv 258749. https://doi.org/10.1101/258749
    [Crossref]
  19. 19.  Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T 2002. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12:735–39
    [Google Scholar]
  20. 20.  Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al. 2007. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–14
    [Google Scholar]
  21. 21.  Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C et al. 2004. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. PNAS 101:9740–44
    [Google Scholar]
  22. 22.  Halushka MK 2016. MicroRNA-144 is unlikely to play a role in bronchiolitis obliterans syndrome. J. Heart Lung Transplant. 35:543
    [Google Scholar]
  23. 23.  Kent OA, McCall MN, Cornish TC, Halushka MK 2014. Lessons from miR-143/145: the importance of cell-type localization of miRNAs. Nucleic Acids Res 42:7528–38
    [Google Scholar]
  24. 24.  McCall MN, Kent OA, Yu J, Fox-Talbot K, Zaiman AL, Halushka MK 2011. MicroRNA profiling of diverse endothelial cell types. BMC Med. Genom. 4:78
    [Google Scholar]
  25. 25.  Haider BA, Baras AS, McCall MN, Hertel JA, Cornish TC, Halushka MK 2014. A critical evaluation of microRNA biomarkers in non-neoplastic disease. PLOS ONE 9:e89565
    [Google Scholar]
  26. 26.  Juzenas S, Venkatesh G, Hubenthal M, Hoeppner MP, Du ZG et al. 2017. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 45:9290–301
    [Google Scholar]
  27. 27.  van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X et al. 2009. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17:662–73
    [Google Scholar]
  28. 28.  Das S, Halushka MK 2015. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc. Pathol. 24:199–206
    [Google Scholar]
  29. 29.  Kumar B, Rosenberg AZ, Choi SM, Fox-Talbot K, de Marzo AM et al. 2018. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci. Rep. 8:7189
    [Google Scholar]
  30. 30.  Stern AD, Alexander BM, Chandra A 2018. Innovation incentives and biomarkers. Clin. Pharmacol. Ther. 103:34–36
    [Google Scholar]
  31. 31.  Antman EM 2018. The introduction and clinical use of cardiac-specific troponin assays. Clin. Pharmacol. Ther. 103:31–33
    [Google Scholar]
  32. 32.  Streng AS, Jacobs LH, Schwenk RW, Cardinaels EP, Meex SJ et al. 2014. Cardiac troponin in ischemic cardiomyocytes: intracellular decrease before onset of cell death. Exp. Mol. Pathol. 96:339–45
    [Google Scholar]
  33. 33.  Bingisser R, Cairns C, Christ M, Hausfater P, Lindahl B et al. 2012. Cardiac troponin: a critical review of the case for point-of-care testing in the ED. Am. J. Emerg. Med. 30:1639–49
    [Google Scholar]
  34. 34.  White H, Thygesen K, Alpert JS, Jaffe A 2014. Universal MI definition update for cardiovascular disease. Curr. Cardiol. Rep. 16:492
    [Google Scholar]
  35. 35.  Carey RM, Whelton PK 2018. Prevention, detection, evaluation, and management of high blood pressure in adults: synopsis of the 2017 American College of Cardiology/American Heart Association hypertension guideline. Ann. Intern. Med. 168:351–58
    [Google Scholar]
  36. 36.  Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ et al. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71:e13–115
    [Google Scholar]
  37. 37.  Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J et al. 2005. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transplant. 24:1710–20
    [Google Scholar]
  38. 38.  Berry GJ, Burke MM, Andersen C, Bruneval P, Fedrigo M et al. 2013. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transplant. 32:1147–62
    [Google Scholar]
  39. 39.  Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC et al. 2010. Gene-expression profiling for rejection surveillance after cardiac transplantation. N. Engl. J. Med. 362:1890–900
    [Google Scholar]
  40. 40.  De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G et al. 2014. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 6:241ra77
    [Google Scholar]
  41. 41.  Kittleson MM, Skojec DV, Wittstein IS, Champion HC, Judge DP et al. 2009. The change in B-type natriuretic peptide levels over time predicts significant rejection in cardiac transplant recipients. J. Heart Lung Transplant. 28:704–9
    [Google Scholar]
  42. 42.  Halushka MK, Mitchell RN, Padera RF 2016. Heart failure therapies: new strategies for old treatments and new treatments for old strategies. Cardiovasc. Pathol. 25:503–11
    [Google Scholar]
  43. 43.  Pollack A, Kontorovich AR, Fuster V, Dec GW 2015. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 12:670–80
    [Google Scholar]
  44. 44.  Chow LH, Radio SJ, Sears TD, McManus BM 1989. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J. Am. Coll. Cardiol. 14:915–20
    [Google Scholar]
  45. 45.  Nichols GA, Hillier TA, Erbey JR, Brown JB 2001. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24:1614–19
    [Google Scholar]
  46. 46.  Carr AA, Kowey PR, Devereux RB, Brenner BM, Dahlof B et al. 2005. Hospitalizations for new heart failure among subjects with diabetes mellitus in the RENAAL and LIFE studies. Am. J. Cardiol. 96:1530–36
    [Google Scholar]
  47. 47.  Coffey S, Williams MJ, Phillips LV, Jones GT 2015. Circulating microRNA profiling needs further refinement before clinical use in patients with aortic stenosis. J. Am. Heart Assoc. 4:e002150
    [Google Scholar]
  48. 48.  Sharma K, Kass DA 2014. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ. Res. 115:79–96
    [Google Scholar]
  49. 49.  Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM et al. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–55
    [Google Scholar]
  50. 50.  Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–10
    [Google Scholar]
  51. 51.  Kumar A, Roberts D, Wood KE, Light B, Parrillo JE et al. 2006. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34:1589–96
    [Google Scholar]
  52. 52.  Tang BM, Eslick GD, Craig JC, McLean AS 2007. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect. Dis. 7:210–17
    [Google Scholar]
  53. 53.  Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK et al. 2008. Circulating microRNAs as stable blood-based markers for cancer detection. PNAS 105:10513–18
    [Google Scholar]
  54. 54.  Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ 2012. Comparing the microRNA spectrum between serum and plasma. PLOS ONE 7:e41561
    [Google Scholar]
  55. 55.  Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ et al. 2012. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev. Res. 5:492–97
    [Google Scholar]
  56. 56.  Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW et al. 2013. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLOS ONE 8:e64795
    [Google Scholar]
  57. 57.  Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N et al. 2014. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 11:809–15
    [Google Scholar]
  58. 58.  Schwarzenbach H, da Silva AM, Calin G, Pantel K 2015. Data normalization strategies for microRNA quantification. Clin. Chem. 61:1333–42
    [Google Scholar]
  59. 59.  Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES et al. 2014. Human platelet microRNA–mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123:e37–45
    [Google Scholar]
  60. 60.  Guo L, Liang T, Yu J, Zou Q 2016. A comprehensive analysis of miRNA/isomiR expression with gender difference. PLOS ONE 11:e0154955
    [Google Scholar]
  61. 61.  Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC et al. 2012. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech. Ageing Dev. 133:675–85
    [Google Scholar]
  62. 62.  Sredni ST, Gadd S, Jafari N, Huang CC 2011. A parallel study of mRNA and microRNA profiling of peripheral blood in young adult women. Front. Genet. 2:49
    [Google Scholar]
  63. 63.  Heegaard NH, Carlsen AL, Lilje B, Ng KL, Ronne ME et al. 2016. Diurnal variations of human circulating cell-free micro-RNA. PLOS ONE 11:e0160577
    [Google Scholar]
  64. 64.  Baras AS, Mitchell CJ, Myers JR, Gupta S, Weng LC et al. 2015. miRge—a multiplexed method of processing small RNA-seq data to determine microRNA entropy. PLOS ONE 10:e0143066
    [Google Scholar]
  65. 65.  Witwer KW 2015. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin. Chem. 61:56–63
    [Google Scholar]
  66. 66.  Becker N, Lockwood CM 2013. Pre-analytical variables in miRNA analysis. Clin. Biochem. 46:861–68
    [Google Scholar]
  67. 67.  Khan J, Lieberman JA, Lockwood CM 2017. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin. Chem. Lab. Med. 55:608–21
    [Google Scholar]
  68. 68.  Ai J, Zhang R, Li Y, Pu J, Lu Y et al. 2010. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem. Biophys. Res. Commun. 391:73–77
    [Google Scholar]
  69. 69.  Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y et al. 2010. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 3:499–506
    [Google Scholar]
  70. 70.  Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y et al. 2010. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J. 31:659–66
    [Google Scholar]
  71. 71.  Li YQ, Zhang MF, Wen HY, Hu CL, Liu R et al. 2013. Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics 68:75–80
    [Google Scholar]
  72. 72.  Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A et al. 2012. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol. Med. 4:1176–85
    [Google Scholar]
  73. 73.  Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F et al. 2012. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin. Chem. 58:559–67
    [Google Scholar]
  74. 74.  Bai R, Yang Q, Xi R, Li L, Shi D, Chen K 2017. miR-941 as a promising biomarker for acute coronary syndrome. BMC Cardiovasc. Disord. 17:227
    [Google Scholar]
  75. 75.  Pilbrow AP, Cordeddu L, Cameron VA, Frampton CM, Troughton RW et al. 2014. Circulating miR-323–3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes. Int. J. Cardiol. 176:375–85
    [Google Scholar]
  76. 76.  Coskunpinar E, Cakmak HA, Kalkan AK, Tiryakioglu NO, Erturk M, Ongen Z 2016. Circulating miR-221–3p as a novel marker for early prediction of acute myocardial infarction. Gene 591:90–96
    [Google Scholar]
  77. 77.  He F, Lv P, Zhao X, Wang X, Ma X et al. 2014. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol. Cell. Biochem. 394:137–44
    [Google Scholar]
  78. 78.  Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M et al. 2012. Prospective study on circulating microRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol. 60:290–99
    [Google Scholar]
  79. 79.  Chistiakov DA, Orekhov AN, Bobryshev YV 2016. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J. Mol. Cell. Cardiol. 97:47–55
    [Google Scholar]
  80. 80.  Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U et al. 2010. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107:810–17
    [Google Scholar]
  81. 81.  Van Aelst LN, Summer G, Li S, Gupta SK, Heggermont W et al. 2016. RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection. Am. J. Transplant. 16:99–110
    [Google Scholar]
  82. 82.  Duong Van Huyen JP, Tible M, Gay A, Guillemain R, Aubert O et al. 2014. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur. Heart J. 35:3194–202
    [Google Scholar]
  83. 83.  Sukma Dewi I, Hollander Z, Lam KK, McManus JW, Tebbutt SJ et al. 2017. Association of serum miR-142–3p and miR-101–3p levels with acute cellular rejection after heart transplantation. PLOS ONE 12:e0170842
    [Google Scholar]
  84. 84.  Sukma Dewi I, Torngren K, Gidlof O, Kornhall B, Ohman J 2013. Altered serum miRNA profiles during acute rejection after heart transplantation: potential for non-invasive allograft surveillance. J. Heart Lung Transplant. 32:463–66
    [Google Scholar]
  85. 85.  Neumann A, Napp LC, Kleeberger JA, Benecke N, Pfanne A et al. 2017. MicroRNA 628–5p as a novel biomarker for cardiac allograft vasculopathy. Transplantation 101:e26–33
    [Google Scholar]
  86. 86.  Wang D, Li T, Cui H, Zhang Y 2016. Analysis of the indicating value of cardiac troponin I, tumor necrosis factor-α, interleukin-18, miR-1 and miR-146b for viral myocarditis among children. Cell. Physiol. Biochem. 40:1325–33
    [Google Scholar]
  87. 87.  Gildea JJ, Carlson JM, Schoeffel CD, Carey RM, Felder RA 2013. Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure. Clin. Biochem. 46:1131–34
    [Google Scholar]
  88. 88.  Qi H, Liu Z, Liu B, Cao H, Sun W et al. 2017. micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension. Medicine 96:e6417
    [Google Scholar]
  89. 89.  Huang YQ, Huang C, Chen JY, Li J, Feng YQ 2016. The association of circulating miR-30a, miR-29 and miR-133 with white-coat hypertension. Biomark. Med. 10:1231–39
    [Google Scholar]
  90. 90.  Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C et al. 2015. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine 94:e693
    [Google Scholar]
  91. 91.  Cengiz M, Yavuzer S, Kiliçkiran Avci B, Yürüyen M, Yavuzer H et al. 2015. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin. Exp. Hypertens. 37:643–49
    [Google Scholar]
  92. 92.  Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL et al. 2012. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97:E2271–76
    [Google Scholar]
  93. 93.  Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE 2014. Differential expression of vascular smooth muscle–modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J. Hum. Hypertens. 28:510–16
    [Google Scholar]
  94. 94.  Marques FZ, Charchar FJ 2015. microRNAs in essential hypertension and blood pressure regulation. Adv. Exp. Med. Biol. 888:215–35
    [Google Scholar]
  95. 95.  de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JW, Revuelta-Lopez E et al. 2017. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci. Rep. 7:47
    [Google Scholar]
  96. 96.  Rawal S, Ram TP, Coffey S, Williams MJ, Saxena P et al. 2016. Differential expression pattern of cardiovascular microRNAs in the human type-2 diabetic heart with normal ejection fraction. Int. J. Cardiol. 202:40–43
    [Google Scholar]
  97. 97.  Leon LE, Rani S, Fernandez M, Larico M, Calligaris SD 2016. Subclinical detection of diabetic cardiomyopathy with microRNAs: challenges and perspectives. J. Diabetes Res. 2016:6143129
    [Google Scholar]
  98. 98.  Lu H, Buchan RJ, Cook SA 2010. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc. Res. 86:410–20
    [Google Scholar]
  99. 99.  Guo R, Nair S 2017. Role of microRNA in diabetic cardiomyopathy: from mechanism to intervention. Biochim. Biophys. Acta 1863:2070–77
    [Google Scholar]
  100. 100.  Liu X, Liu S 2017. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy. Biomed. Rep. 6:140–45
    [Google Scholar]
  101. 101.  Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M 2017. Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets. J. Diabetes Res. 2017:1310265
    [Google Scholar]
  102. 102.  Copier CU, Leon L, Fernandez M, Contador D, Calligaris SD 2017. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy. Sci. Rep. 7:13514
    [Google Scholar]
  103. 103.  Garcia R, Villar AV, Cobo M, Llano M, Martin-Duran R et al. 2013. Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J. Am. Heart Assoc. 2:e000211
    [Google Scholar]
  104. 104.  Chen Z, Li C, Xu Y, Li Y, Yang H, Rao L 2014. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLOS ONE 9:e105702
    [Google Scholar]
  105. 105.  Beaumont J, Lopez B, Ravassa S, Hermida N, Jose GS et al. 2017. MicroRNA-19b is a potential biomarker of increased myocardial collagen cross-linking in patients with aortic stenosis and heart failure. Sci. Rep. 7:40696
    [Google Scholar]
  106. 106.  Fabiani I, Scatena C, Mazzanti CM, Conte L, Pugliese NR et al. 2016. Micro-RNA-21 (biomarker) and global longitudinal strain (functional marker) in detection of myocardial fibrotic burden in severe aortic valve stenosis: a pilot study. J. Transl. Med. 14:248
    [Google Scholar]
  107. 107.  Villar AV, Garcia R, Merino D, Llano M, Cobo M et al. 2013. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int. J. Cardiol. 167:2875–81
    [Google Scholar]
  108. 108.  Røsjø H, Dahl MB, Bye A, Andreassen J, Jørgensen M et al. 2014. Prognostic value of circulating microRNA-210 levels in patients with moderate to severe aortic stenosis. PLOS ONE 9:e91812
    [Google Scholar]
  109. 109.  Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY et al. 2015. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail. 17:393–404
    [Google Scholar]
  110. 110.  Watson CJ, Gupta SK, O'Connell E, Thum S, Glezeva N et al. 2015. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur. J. Heart Fail. 17:405–15
    [Google Scholar]
  111. 111.  Lu Y, Zhang Y, Wang N, Pan Z, Gao X et al. 2010. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–87
    [Google Scholar]
  112. 112.  McManus DD, Lin H, Tanriverdi K, Quercio M, Yin X et al. 2014. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study. Heart Rhythm 11:663–69
    [Google Scholar]
  113. 113.  Liu Z, Zhou C, Liu Y, Wang S, Ye P et al. 2012. The expression levels of plasma microRNAs in atrial fibrillation patients. PLOS ONE 7:e44906
    [Google Scholar]
  114. 114.  Natsume Y, Oaku K, Takahashi K, Nakamura W, Oono A et al. 2018. Combined analysis of human and experimental murine samples identified novel circulating microRNAs as biomarkers for atrial fibrillation. Circ. J. 82:965–73
    [Google Scholar]
  115. 115.  Dawson K, Wakili R, Ordog B, Clauss S, Chen Y et al. 2013. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127:1466–75
    [Google Scholar]
  116. 116.  McManus DD, Tanriverdi K, Lin H, Esa N, Kinno M et al. 2015. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart Rhythm 12:3–10
    [Google Scholar]
  117. 117.  Benz F, Roy S, Trautwein C, Roderburg C, Luedde T 2016. Circulating microRNAs as biomarkers for sepsis. Int. J. Mol. Sci. 17:78
    [Google Scholar]
  118. 118.  Dumache R, Rogobete AF, Bedreag OH, Sarandan M, Cradigati AC et al. 2015. Use of miRNAs as biomarkers in sepsis. Anal. Cell. Pathol. 2015:186716
    [Google Scholar]
  119. 119.  Kingsley SMK, Bhat BV 2017. Role of microRNAs in sepsis. Inflamm. Res. 66:553–69
    [Google Scholar]
  120. 120.  Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A et al. 2009. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLOS ONE 4:e7405
    [Google Scholar]
  121. 121.  Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Scholten D et al. 2013. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLOS ONE 8:e54612
    [Google Scholar]
  122. 122.  Ma Y, Vilanova D, Atalar K, Delfour O, Edgeworth J et al. 2013. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PLOS ONE 8:e75918
    [Google Scholar]
  123. 123.  Wang JF, Yu ML, Yu G, Bian JJ, Deng XM et al. 2010. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 394:184–88
    [Google Scholar]
  124. 124.  Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L 2012. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLOS ONE 7:e38885
    [Google Scholar]
  125. 125.  Wang HJ, Zhang PJ, Chen WJ, Feng D, Jia YH, Xie LX 2012. Four serum microRNAs identified as diagnostic biomarkers of sepsis. J. Trauma Acute Care Surg. 73:850–54
    [Google Scholar]
  126. 126.  Wu Y, Li C, He Y, Li Q, Wang G et al. 2014. [Relationship between expression of microRNA and inflammatory cytokines plasma level in pediatric patients with sepsis]. Zhonghua Er Ke Za Zhi 52:28–33 (In Chinese)
    [Google Scholar]
  127. 127.  Wang L, Wang HC, Chen C, Zeng J, Wang Q et al. 2013. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients. Exp. Ther. Med. 5:1101–04
    [Google Scholar]
  128. 128.  Puskarich MA, Nandi U, Shapiro NI, Trzeciak S, Kline JA, Jones AE 2015. Detection of microRNAs in patients with sepsis. J. Acute Dis. 4:101–6
    [Google Scholar]
  129. 129.  Benz F, Tacke F, Luedde M, Trautwein C, Luedde T et al. 2015. Circulating microRNA-223 serum levels do not predict sepsis or survival in patients with critical illness. Dis. Markers 2015:384208
    [Google Scholar]
  130. 130.  Taganov KD, Boldin MP, Chang KJ, Baltimore D 2006. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. PNAS 103:12481–86
    [Google Scholar]
  131. 131.  Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzas EI et al. 2017. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J. Extracell. Vesicles 6:1396823
    [Google Scholar]
  132. 132.  Chevillet JR, Lee I, Briggs HA, He Y, Wang K 2014. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19:6080–105
    [Google Scholar]
  133. 133.  Sunderland N, Skroblin P, Barwari T, Huntley RP, Lu R et al. 2017. MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ. Res. 120:418–35
    [Google Scholar]
  134. 134.  Wang H, Meng K, Chen W, Feng D, Jia Y, Xie L 2012. Serum miR-574–5p: a prognostic predictor of sepsis patients. Shock 37:263–67
    [Google Scholar]
  135. 135.  Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie LX 2012. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin. Chem. Lab. Med. 50:1423–28
    [Google Scholar]
  136. 136.  Sun X, Icli B, Wara AK, Belkin N, He S et al. 2012. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J. Clin. Investig. 122:1973–90
    [Google Scholar]
  137. 137.  Wang H, Yu B, Deng J, Jin Y, Xie L 2014. Serum miR-122 correlates with short-term mortality in sepsis patients. Crit. Care 18:704
    [Google Scholar]
  138. 138.  How CK, Hou SK, Shih HC, Huang MS, Chiou SH et al. 2015. Expression profile of microRNAs in Gram-negative bacterial sepsis. Shock 43:121–27
    [Google Scholar]
  139. 139.  Goodwin AJ, Guo C, Cook JA, Wolf B, Halushka PV, Fan H 2015. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Crit. Care 19:440
    [Google Scholar]
  140. 140.  Caserta S, Kern F, Cohen J, Drage S, Newbury SF, Llewelyn MJ 2016. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Sci. Rep. 6:28006
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012827
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error