1932

Abstract

Epstein–Barr virus (EBV) contributes to about 1.5% of all cases of human cancer worldwide, and viral genes are expressed in the malignant cells. EBV also very efficiently causes the proliferation of infected human B lymphocytes. The functions of the viral proteins and small RNAs that may contribute to EBV-associated cancers are becoming increasingly clear, and a broader understanding of the sequence variation of the virus genome has helped to interpret their roles. The improved understanding of the mechanisms of these cancers means that there are great opportunities for the early diagnosis of treatable stages of EBV-associated cancers and the use of immunotherapy to target EBV-infected cells or overcome immune evasion. There is also scope for preventing disease by immunization and for developing therapeutic agents that target the EBV gene products expressed in the cancers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-013023
2019-01-24
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-013023.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-013023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Epstein MA, Achong BG, Barr YM 1964. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702–3
    [Google Scholar]
  2. 2.  Kieff E, Rickinson AB 2007. Epstein–Barr virus and its replication. Fields Virology DM Knipe, PM Howley 2603–54 Philadelphia: Lippincott, Williams, and Wilkins
    [Google Scholar]
  3. 3.  Rickinson AB, Kieff E 2007. Epstein–Barr virus. Fields Virology DM Knipe, PM Howley 2655–700 Philadelphia: Lippincott, Williams, and Wilkins
    [Google Scholar]
  4. 4.  Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA 2009. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLOS Pathog 5:e1000496
    [Google Scholar]
  5. 5.  Correia S, Palser A, Elgueta Karstegl C, Middeldorp JM, Ramayanti O et al. 2017. Natural variation of Epstein–Barr virus genes, proteins, and primary microRNA. J. Virol. 91:e00375–17
    [Google Scholar]
  6. 6.  Condon LM, Cederberg LE, Rabinovitch MD, Liebo RV, Go JC et al. 2014. Age-specific prevalence of Epstein–Barr virus infection among Minnesota children: effects of race/ethnicity and family environment. Clin. Infect. Dis. 59:501–8
    [Google Scholar]
  7. 7.  Munz C 2017. Epstein–Barr virus-specific immune control by innate lymphocytes. Front. Immunol. 8:1658
    [Google Scholar]
  8. 8.  Djaoud Z, Guethlein LA, Horowitz A, Azzi T, Nemat-Gorgani N et al. 2017. Two alternate strategies for innate immunity to Epstein–Barr virus: one using NK cells and the other NK cells and γδ T cells. J. Exp. Med. 214:1827–41
    [Google Scholar]
  9. 9.  Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA 1998. EBV persistence in memory B cells in vivo. Immunity 9:395–404
    [Google Scholar]
  10. 10.  Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ et al. 1987. Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6:2743–51
    [Google Scholar]
  11. 11.  Westhoff Smith D, Sugden B 2013. Potential cellular functions of Epstein–Barr nuclear antigen 1 (EBNA1) of Epstein–Barr virus. Viruses 5:226–40
    [Google Scholar]
  12. 12.  Li N, Thompson S, Schultz DC, Zhu W, Jiang H et al. 2010. Discovery of selective inhibitors against EBNA1 via high throughput in silico virtual screening. PLOS ONE 5:e10126
    [Google Scholar]
  13. 13.  Jiang L, Lan R, Huang T, Chan C, Li H et al. 2017. EBNA1-targeted probe for the imaging and growth inhibition of tumours associated with the Epstein–Barr virus. Nat. Biomed. Eng. 1:0042
    [Google Scholar]
  14. 14.  Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG 2009. The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. PNAS 106:2313–18
    [Google Scholar]
  15. 15.  Kamranvar SA, Chen X, Masucci MG 2013. Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein–Barr virus. Oncogene 32:5522–30
    [Google Scholar]
  16. 16.  Kamranvar SA, Masucci MG 2017. Regulation of telomere homeostasis during Epstein–Barr virus infection and immortalization. Viruses 9:217
    [Google Scholar]
  17. 17.  Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG 1997. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. PNAS 94:12616–21
    [Google Scholar]
  18. 18.  Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K et al. 2017. PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat. Commun. 8:2103
    [Google Scholar]
  19. 19.  Frappier L 2012. Contributions of Epstein–Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses 4:1537–47
    [Google Scholar]
  20. 20.  Kennedy G, Komano J, Sugden B 2003. Epstein–Barr virus provides a survival factor to Burkitt's lymphomas. PNAS 100:14269–74
    [Google Scholar]
  21. 21.  Lu J, Murakami M, Verma SC, Cai Q, Haldar S et al. 2011. Epstein–Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410:64–75
    [Google Scholar]
  22. 22.  Spender LC, Lucchesi W, Bodelon G, Bilancio A, Karstegl CE et al. 2006. Cell target genes of Epstein–Barr virus transcription factor EBNA-2: induction of the p55α regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J. Gen. Virol. 87:2859–67
    [Google Scholar]
  23. 23.  Zhao B, Maruo S, Cooper A, Chase MR, Johannsen E et al. 2006. RNAs induced by Epstein–Barr virus nuclear antigen 2 in lymphoblastoid cell lines. PNAS 103:1900–5
    [Google Scholar]
  24. 24.  Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ et al. 2017. CRISPR/Cas9 screens reveal Epstein–Barr virus-transformed B cell host dependency factors. Cell Host Microbe 21:580–91.e7
    [Google Scholar]
  25. 25.  Szymula A, Palermo RD, Bayoumy A, Groves IJ, Ba Abdullah M et al. 2018. Epstein–Barr virus nuclear antigen EBNA-LP is essential for transforming naive B cells, and facilitates recruitment of transcription factors to the viral genome. PLOS Pathog 14:e1006890
    [Google Scholar]
  26. 26.  Allday MJ, Bazot Q, White RE 2015. The EBNA3 family: two oncoproteins and a tumour suppressor that are central to the biology of EBV in B cells. Curr. Top. Microbiol. Immunol. 391:61–117
    [Google Scholar]
  27. 27.  Skalska L, White RE, Parker GA, Turro E, Sinclair AJ et al. 2013. Induction of p16INK4a is the major barrier to proliferation when Epstein–Barr virus (EBV) transforms primary B cells into lymphoblastoid cell lines. PLOS Pathog 9:e1003187
    [Google Scholar]
  28. 28.  Paschos K, Parker GA, Watanatanasup E, White RE, Allday MJ 2012. BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res 40:7233–46
    [Google Scholar]
  29. 29.  Styles CT, Bazot Q, Parker GA, White RE, Paschos K, Allday MJ 2017. EBV epigenetically suppresses the B cell-to-plasma cell differentiation pathway while establishing long-term latency. PLOS Biol 15:e2001992
    [Google Scholar]
  30. 30.  Styles CT, Paschos K, White RE, Farrell PJ 2018. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 7:31
    [Google Scholar]
  31. 31.  Kieser A, Sterz KR 2015. The latent membrane protein 1 (LMP1). Curr. Top. Microbiol. Immunol. 391:119–49
    [Google Scholar]
  32. 32.  Cen O, Longnecker R 2015. Latent membrane protein 2 (LMP2). Curr. Top. Microbiol. Immunol. 391:151–80
    [Google Scholar]
  33. 33.  Altmann M, Hammerschmidt W 2005. Epstein–Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLOS Biol 3:e404
    [Google Scholar]
  34. 34.  Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D et al. 2016. Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. PNAS 113:E6467–75
    [Google Scholar]
  35. 35.  Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J et al. 2016. Epstein–Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J. Exp. Med. 213:2065–80
    [Google Scholar]
  36. 36.  Bernhardt K, Haar J, Tsai MH, Poirey R, Feederle R, Delecluse HJ 2016. A viral microRNA cluster regulates the expression of PTEN, p27 and of a bcl-2 homolog. PLOS Pathog 12:e1005405
    [Google Scholar]
  37. 37.  Poling BC, Price AM, Luftig MA, Cullen BR 2017. The Epstein–Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. . Virology 512:113–23
    [Google Scholar]
  38. 38.  Lei T, Yuen KS, Xu R, Tsao SW, Chen H et al. 2013. Targeting of DICE1 tumor suppressor by Epstein–Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. Int. J. Cancer 133:79–87
    [Google Scholar]
  39. 39.  Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM et al. 2008. An Epstein–Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 205:2551–60
    [Google Scholar]
  40. 40.  Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M et al. 2011. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10:515–26
    [Google Scholar]
  41. 41.  Cai L, Ye Y, Jiang Q, Chen Y, Lyu X et al. 2015. Epstein–Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat. Commun. 6:7353
    [Google Scholar]
  42. 42.  Marquitz AR, Mathur A, Nam CS, Raab-Traub N 2011. The Epstein–Barr virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412:392–400
    [Google Scholar]
  43. 43.  Takada K 2012. Role of EBER and BARF1 in nasopharyngeal carcinoma (NPC) tumorigenesis. Semin. Cancer Biol. 22:162–65
    [Google Scholar]
  44. 44.  Fahl SP, Harris B, Coffey F, Wiest DL 2015. Rpl22 loss impairs the development of B lymphocytes by activating a p53-dependent checkpoint. J. Immunol. 194:200–9
    [Google Scholar]
  45. 45.  Gregorovic G, Boulden EA, Bosshard R, Elgueta Karstegl C, Skalsky R et al. 2015. Epstein–Barr viruses (EBVs) deficient in EBV-encoded RNAs have higher levels of latent membrane protein 2 RNA expression in lymphoblastoid cell lines and efficiently establish persistent infections in humanized mice. J. Virol. 89:11711–14
    [Google Scholar]
  46. 46.  Lee N, Moss WN, Yario TA, Steitz JA 2015. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160:607–18
    [Google Scholar]
  47. 47.  Kheimar A, Kaufer BB 2018. Epstein-Barr virus-encoded RNAs (EBERs) complement the loss of herpesvirus telomerase RNA (vTR) in virus-induced tumor formation. Sci. Rep. 8:209
    [Google Scholar]
  48. 48.  Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM et al. 2016. Sensing of latent EBV infection through exosomal transfer of 5′pppRNA. PNAS 113:E587–96
    [Google Scholar]
  49. 49.  Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES et al. 2010. Functional delivery of viral miRNAs via exosomes. PNAS 107:6328–33
    [Google Scholar]
  50. 50.  Hislop AD, Taylor GS, Sauce D, Rickinson AB 2007. Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu. Rev. Immunol. 25:587–617
    [Google Scholar]
  51. 51.  Pudney VA, Leese AM, Rickinson AB, Hislop AD 2005. CD8+ immunodominance among Epstein–Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. J. Exp. Med. 201:349–60
    [Google Scholar]
  52. 52.  Souza TA, Stollar BD, Sullivan JL, Luzuriaga K, Thorley-Lawson DA 2005. Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells. PNAS 102:18093–98
    [Google Scholar]
  53. 53.  Chaganti S, Heath EM, Bergler W, Kuo M, Buettner M et al. 2009. Epstein–Barr virus colonization of tonsillar and peripheral blood B-cell subsets in primary infection and persistence. Blood 113:6372–81
    [Google Scholar]
  54. 54.  Thorley-Lawson DA, Allday MJ 2008. The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat. Rev. Microbiol. 6:913–24
    [Google Scholar]
  55. 55.  Kuppers R 2003. B cells under influence: transformation of B cells by Epstein–Barr virus. Nat. Rev. Immunol. 3:801–12
    [Google Scholar]
  56. 56.  Tangye SG 2014. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J. Clin. Immunol. 34:772–79
    [Google Scholar]
  57. 57.  Chaigne-Delalande B, Li FY, O'Connor GM, Lukacs MJ, Jiang P et al. 2013. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341:186–91
    [Google Scholar]
  58. 58.  Dharnidharka VR, Webster AC, Martinez OM, Preiksaitis JK, Leblond V, Choquet S 2016. Post-transplant lymphoproliferative disorders. Nat. Rev. Dis. Primers 2:15088
    [Google Scholar]
  59. 59.  Cesarman E 2013. Pathology of lymphoma in HIV. Curr. Opin. Oncol. 25:487–94
    [Google Scholar]
  60. 60.  McHugh D, Caduff N, Barros MHM, Ramer PC, Raykova A et al. 2017. Persistent KSHV infection increases EBV-associated tumor formation in vivo via enhanced EBV lytic gene expression. Cell Host Microbe 22:61–73.e7
    [Google Scholar]
  61. 61.  McClain KL, Leach CT, Jenson HB, Joshi VV, Pollock BH et al. 1995. Association of Epstein–Barr virus with leiomyosarcomas in young people with AIDS. N. Engl. J. Med. 332:12–18
    [Google Scholar]
  62. 62.  Chen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE et al. 2018. Ephrin receptor A2 is a functional entry receptor for Epstein–Barr virus. Nat. Microbiol. 3:172–80
    [Google Scholar]
  63. 63.  Zhang H, Li Y, Wang HB, Zhang A, Chen ML et al. 2018. Ephrin receptor A2 is an epithelial cell receptor for Epstein–Barr virus entry. Nat. Microbiol. 3:1–8
    [Google Scholar]
  64. 64.  Jenson HB, Montalvo EA, McClain KL, Ench Y, Heard P et al. 1999. Characterization of natural Epstein–Barr virus infection and replication in smooth muscle cells from a leiomyosarcoma. J. Med. Virol. 57:36–46
    [Google Scholar]
  65. 65.  Wood CD, Veenstra H, Khasnis S, Gunnell A, Webb HM et al. 2016. MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. eLife 5:e18270
    [Google Scholar]
  66. 66.  Kuppers R 2005. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5:251–62
    [Google Scholar]
  67. 67.  Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R et al. 2005. Exposure to holoendemic malaria results in elevated Epstein–Barr virus loads in children. J. Infect. Dis. 191:1233–38
    [Google Scholar]
  68. 68.  Thorley-Lawson D, Deitsch KW, Duca KA, Torgbor C 2016. The link between Plasmodium falciparum malaria and endemic Burkitt's lymphoma—new insight into a 50-year-old enigma. PLOS Pathog 12:e1005331
    [Google Scholar]
  69. 69.  Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R, Kazura JW 2007. Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-specific T cell immunosurveillance in Kenyan children. J. Infect. Dis. 195:799–808
    [Google Scholar]
  70. 70.  Juan R, Otim I, Nabalende H, Legason ID, Reynolds SJ et al. 2017. Plasma magnesium is inversely associated with Epstein–Barr virus load in peripheral blood and Burkitt lymphoma in Uganda. Cancer Epidemiol 52:70–74
    [Google Scholar]
  71. 71.  McMahon SB 2014. MYC and the control of apoptosis. Cold Spring Harb. Perspect. Med. 4:a014407
    [Google Scholar]
  72. 72.  Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T 1991. p53 is frequently mutated in Burkitt's lymphoma cell lines. EMBO J 10:2879–87
    [Google Scholar]
  73. 73.  Lindstrom MS, Klangby U, Wiman KG 2001. p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 20:2171–77
    [Google Scholar]
  74. 74.  Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA et al. 2005. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–11
    [Google Scholar]
  75. 75.  Fitzsimmons L, Boyce AJ, Wei W, Chang C, Croom-Carter D et al. 2017. Coordinated repression of BIM and PUMA by Epstein–Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death Differ 25:241–54
    [Google Scholar]
  76. 76.  Anderton E, Yee J, Smith P, Crook T, White RE, Allday MJ 2008. Two Epstein–Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt's lymphoma. Oncogene 27:421–33
    [Google Scholar]
  77. 77.  Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ 2009. Epstein–Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLOS Pathog 5:e1000492
    [Google Scholar]
  78. 78.  Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A et al. 2009. An Epstein–Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in Burkitt lymphomagenesis: the Wp/BHRF1 link. PLOS Pathog 5:e1000341
    [Google Scholar]
  79. 79.  Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W et al. 2012. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490:116–20
    [Google Scholar]
  80. 80.  Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F et al. 2015. Distinct Viral and mutational spectrum of endemic Burkitt lymphoma. PLOS Pathog 11:e1005158
    [Google Scholar]
  81. 81.  Weiss LM, Movahed LA, Warnke RA, Sklar J 1989. Detection of Epstein–Barr viral genomes in Reed–Sternberg cells of Hodgkin's disease. N. Engl. J. Med. 320:502–6
    [Google Scholar]
  82. 82.  Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M et al. 2011. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–81
    [Google Scholar]
  83. 83.  Kushekhar K, van den Berg A, Nolte I, Hepkema B, Visser L, Diepstra A 2014. Genetic associations in classical Hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms. Cancer Epidemiol. Biomark. Prev. 23:2737–47
    [Google Scholar]
  84. 84.  Hjalgrim H, Rostgaard K, Johnson PC, Lake A, Shield L et al. 2010. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. PNAS 107:6400–5
    [Google Scholar]
  85. 85.  Hjalgrim H, Askling J, Rostgaard K, Hamilton-Dutoit S, Frisch M et al. 2003. Characteristics of Hodgkin's lymphoma after infectious mononucleosis. N. Engl. J. Med. 349:1324–32
    [Google Scholar]
  86. 86.  Sud A, Thomsen H, Law PJ, Forsti A, Filho M et al. 2017. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nat. Commun. 8:1892
    [Google Scholar]
  87. 87.  Jones JF, Shurin S, Abramowsky C, Tubbs RR, Sciotto CG et al. 1988. T-cell lymphomas containing Epstein–Barr viral DNA in patients with chronic Epstein–Barr virus infections. N. Engl. J. Med. 318:733–41
    [Google Scholar]
  88. 88.  Tse E, Kwong YL 2017. The diagnosis and management of NK/T-cell lymphomas. J. Hematol. Oncol. 10:85
    [Google Scholar]
  89. 89.  Lee S, Park HY, Kang SY, Kim SJ, Hwang J et al. 2015. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 6:17764–76
    [Google Scholar]
  90. 90.  Kimura H 2018. EBV in T-/NK-cell tumorigenesis. Adv. Exp. Med. Biol. 1045:459–75
    [Google Scholar]
  91. 91.  Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM et al. 2017. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 129:2437–42
    [Google Scholar]
  92. 92.  Coleman CB, Wohlford EM, Smith NA, King CA, Ritchie JA et al. 2015. Epstein–Barr virus type 2 latently infects T cells, inducing an atypical activation characterized by expression of lymphotactic cytokines. J. Virol. 89:2301–12
    [Google Scholar]
  93. 93.  Coleman CB, Daud II, Ogolla SO, Ritchie JA, Smith NA et al. 2017. Epstein–Barr Virus type 2 infects T cells in healthy Kenyan children. J. Infect. Dis. 216:670–77
    [Google Scholar]
  94. 94.  Palser AL, Grayson NE, White RE, Corton C, Correia S et al. 2015. Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J. Virol. 89:5222–37
    [Google Scholar]
  95. 95.  Ok CY, Papathomas TG, Medeiros LJ, Young KH 2013. EBV-positive diffuse large B-cell lymphoma of the elderly. Blood 122:328–40
    [Google Scholar]
  96. 96.  Lu TX, Liang JH, Miao Y, Fan L, Wang L et al. 2015. Epstein–Barr virus positive diffuse large B-cell lymphoma predict poor outcome, regardless of the age. Sci. Rep. 5:12168
    [Google Scholar]
  97. 97.  Montes-Moreno S, Odqvist L, Diaz-Perez JA, Lopez AB, de Villambrosia SG et al. 2012. EBV-positive diffuse large B-cell lymphoma of the elderly is an aggressive post-germinal center B-cell neoplasm characterized by prominent nuclear factor-κB activation. Mod. Pathol. 25:968–82
    [Google Scholar]
  98. 98.  Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL et al. 2017. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171:481–94.e15
    [Google Scholar]
  99. 99.  Schuetz JM, Johnson NA, Morin RD, Scott DW, Tan K et al. 2012. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia 26:1383–90
    [Google Scholar]
  100. 100.  Xu PP, Zhong HJ, Huang YH, Gao XD, Zhao X et al. 2017. B-cell function gene mutations in diffuse large B-cell lymphoma: a retrospective cohort study. EBioMedicine 16:106–14
    [Google Scholar]
  101. 101.  White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L et al. 2012. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Investig. 122:1487–502
    [Google Scholar]
  102. 102.  Tang M, Lautenberger JA, Gao X, Sezgin E, Hendrickson SL et al. 2012. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove. PLOS Genet 8:e1003103
    [Google Scholar]
  103. 103.  Imai S, Nishikawa J, Takada K 1998. Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J. Virol. 72:4371–78
    [Google Scholar]
  104. 104.  Shannon-Lowe CD, Neuhierl B, Baldwin G, Rickinson AB, Delecluse HJ 2006. Resting B cells as a transfer vehicle for Epstein–Barr virus infection of epithelial cells. PNAS 103:7065–70
    [Google Scholar]
  105. 105.  Shannon-Lowe C, Rowe M 2011. Epstein–Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell–mediated transfer infection. PLOS Pathog 7:e1001338
    [Google Scholar]
  106. 106.  Temple RM, Zhu J, Budgeon L, Christensen ND, Meyers C, Sample CE 2014. Efficient replication of Epstein–Barr virus in stratified epithelium in vitro. PNAS 111:16544–49
    [Google Scholar]
  107. 107.  Tsang CM, Yip YL, Lo KW, Deng W, To KF et al. 2012. Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. PNAS 109:E3473–82
    [Google Scholar]
  108. 108.  Raab-Traub N, Flynn K 1986. The structure of the termini of the Epstein–Barr virus as a marker of clonal cellular proliferation. Cell 47:883–89
    [Google Scholar]
  109. 109.  Li YY, Chung GT, Lui VW, To KF, Ma BB et al. 2017. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nat. Commun. 8:14121
    [Google Scholar]
  110. 110.  Zheng H, Dai W, Cheung AK, Ko JM, Kan R et al. 2016. Whole-exome sequencing identifies multiple loss-of-function mutations of NF-κB pathway regulators in nasopharyngeal carcinoma. PNAS 113:11283–88
    [Google Scholar]
  111. 111.  Qiu J, Smith P, Leahy L, Thorley-Lawson DA 2015. The Epstein–Barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLOS Pathog 11:e1004561
    [Google Scholar]
  112. 112.  Kang D, Skalsky RL, Cullen BR 2015. EBV BART microRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival. PLOS Pathog 11:e1004979
    [Google Scholar]
  113. 113. Cancer Genome Atlas Res. Netw. 2014. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–9
    [Google Scholar]
  114. 114.  Shinozaki-Ushiku A, Kunita A, Fukayama M 2015. Update on Epstein–Barr virus and gastric cancer (review). Int. J. Oncol. 46:1421–34
    [Google Scholar]
  115. 115.  Strong MJ, Xu G, Coco J, Baribault C, Vinay DS et al. 2013. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLOS Pathog 9:e1003341
    [Google Scholar]
  116. 116.  Kaneda A, Matsusaka K, Aburatani H, Fukayama M 2012. Epstein–Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72:3445–50
    [Google Scholar]
  117. 117.  Birdwell CE, Queen KJ, Kilgore PC, Rollyson P, Trutschl M et al. 2014. Genome-wide DNA methylation as an epigenetic consequence of Epstein–Barr virus infection of immortalized keratinocytes. J. Virol. 88:11442–58
    [Google Scholar]
  118. 118.  Saha A, Jha HC, Upadhyay SK, Robertson ES 2015. Epigenetic silencing of tumor suppressor genes during in vitro Epstein–Barr virus infection. PNAS 112:E5199–207
    [Google Scholar]
  119. 119.  Hernandez-Vargas H, Gruffat H, Cros MP, Diederichs A, Sirand C et al. 2017. Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines. Sci. Rep. 7:5852
    [Google Scholar]
  120. 120.  Ushiku T, Chong JM, Uozaki H, Hino R, Chang MS et al. 2007. p73 gene promoter methylation in Epstein–Barr virus-associated gastric carcinoma. Int. J. Cancer 120:60–66
    [Google Scholar]
  121. 121.  Ribeiro J, Malta M, Galaghar A, Silva F, Afonso LP et al. 2017. P53 deregulation in Epstein–Barr virus-associated gastric cancer. Cancer Lett 404:37–43
    [Google Scholar]
  122. 122.  Fox JG, Wang TC 2007. Inflammation, atrophy, and gastric cancer. J. Clin. Investig. 117:60–69
    [Google Scholar]
  123. 123.  Lin Z, Swan K, Zhang X, Cao S, Brett Z et al. 2016. Secreted oral epithelial cell membrane vesicles induce Epstein–Barr virus reactivation in latently infected B cells. J. Virol. 90:3469–79
    [Google Scholar]
  124. 124.  Tsai MH, Raykova A, Klinke O, Bernhardt K, Gartner K et al. 2013. Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. Cell Rep 5:458–70
    [Google Scholar]
  125. 125.  Dheekollu J, Malecka K, Wiedmer A, Delecluse HJ, Chiang AK et al. 2017. Carcinoma-risk variant of EBNA1 deregulates Epstein–Barr Virus episomal latency. Oncotarget 8:7248–64
    [Google Scholar]
  126. 126.  Feng FT, Cui Q, Liu WS, Guo YM, Feng QS et al. 2015. A single nucleotide polymorphism in the Epstein–Barr virus genome is strongly associated with a high risk of nasopharyngeal carcinoma. Chin. J. Cancer 34:563–72
    [Google Scholar]
  127. 127.  Smith PR, de Jesus O, Turner D, Hollyoake M, Karstegl CE et al. 2000. Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J. Virol. 74:3082–92
    [Google Scholar]
  128. 128.  Al-Mozaini M, Bodelon G, Karstegl CE, Jin B, Al-Ahdal M, Farrell PJ 2009. Epstein–Barr virus BART gene expression. J. Gen. Virol. 90:307–16
    [Google Scholar]
  129. 129.  Suspene R, Aynaud MM, Koch S, Pasdeloup D, Labetoulle M et al. 2011. Genetic editing of herpes simplex virus 1 and Epstein–Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J. Virol. 85:7594–602
    [Google Scholar]
  130. 130.  Kalchschmidt JS, Bashford-Rogers R, Paschos K, Gillman AC, Styles CT et al. 2016. Epstein–Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells. J. Exp. Med. 213:921–28
    [Google Scholar]
  131. 131.  Apcher S, Daskalogianni C, Manoury B, Fahraeus R 2010. Epstein Barr virus–encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLOS Pathog 6:e1001151
    [Google Scholar]
  132. 132.  Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P et al. 2012. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer Res. 18:1611–18
    [Google Scholar]
  133. 133.  Derks S, Liao X, Chiaravalli AM, Xu X, Camargo MC et al. 2016. Abundant PD-L1 expression in Epstein–Barr virus-infected gastric cancers. Oncotarget 7:32925–32
    [Google Scholar]
  134. 134.  Song H, Park H, Kim J, Park G, Kim YS et al. 2011. IDO metabolite produced by EBV-transformed B cells inhibits surface expression of NKG2D in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Immunol. Lett. 136:187–93
    [Google Scholar]
  135. 135.  Liu P, Xie BL, Cai SH, He YW, Zhang G et al. 2009. Expression of indoleamine 2,3-dioxygenase in nasopharyngeal carcinoma impairs the cytolytic function of peripheral blood lymphocytes. BMC Cancer 9:416
    [Google Scholar]
  136. 136.  Wein F, Weniger MA, Hoing B, Arnolds J, Huttmann A et al. 2017. Complex immune evasion strategies in classical Hodgkin lymphoma. Cancer Immunol. Res. 5:1122–32
    [Google Scholar]
  137. 137.  Ressing ME, van Gent M, Gram AM, Hooykaas MJ, Piersma SJ, Wiertz EJ 2015. Immune evasion by Epstein–Barr virus. Curr. Top. Microbiol. Immunol. 391:355–81
    [Google Scholar]
  138. 138.  Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Leonard P et al. 2007. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196:1749–53
    [Google Scholar]
  139. 139.  Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JR et al. 2015. Rational design of an Epstein–Barr virus vaccine targeting the receptor-binding site. Cell 162:1090–100
    [Google Scholar]
  140. 140.  Snijder J, Ortego MS, Weidle C, Stuart AB, Gray MD et al. 2018. An antibody targeting the fusion machinery neutralizes dual-tropic infection and defines a site of vulnerability on Epstein–Barr virus. Immunity 48:799–811.e9
    [Google Scholar]
  141. 141.  Coghill AE, Bu W, Nguyen H, Hsu WL, Yu KJ et al. 2016. High levels of antibody that neutralize B-cell infection of Epstein–Barr virus and that bind EBV gp350 are associated with a lower risk of nasopharyngeal carcinoma. Clin. Cancer Res. 22:3451–57
    [Google Scholar]
  142. 142.  Gottschalk S, Rooney CM 2015. Adoptive T-cell immunotherapy. Curr. Top. Microbiol. Immunol. 391:427–54
    [Google Scholar]
  143. 143.  Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S et al. 2018. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J. Clin. Oncol. 36:1128–39
    [Google Scholar]
  144. 144.  Tzannou I, Papadopoulou A, Naik S, Leung K, Martinez CA et al. 2017. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein–Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 35:3547–57
    [Google Scholar]
  145. 145.  Lo YM, Chan LY, Chan AT, Leung SF, Lo KW et al. 1999. Quantitative and temporal correlation between circulating cell-free Epstein–Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 59:5452–55
    [Google Scholar]
  146. 146.  Kwong YL, Pang AW, Leung AY, Chim CS, Tse E 2014. Quantification of circulating Epstein–Barr virus DNA in NK/T-cell lymphoma treated with the SMILE protocol: diagnostic and prognostic significance. Leukemia 28:865–70
    [Google Scholar]
  147. 147.  Welch JJG, Schwartz CL, Higman M, Chen L, Buxton A et al. 2017. Epstein–Barr virus DNA in serum as an early prognostic marker in children and adolescents with Hodgkin lymphoma. Blood Adv 1:681–84
    [Google Scholar]
  148. 148.  Chan KCA, Woo JKS, King A, Zee BCY, Lam WKJ et al. 2017. Analysis of plasma Epstein–Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377:513–22
    [Google Scholar]
  149. 149.  Coghill AE, Hsu WL, Pfeiffer RM, Juwana H, Yu KJ et al. 2014. Epstein–Barr virus serology as a potential screening marker for nasopharyngeal carcinoma among high-risk individuals from multiplex families in Taiwan. Cancer Epidemiol. Biomark. Prev. 23:1213–19
    [Google Scholar]
  150. 150.  Liu Z, Ji MF, Huang QH, Fang F, Liu Q et al. 2013. Two Epstein–Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: results from the initial phase of a cluster randomized controlled trial in Southern China. Am. J. Epidemiol. 177:242–50
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-013023
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-013023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error