1932

Abstract

Among the age-dependent protein aggregation disorders, nine neurodegenerative diseases are caused by expansions of CAG repeats encoding polyglutamine (polyQ) tracts. We review the clinical, pathological, and biological features of these inherited disorders. We discuss insights into pathogenesis gleaned from studies of model systems and patients, highlighting work that informs efforts to develop effective therapies. An important conclusion from these analyses is that expanded CAG/polyQ domains are the primary drivers of neurodegeneration, with the biology of carrier proteins influencing disease-specific manifestations. Additionally, it has become apparent that CAG/polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms, involving both gain- and loss-of-function effects. This conclusion indicates that the likelihood of developing effective therapies targeting single nodes is reduced. The evaluation of treatments for premanifest disease will likely require new investigational approaches. We highlight the opportunities and challenges underlying ongoing work and provide recommendations related to the development of symptomatic and disease-modifying therapies and biomarkers that could inform future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012857
2019-01-24
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012857.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012857&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Paulson H 2018. Repeat expansion diseases. Handb. Clin. Neurol. 147:105–23
    [Google Scholar]
  2. 2.  Stoyas CA, La Spada AR 2018. The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. Handb. Clin. Neurol. 147:143–70
    [Google Scholar]
  3. 3.  Giorgetti E, Lieberman AP 2016. Polyglutamine androgen receptor–mediated neuromuscular disease. Cell. Mol. Life Sci. 73:3991–99
    [Google Scholar]
  4. 4.  Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS et al. 2010. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–75
    [Google Scholar]
  5. 5.  Lee T, Li YR, Ingre C, Weber M, Grehl T et al. 2011. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum. Mol. Genet. 20:1697–700
    [Google Scholar]
  6. 6.  Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PW et al. 2011. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76:2066–72
    [Google Scholar]
  7. 7.  Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N 2012. The incidence and prevalence of Huntington's disease: a systematic review and meta-analysis. Mov. Disord. 27:1083–91
    [Google Scholar]
  8. 8.  Kay C, Hayden MR, Leavitt BR 2017. Epidemiology of Huntington disease. Handb. Clin. Neurol. 144:31–46
    [Google Scholar]
  9. 9.  Evans SJ, Douglas I, Rawlins MD, Wexler NS, Tabrizi SJ, Smeeth L 2013. Prevalence of adult Huntington's disease in the UK based on diagnoses recorded in general practice records. J. Neurol. Neurosurg. Psychiatry 84:1156–60
    [Google Scholar]
  10. 10.  Fisher ER, Hayden MR 2014. Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov. Disord. 29:105–14
    [Google Scholar]
  11. 11.  Ruano L, Melo C, Silva MC, Coutinho P 2014. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–83
    [Google Scholar]
  12. 12.  Maruyama H, Izumi Y, Morino H, Oda M, Toji H 2002. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am. J. Med. Genet. 114:578–83
    [Google Scholar]
  13. 13.  Tanaka F, Doyu M, Ito Y, Matsumoto M, Mitsuma T et al. 1996. Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum. Mol. Genet. 5:1253–57
    [Google Scholar]
  14. 14.  Semaka A, Hayden MR 2014. Evidence-based genetic counselling implications for Huntington disease intermediate allele predictive test results. Clin. Genet. 85:303–11
    [Google Scholar]
  15. 15.  Semaka A, Kay C, Doty CN, Collins JA, Tam N, Hayden MR 2013. High frequency of intermediate alleles on Huntington disease–associated haplotypes in British Columbia's general population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B:864–71
    [Google Scholar]
  16. 16.  Sequeiros J, Ramos EM, Cerqueira J, Costa MC, Sousa A et al. 2010. Large normal and reduced penetrance alleles in Huntington disease: instability in families and frequency at the laboratory, at the clinic and in the population. Clin. Genet. 78:381–87
    [Google Scholar]
  17. 17.  Divino V, Dekoven M, Warner JH, Giuliano J, Anderson KE et al. 2013. The direct medical costs of Huntington's disease by stage: a retrospective commercial and Medicaid claims data analysis. J. Med. Econ. 16:1043–50
    [Google Scholar]
  18. 18.  Whetten-Goldstein K, Sloan F, Kulas E, Cutson T, Schenkman M 1997. The burden of Parkinson's disease on society, family, and the individual. J. Am. Geriatr. Soc. 45:844–49
    [Google Scholar]
  19. 19.  Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A et al. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506
    [Google Scholar]
  20. 20.  Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K et al. 1999. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8:397–407
    [Google Scholar]
  21. 21.  Stack EC, Kubilus JK, Smith K, Cormier K, Del Signore SJ et al. 2005. Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington's disease transgenic mice. J. Comp. Neurol. 490:354–70
    [Google Scholar]
  22. 22.  Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley JA et al. 1997. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 91:753–63
    [Google Scholar]
  23. 23.  Yamamoto A, Lucas JJ, Hen R 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101:57–66
    [Google Scholar]
  24. 24.  Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY et al. 2004. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 24:8853–61
    [Google Scholar]
  25. 25.  Chevalier-Larsen ES, O'Brien CJ, Wang H, Jenkins SC, Holder L et al. 2004. Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24:4778–86
    [Google Scholar]
  26. 26.  Simerly RB, Chang C, Muramatsu M, Swanson LW 1990. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol. 294:76–95
    [Google Scholar]
  27. 27.  Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K et al. 1993. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat. Genet. 5:259–65
    [Google Scholar]
  28. 28.  Li SH, Schilling G, Young WS 3rd, Li XJ, Margolis RL et al. 1993. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11:985–93
    [Google Scholar]
  29. 29.  Jafar-Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY 2011. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14–3–3ε haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. PNAS 108:2142–47
    [Google Scholar]
  30. 30.  Dell'Orco JM, Wasserman AH, Chopra R, Ingram MA, Hu YS et al. 2015. Neuronal atrophy early in degenerative ataxia is a compensatory mechanism to regulate membrane excitability. J. Neurosci. 35:11292–307
    [Google Scholar]
  31. 31.  Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH et al. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–48
    [Google Scholar]
  32. 32.  DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP et al. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–93
    [Google Scholar]
  33. 33.  Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH et al. 1997. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–44
    [Google Scholar]
  34. 34.  Tellez-Nagel I, Johnson AB, Terry RD 1974. Studies on brain biopsies of patients with Huntington's chorea. J. Neuropathol. Exp. Neurol. 33:308–32
    [Google Scholar]
  35. 35.  Saudou F, Finkbeiner S, Devys D, Greenberg ME 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66
    [Google Scholar]
  36. 36.  Tallaksen-Greene SJ, Ordway JM, Crouse AB, Jackson WS, Detloff PJ, Albin RL 2003. Hprt(CAG)146 mice: age of onset of behavioral abnormalities, time course of neuronal intranuclear inclusion accumulation, neurotransmitter marker alterations, mitochondrial function markers, and susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Comp. Neurol. 465:205–19
    [Google Scholar]
  37. 37.  Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–10
    [Google Scholar]
  38. 38.  Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S et al. 1999. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19:2522–34
    [Google Scholar]
  39. 39.  Kuemmerle S, Gutekunst CA, Klein AM, Li XJ, Li SH et al. 1999. Huntington aggregates may not predict neuronal death in Huntington's disease. Ann. Neurol. 46:842–49
    [Google Scholar]
  40. 40.  Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi V et al. 2002. ‘Tissue’ transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington's disease. Cell Death Differ 9:873–80
    [Google Scholar]
  41. 41.  Liu KY, Shyu YC, Barbaro BA, Lin YT, Chern Y et al. 2015. Disruption of the nuclear membrane by perinuclear inclusions of mutant huntingtin causes cell-cycle re-entry and striatal cell death in mouse and cell models of Huntington's disease. Hum. Mol. Genet. 24:1602–16
    [Google Scholar]
  42. 42.  Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F et al. 2016. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351:173–76
    [Google Scholar]
  43. 43.  Bauerlein FJB, Saha I, Mishra A, Kalemanov M, Martinez-Sanchez A et al. 2017. In situ architecture and cellular interactions of polyQ inclusions. Cell 171:179–87
    [Google Scholar]
  44. 44.  Li L, Liu H, Dong P, Li D, Legant WR et al. 2016. Real-time imaging of Huntingtin aggregates diverting target search and gene transcription. eLife 5:e17056
    [Google Scholar]
  45. 45.  Ramdzan YM, Trubetskov MM, Ormsby AR, Newcombe EA, Sui X et al. 2017. Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep 19:919–27
    [Google Scholar]
  46. 46.  Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K et al. 1997. Ataxin-1 with an expanded glutamine tract alters nuclear matrix–associated structures. Nature 389:971–74
    [Google Scholar]
  47. 47.  Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM et al. 1998. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53
    [Google Scholar]
  48. 48.  Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y et al. 2002. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35:843–54
    [Google Scholar]
  49. 49.  Takeyama K, Ito S, Yamamoto A, Tanimoto H, Furutani T et al. 2002. Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. . Neuron 35:855–64
    [Google Scholar]
  50. 50.  Montie HL, Cho MS, Holder L, Liu Y, Tsvetkov AS et al. 2009. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 18:1937–50
    [Google Scholar]
  51. 51.  Jackson WS, Tallaksen-Greene SJ, Albin RL, Detloff PJ 2003. Nucleocytoplasmic transport signals affect the age at onset of abnormalities in knock-in mice expressing polyglutamine within an ectopic protein context. Hum. Mol. Genet. 12:1621–29
    [Google Scholar]
  52. 52.  Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK et al. 2003. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38:375–87
    [Google Scholar]
  53. 53.  Duvick L, Barnes J, Ebner B, Agrawal S, Andresen M et al. 2010. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 67:929–35
    [Google Scholar]
  54. 54.  Lai S, O'Callaghan B, Zoghbi HY, Orr HT 2011. 14-3-3 binding to ataxin-1 (ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J. Biol. Chem. 286:34606–16
    [Google Scholar]
  55. 55.  Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN et al. 2011. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 334:690–93
    [Google Scholar]
  56. 56.  Lu HC, Tan Q, Rousseaux MW, Wang W, Kim JY et al. 2017. Disruption of the ATXN1–CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nat. Genet. 49:527–36
    [Google Scholar]
  57. 57.  Palazzolo I, Burnett BG, Young JE, Brenne PL, La Spada AR et al. 2007. Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum. Mol. Genet. 16:1593–603
    [Google Scholar]
  58. 58.  Palazzolo I, Stack C, Kong L, Musaro A, Adachi H et al. 2009. Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63:316–28
    [Google Scholar]
  59. 59.  Rinaldi C, Bott LC, Chen KL, Harmison GG, Katsuno M et al. 2012. Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol. Med. 18:1261–68
    [Google Scholar]
  60. 60.  Polanco MJ, Parodi S, Piol D, Stack C, Chivet M et al. 2016. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci. Transl. Med. 8:370ra181
    [Google Scholar]
  61. 61.  Mukherjee S, Thomas M, Dadgar N, Lieberman AP, Iniguez-Lluhi JA 2009. Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. J. Biol. Chem. 284:21296–306
    [Google Scholar]
  62. 62.  Chua JP, Reddy SL, Yu Z, Giorgetti E, Montie HL et al. 2015. Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor–mediated disease. J. Clin. Investig. 125:831–45
    [Google Scholar]
  63. 63.  Zboray L, Pluciennik A, Curtis D, Liu Y, Berman-Booty LD et al. 2015. Preventing the androgen receptor N/C interaction delays disease onset in a mouse model of SBMA. Cell Rep 13:2312–23
    [Google Scholar]
  64. 64.  Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC et al. 2004. SUMO modification of Huntingtin and Huntington's disease pathology. Science 304:100–4
    [Google Scholar]
  65. 65.  O'Rourke JG, Gareau JR, Ochaba J, Song W, Rasko T et al. 2013. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep 4:362–75
    [Google Scholar]
  66. 66.  Gu X, Cantle JP, Greiner ER, Lee CY, Barth AM et al. 2015. N17 Modifies mutant Huntingtin nuclear pathogenesis and severity of disease in HD BAC transgenic mice. Neuron 85:726–41
    [Google Scholar]
  67. 67.  Kratter IH, Zahed H, Lau A, Tsvetkov AS, Daub AC et al. 2016. Serine 421 regulates mutant huntingtin toxicity and clearance in mice. J. Clin. Investig. 126:3585–97
    [Google Scholar]
  68. 68.  Custer SK, Garden GA, Gill N, Rueb U, Libby RT et al. 2006. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat. Neurosci. 9:1302–11
    [Google Scholar]
  69. 69.  Furrer SA, Mohanachandran MS, Waldherr SM, Chang C, Damian VA et al. 2011. Spinocerebellar ataxia type 7 cerebellar disease requires the coordinated action of mutant ataxin-7 in neurons and glia, and displays non-cell-autonomous Bergmann glia degeneration. J. Neurosci. 31:16269–78
    [Google Scholar]
  70. 70.  Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S 2009. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. PNAS 106:22480–85
    [Google Scholar]
  71. 71.  Benraiss A, Wang S, Herrlinger S, Li X, Chandler-Militello D et al. 2016. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat. Commun. 7:11758
    [Google Scholar]
  72. 72.  Monks DA, Johansen JA, Mo K, Rao P, Eagleson B et al. 2007. Overexpressioin of wild-type androgen receptor in muscle recapitulates polyglutamine disease. PNAS 104:113–20
    [Google Scholar]
  73. 73.  Ramzan F, McPhail M, Rao P, Mo K, Halievski K et al. 2015. Distinct etiological roles for myocytes and motor neurons in a mouse model of Kennedy's disease/spinobulbar muscular atrophy. J. Neurosci. 35:6444–51
    [Google Scholar]
  74. 74.  Lieberman AP, Yu Z, Murray S, Peralta R, Low A et al. 2014. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7:774–84
    [Google Scholar]
  75. 75.  Cortes CJ, Ling SC, Guo LT, Hung G, Tsunemi T et al. 2014. Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82:295–307
    [Google Scholar]
  76. 76.  Wang N, Gray M, Lu XH, Cantle JP, Holley SM et al. 2014. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nat. Med. 20:536–41
    [Google Scholar]
  77. 77.  Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG et al. 2002. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296:2238–43
    [Google Scholar]
  78. 78.  Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O et al. 2000. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet. 26:29–36
    [Google Scholar]
  79. 79.  Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ et al. 2000. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. PNAS 97:6763–68
    [Google Scholar]
  80. 80.  McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M et al. 2000. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9:2197–202
    [Google Scholar]
  81. 81.  Nucifora FC Jr., Sasaki M, Peters MF, Huang H, Cooper JK et al. 2001. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291:2423–28
    [Google Scholar]
  82. 82.  McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH 2001. Histone deacetylase inhibitors reduce polyglutamine toxicity. PNAS 98:15179–84
    [Google Scholar]
  83. 83.  Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A et al. 2001. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. . Nature 413:739–43
    [Google Scholar]
  84. 84.  Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ 2011. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 39:8938–51
    [Google Scholar]
  85. 85.  Jiang YJ, Che MX, Yuan JQ, Xie YY, Yan XZ, Hu HY 2011. Interaction with polyglutamine-expanded huntingtin alters cellular distribution and RNA processing of huntingtin yeast two-hybrid protein A (HYPA). J. Biol. Chem. 286:25236–45
    [Google Scholar]
  86. 86.  Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC et al. 2013. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. PNAS 110:2366–70
    [Google Scholar]
  87. 87.  Cleary JD, Ranum LP 2013. Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22:R45–51
    [Google Scholar]
  88. 88.  Banez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA et al. 2015. RAN translation in Huntington disease. Neuron 88:667–77
    [Google Scholar]
  89. 89.  Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, Atwal RS, Artates JW et al. 2017. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron 94:48–57
    [Google Scholar]
  90. 90.  Jones L, Houlden H, Tabrizi SJ 2017. DNA repair in the trinucleotide repeat disorders. Lancet Neurol 16:88–96
    [Google Scholar]
  91. 91.  Hinckelmann MV, Zala D, Saudou F 2013. Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Trends Cell Biol 23:634–43
    [Google Scholar]
  92. 92.  Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST 2006. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat. Neurosci. 9:907–16
    [Google Scholar]
  93. 93.  Katsuno M, Adachi H, Minamiyama M, Waza M, Tokui K et al. 2006. Reversible disruption of dynactin 1–mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci. 26:12106–17
    [Google Scholar]
  94. 94.  Kemp MQ, Poort JL, Baqri RM, Lieberman AP, Breedlove SM et al. 2011. Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action. Hum. Mol. Genet. 20:4475–90
    [Google Scholar]
  95. 95.  Saudou F, Humbert S 2016. The biology of huntingtin. Neuron 89:910–26
    [Google Scholar]
  96. 96.  Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A et al. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6:2205–12
    [Google Scholar]
  97. 97.  Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR et al. 2003. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40
    [Google Scholar]
  98. 98.  Zala D, Hinckelmann MV, Yu H, Lyra da Cunha MM, Liot G et al. 2013. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–91
    [Google Scholar]
  99. 99.  Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T 2000. Brain-derived neurotrophic factor in Huntington disease. Brain Res 866:257–61
    [Google Scholar]
  100. 100.  Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E 2008. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathol 18:225–38
    [Google Scholar]
  101. 101.  Strand AD, Baquet ZC, Aragaki AK, Holmans P, Yang L et al. 2007. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J. Neurosci. 27:11758–68
    [Google Scholar]
  102. 102.  Virlogeux A, Moutaux E, Christaller W, Genoux A, Bruyere J et al. 2018. Reconstituting corticostriatal network on-a-chip reveals the contribution of the presynaptic compartment to Huntington's disease. Cell Rep 22:110–22
    [Google Scholar]
  103. 103.  Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A et al. 1995. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. PNAS 92:7105–9
    [Google Scholar]
  104. 104.  Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC et al. 1997. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41:646–53
    [Google Scholar]
  105. 105.  Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R et al. 1998. 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology 50:1357–65
    [Google Scholar]
  106. 106.  Saft C, Zange J, Andrich J, Muller K, Lindenberg K et al. 2005. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease. Mov. Disord. 20:674–79
    [Google Scholar]
  107. 107.  Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D 2006. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69
    [Google Scholar]
  108. 108.  Powers WJ, Videen TO, Markham J, McGee-Minnich L, Antenor-Dorsey JV et al. 2007. Selective defect of in vivo glycolysis in early Huntington's disease striatum. PNAS 104:2945–49
    [Google Scholar]
  109. 109.  Buck E, Zugel M, Schumann U, Merz T, Gumpp AM et al. 2017. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function. PLOS ONE 12:e0175248
    [Google Scholar]
  110. 110.  Josefsen K, Nielsen SM, Campos A, Seifert T, Hasholt L et al. 2010. Reduced gluconeogenesis and lactate clearance in Huntington's disease. Neurobiol. Dis. 40:656–62
    [Google Scholar]
  111. 111.  Ferro A, Carbone E, Zhang J, Marzouk E, Villegas M et al. 2017. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLOS ONE 12:e0188425
    [Google Scholar]
  112. 112.  Kazachkova N, Raposo M, Montiel R, Cymbron T, Bettencourt C et al. 2013. Patterns of mitochondrial DNA damage in blood and brain tissues of a transgenic mouse model of Machado–Joseph disease. Neurodegener. Dis. 11:206–14
    [Google Scholar]
  113. 113.  Giorgetti E, Yu Z, Chua JP, Shimamura R, Zhao L et al. 2016. Rescue of metabolic alterations in AR113Q skeletal muscle by peripheral androgen receptor gene silencing. Cell Rep 17:125–36
    [Google Scholar]
  114. 114.  Rocchi A, Milioto C, Parodi S, Armirotti A, Borgia D et al. 2016. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathol 132:127–44
    [Google Scholar]
  115. 115.  Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321:168–71
    [Google Scholar]
  116. 116.  Raymond LA 2017. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem. Biophys. Res. Commun. 483:1051–62
    [Google Scholar]
  117. 117.  Heng MY, Detloff PJ, Wang PL, Tsien JZ, Albin RL 2009. In vivo evidence for NMDA receptor–mediated excitotoxicity in a murine genetic model of Huntington disease. J. Neurosci. 29:3200–5
    [Google Scholar]
  118. 118.  Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P et al. 2009. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15:1407–13
    [Google Scholar]
  119. 119.  Papadia S, Hardingham GE 2007. The dichotomy of NMDA receptor signaling. Neuroscientist 13:572–79
    [Google Scholar]
  120. 120.  Tang TS, Tu H, Chan EY, Maximov A, Wang Z et al. 2003. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–39
    [Google Scholar]
  121. 121.  Pchitskaya E, Popugaeva E, Bezprozvanny I 2018. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70:87–94
    [Google Scholar]
  122. 122.  Shakkottai VG, do Carmo Costa M, Dell'Orco JM, Sankaranarayanan A, Wulff H, Paulson HL 2011. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J. Neurosci. 31:13002–14
    [Google Scholar]
  123. 123.  Dell'Orco JM, Pulst SM, Shakkottai VG 2017. Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. Hum. Mol. Genet. 26:3935–45
    [Google Scholar]
  124. 124.  Hansen ST, Meera P, Otis TS, Pulst SM 2013. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum. Mol. Genet. 22:271–83
    [Google Scholar]
  125. 125.  Jayabal S, Chang HH, Cullen KE, Watt AJ 2016. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Sci. Rep. 6:29489
    [Google Scholar]
  126. 126.  Hourez R, Servais L, Orduz D, Gall D, Millard I et al. 2011. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J. Neurosci. 31:11795–807
    [Google Scholar]
  127. 127.  Mark MD, Krause M, Boele HJ, Kruse W, Pollok S et al. 2015. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J. Neurosci. 35:8882–95
    [Google Scholar]
  128. 128.  Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM et al. 2012. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 19:1340–53
    [Google Scholar]
  129. 129.  Bushart DD, Chopra R, Singh V, Murphy GG, Wulff H, Shakkottai VG 2018. Targeting potassium channels to treat cerebellar ataxia. Ann. Clin. Transl. Neurol. 5:297–314
    [Google Scholar]
  130. 130.  Chopra R, Wasserman AH, Pulst SM, De Zeeuw CI, Shakkottai VG 2018. Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia. Hum. Mol. Genet. 27:1396–1410
    [Google Scholar]
  131. 131.  Paulsen JS, Long JD, Ross CA, Harrington DL, Erwin CJ et al. 2014. Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study. Lancet Neurol 13:1193–201
    [Google Scholar]
  132. 132.  Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR et al. 2013. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–49
    [Google Scholar]
  133. 133.  Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD et al. 2014. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10:204–16
    [Google Scholar]
  134. 134.  Tabrizi S, Leavitt B, Kordasiewicz H, Czech C, Swayze E et al. 2018. Effects of Ionis-HTTRx in patients with early Huntington's disease: results of the first HTT-lowering drug trial (CT.002). Neurology 90:Suppl.CT.002
    [Google Scholar]
  135. 135.  Albin RL, Burke JF 2015. Potential trade-offs in treatment of premanifest Huntington's disease. Mov. Disord. 30:1319–23
    [Google Scholar]
  136. 136.  Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG et al. 2000. Huntingtin expression stimulates endosomal–lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20:7268–78
    [Google Scholar]
  137. 137.  Ravikumar B, Duden R, Rubinsztein DC 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11:1107–17
    [Google Scholar]
  138. 138.  Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S et al. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36:585–95
    [Google Scholar]
  139. 139.  Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP 2015. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 55:353–71
    [Google Scholar]
  140. 140.  Wang AM, Miyata Y, Klinedinst S, Peng HM, Chua JP et al. 2013. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat. Chem. Biol. 9:112–18
    [Google Scholar]
  141. 141.  Neef DW, Jaeger AM, Thiele DJ 2011. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat. Rev. Drug Discov. 10:930–44
    [Google Scholar]
  142. 142.  Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K et al. 2011. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Investig. 121:3306–19
    [Google Scholar]
  143. 143.  Wang AM, Morishima Y, Clapp KM, Peng HM, Pratt WB et al. 2010. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J. Biol. Chem. 285:15714–23
    [Google Scholar]
  144. 144.  Albin RL, Miller RA 2016. Mini-review: retarding aging in murine genetic models of neurodegeneration. Neurobiol. Dis. 85:73–80
    [Google Scholar]
  145. 145.  Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM et al. 2012. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74:1031–44
    [Google Scholar]
  146. 146.  Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG et al. 2017. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol. Ther. Nucleic Acids 7:200–10
    [Google Scholar]
  147. 147.  Harper SQ, Staber PD, He X, Eliason SL, Martins IH et al. 2005. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. PNAS 102:5820–25
    [Google Scholar]
  148. 148.  Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH et al. 2004. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10:816–20
    [Google Scholar]
  149. 149.  Yang S, Chang R, Yang H, Zhao T, Hong Y et al. 2017. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. J. Clin. Investig. 127:2719–24
    [Google Scholar]
  150. 150.  McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T et al. 2011. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol. Ther. 19:2152–62
    [Google Scholar]
  151. 151.  Dufour BD, Smith CA, Clark RL, Walker TR, McBride JL 2014. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington's disease mice. Mol. Ther. 22:797–810
    [Google Scholar]
  152. 152.  Taylor JP, Lieberman AP, Fischbeck KH 2002. Repeat expansion and neurological disease. Diseases of the Nervous System: Clinical Neuroscience and Therapeutic Principles AK Asbury, GM McKhann, WI McDonald, P Goadsby, J McArthur 32–54 Cambridge, UK: Cambridge Univ. Press. , 3rd ed..
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012857
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012857
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error