1932

Abstract

Human induced pluripotent stem cells (iPSCs) provide a renewable supply of patient-specific and tissue-specific cells for cellular and molecular studies of disease mechanisms. Combined with advances in various omics technologies, iPSC models can be used to profile the expression of genes, transcripts, proteins, and metabolites in relevant tissues. In the past 2 years, large panels of iPSC lines have been derived from hundreds of genetically heterogeneous individuals, further enabling genome-wide mapping to identify coexpression networks and elucidate gene regulatory networks. Here, we review recent developments in omics profiling of various molecular phenotypes and the emergence of human iPSCs as a systems biology model of human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-013046
2019-01-24
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-013046.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-013046&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Shi Y, Inoue H, Wu JC, Yamanaka S 2017. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16:2115–30
    [Google Scholar]
  2. 2.  Choi J, Lee S, Mallard W, Clement K, Tagliazucchi GM et al. 2015. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33:111173–81
    [Google Scholar]
  3. 3.  Wen W, Zhang J-P, Xu J, Su RJ, Neises A et al. 2016. Enhanced generation of integration-free iPSCs from human adult peripheral blood mononuclear cells with an optimal combination of episomal vectors. Stem Cell Rep 6:6873–84
    [Google Scholar]
  4. 4.  Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L et al. 2009. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:4806–11
    [Google Scholar]
  5. 5.  Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM et al. 2014. Chemically defined generation of human cardiomyocytes. Nat. Methods 11:8855–60
    [Google Scholar]
  6. 6.  Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB et al. 2012. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. PNAS 109:27E1848–57
    [Google Scholar]
  7. 7.  Warren CR, O'Sullivan JF, Friesen M, Becker CE, Zhang X et al. 2017. Induced pluripotent stem cell differentiation enables functional validation of GWAS variants in metabolic disease. Cell Stem Cell 20:4547–57.e7
    [Google Scholar]
  8. 8.  Marchand M, Anderson EK, Phadnis SM, Longaker MT, Cooke JP et al. 2014. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl. Med. 3:191–97
    [Google Scholar]
  9. 9.  Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T et al. 2015. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17:8994–1003
    [Google Scholar]
  10. 10.  Chambers SM, Qi Y, Mica Y, Lee G, Zhang X-J et al. 2012. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30:7715–20
    [Google Scholar]
  11. 11.  Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH et al. 2017. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35:156–68
    [Google Scholar]
  12. 12.  Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM 2017. Human pluripotent stem cell–derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21:2179–94.e4
    [Google Scholar]
  13. 13.  Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR et al. 2015. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat. Biotechnol. 33:9970–79
    [Google Scholar]
  14. 14.  Neofytou E, O'Brien CG, Couture LA, Wu JC 2015. Hurdles to clinical translation of human induced pluripotent stem cells. J. Clin. Investig. 125:72551–57
    [Google Scholar]
  15. 15.  Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C et al. 2017. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376:111038–46
    [Google Scholar]
  16. 16.  Vazão H, Rosa S, Barata T, Costa R, Pitrez PR et al. 2017. High-throughput identification of small molecules that affect human embryonic vascular development. PNAS 114:15E3022–31
    [Google Scholar]
  17. 17.  Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V et al. 2013. Drug screening using a library of human induced pluripotent stem cell–derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127:161677–91
    [Google Scholar]
  18. 18.  Sharma A, Burridge PW, McKeithan WL, Serrano R, Shukla P et al. 2017. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci. Transl. Med. 9:377aaf2584
    [Google Scholar]
  19. 19.  Burridge PW, Li YF, Matsa E, Wu H, Ong S-G et al. 2016. Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22:5547–56
    [Google Scholar]
  20. 20.  Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O et al. 2015. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33:9962–69
    [Google Scholar]
  21. 21.  Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR et al. 2015. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep 13:4733–45
    [Google Scholar]
  22. 22.  Li S, Pan H, Tan C, Sun Y, Song Y et al. 2018. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation. Stem Cell Rep 10:3P808–21
    [Google Scholar]
  23. 23.  Kodo K, Ong S-G, Jahanbani F, Termglinchan V, Hirono K et al. 2016. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat. Cell Biol. 18:101031–42
    [Google Scholar]
  24. 24.  Wu H, Lee J, Vincent LG, Wang Q, Gu M et al. 2015. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17:189–100
    [Google Scholar]
  25. 25.  Wang Y, Liang P, Lan F, Wu H, Lisowski L et al. 2014. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J. Am. Coll. Cardiol. 64:5451–59
    [Google Scholar]
  26. 26.  Bellin M, Casini S, Davis RP, D'Aniello C, Haas J et al. 2013. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J 32:243161–75
    [Google Scholar]
  27. 27.  Liang P, Sallam K, Wu H, Li Y, Itzhaki I et al. 2016. Patient-specific and genome-edited induced pluripotent stem cell–derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. J. Am. Coll. Cardiol. 68:192086–96
    [Google Scholar]
  28. 28.  Gu M, Shao N-Y, Sa S, Li D, Termglinchan V et al. 2017. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 20:4490–504.e5
    [Google Scholar]
  29. 29.  Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L et al. 2011. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29:9824–28
    [Google Scholar]
  30. 30.  Torrent R, De Angelis Rigotti F, Dell'Era P, Memo M, Raya A, Consiglio A 2015. Using iPS cells toward the understanding of Parkinson's disease. J. Clin. Med. 4:4548–66
    [Google Scholar]
  31. 31.  Lau E, Wu JC 2018. Omics, big data, and precision medicine in cardiovascular sciences. Circ. Res. 122:91165–68
    [Google Scholar]
  32. 32.  Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A et al. 2016. A survey of best practices for RNA-seq data analysis. Genome Biol 17:113
    [Google Scholar]
  33. 33.  GTEx Consort 2017. Genetic effects on gene expression across human tissues. Nature 550:7675204–13
    [Google Scholar]
  34. 34.  Tilgner H, Jahanbani F, Blauwkamp T, Moshrefi A, Jaeger E et al. 2015. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat. Biotechnol. 33:7736–42
    [Google Scholar]
  35. 35.  Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:3175–88
    [Google Scholar]
  36. 36.  DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM et al. 2016. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39:4480–90
    [Google Scholar]
  37. 37.  Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C et al. 2017. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst 4:6587–99.e4
    [Google Scholar]
  38. 38.  Doll S, Dreßen M, Geyer PE, Itzhak DN, Braun C et al. 2017. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8:11469
    [Google Scholar]
  39. 39.  Riley NM, Coon JJ 2016. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal. Chem. 88:174–94
    [Google Scholar]
  40. 40.  Olsen JV, Mann M 2013. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteom. 12:123444–52
    [Google Scholar]
  41. 41.  Patti GJ, Yanes O, Siuzdak G 2012. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13:4263–69
    [Google Scholar]
  42. 42.  eGTEx Proj 2017. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat. Genet. 49:121664–70
    [Google Scholar]
  43. 43.  Parikshak NN, Gandal MJ, Geschwind DH 2015. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16:8441–58
    [Google Scholar]
  44. 44.  Civelek M, Lusis AJ 2014. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15:134–48
    [Google Scholar]
  45. 45.  Price ND, Magis AT, Earls JC, Glusman G, Levy R et al. 2017. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35:8747–56
    [Google Scholar]
  46. 46.  Matsa E, Ahrens JH, Wu JC 2016. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol. Rev. 96:31093–126
    [Google Scholar]
  47. 47.  Hockemeyer D, Jaenisch R 2016. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18:5573–86
    [Google Scholar]
  48. 48.  Hotta A, Yamanaka S 2015. From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu. Rev. Genet. 49:47–70
    [Google Scholar]
  49. 49.  Warren CR, Cowan CA 2018. Humanity in a dish: population genetics with iPSCs. Trends Cell Biol 28:146–57
    [Google Scholar]
  50. 50.  Sayed N, Liu C, Wu JC 2016. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J. Am. Coll. Cardiol. 67:182161–76
    [Google Scholar]
  51. 51.  Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:71665–80
    [Google Scholar]
  52. 52.  Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA et al. 2017. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14:10959–62
    [Google Scholar]
  53. 53.  Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA et al. 2016. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13:11919–22
    [Google Scholar]
  54. 54.  Liu Q, Jiang C, Xu J, Zhao M-T, Van Bortle K et al. 2017. Genome-wide temporal profiling of transcriptome and open chromatin of early cardiomyocyte differentiation derived from hiPSCs and hESCs. Circ. Res. 121:4376–91
    [Google Scholar]
  55. 55.  Lee J, Shao N-Y, Paik DT, Wu H, Guo H et al. 2018. SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation. Cell Stem Cell 22:3428–44.e5
    [Google Scholar]
  56. 56.  Forrest MP, Zhang H, Moy W, McGowan H, Leites C et al. 2017. Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21:3305–18.e8
    [Google Scholar]
  57. 57.  Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA et al. 2016. RNA splicing is a primary link between genetic variation and disease. Science 352:6285600–4
    [Google Scholar]
  58. 58.  Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A et al. 2017. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65:4631–43
    [Google Scholar]
  59. 59.  Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R 2013. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10:111096–98
    [Google Scholar]
  60. 60.  Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y et al. 2016. CEL-seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol 17:77
    [Google Scholar]
  61. 61.  Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:6172776–79
    [Google Scholar]
  62. 62.  Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049
    [Google Scholar]
  63. 63.  Papalexi E, Satija R 2018. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18:135–45
    [Google Scholar]
  64. 64.  Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A et al. 2015. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33:2155–60
    [Google Scholar]
  65. 65.  Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:6352661–67
    [Google Scholar]
  66. 66.  Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S et al. 2017. The Drosophila embryo at single-cell transcriptome resolution. Science 358:6360194–99
    [Google Scholar]
  67. 67.  Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y et al. 2015. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33:3269–76
    [Google Scholar]
  68. 68.  Hough SR, Thornton M, Mason E, Mar JC, Wells CA, Pera MF 2014. Single-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cells. Stem Cell Rep 2:6881–95
    [Google Scholar]
  69. 69.  Liu Z, Wang L, Welch JD, Ma H, Zhou Y et al. 2017. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551:7678100–4
    [Google Scholar]
  70. 70.  Paik DT, Tian L, Lee J, Sayed N, Chen IY et al. 2018. Large-scale single-cell RNA-seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell–derived endothelial cells. Circ. Res. 123:443–50
    [Google Scholar]
  71. 71.  Bardy C, van den Hurk M, Kakaradov B, Erwin JA, Jaeger BN et al. 2016. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21:111573–88
    [Google Scholar]
  72. 72.  Liu Y, Beyer A, Aebersold R 2016. On the dependency of cellular protein levels on mRNA abundance. Cell 165:3535–50
    [Google Scholar]
  73. 73.  Cheng Z, Teo G, Krueger S, Rock TM, Koh HWL et al. 2016. Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress. Mol. Syst. Biol. 12:1855
    [Google Scholar]
  74. 74.  Liu Y, Borel C, Li L, Müller T, Williams EG et al. 2017. Systematic proteome and proteostasis profiling in human trisomy 21 fibroblast cells. Nat. Commun. 8:11212
    [Google Scholar]
  75. 75.  Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ et al. 2015. Impact of regulatory variation from RNA to protein. Science 347:6222664–67
    [Google Scholar]
  76. 76.  Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K et al. 2016. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534:7608500–5
    [Google Scholar]
  77. 77.  Lau E, Cao Q, Lam MPY, Wang J, Ng DCM et al. 2018. Integrated omics dissection of proteome dynamics during cardiac remodeling. Nat. Commun. 9:1120
    [Google Scholar]
  78. 78.  Aebersold R, Mann M 2016. Mass-spectrometric exploration of proteome structure and function. Nature 537:7620347–55
    [Google Scholar]
  79. 79.  Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR et al. 2018. How many human proteoforms are there?. Nat. Chem. Biol. 14:3206–14
    [Google Scholar]
  80. 80.  Schwenk JM, Omenn GS, Sun Z, Campbell DS, Baker MS et al. 2017. The human plasma proteome draft of 2017: building on the Human Plasma PeptideAtlas from mass spectrometry and complementary assays. J. Proteome Res. 16:124299–310
    [Google Scholar]
  81. 81.  Han G, Chen S-Y, Gonzalez VD, Zunder ER, Fantl WJ, Nolan GP 2017. Atomic mass tag of bismuth-209 for increasing the immunoassay multiplexing capacity of mass cytometry. Cytometry A 91:121150–63
    [Google Scholar]
  82. 82.  Leipold MD, Obermoser G, Fenwick C, Kleinstuber K, Rashidi N et al. 2018. Comparison of CyTOF assays across sites: results of a six-center pilot study. J. Immunol. Methods 453:37–43
    [Google Scholar]
  83. 83.  Gawande BN, Rohloff JC, Carter JD, von Carlowitz I, Zhang C et al. 2017. Selection of DNA aptamers with two modified bases. PNAS 114:112898–903
    [Google Scholar]
  84. 84.  Jacob J, Ngo D, Finkel N, Pitts R, Gleim S et al. 2017. Application of large scale aptamer-based proteomic profiling to “planned” myocardial infarctions. Circulation 137:121270–77
    [Google Scholar]
  85. 85.  Williams SA, Murthy AC, DeLisle RK, Hyde C, Malarstig A et al. 2017. Improving assessment of drug safety through proteomics: early detection and mechanistic characterization of the unforeseen harmful effects of torcetrapib. Circulation 137:10999–1010
    [Google Scholar]
  86. 86.  Ganz P, Heidecker B, Hveem K, Jonasson C, Kato S et al. 2016. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315:232532–41
    [Google Scholar]
  87. 87.  Ngo D, Sinha S, Shen D, Kuhn EW, Keyes MJ et al. 2016. Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation 134:4270–85
    [Google Scholar]
  88. 88.  Kelstrup CD, Bekker-Jensen DB, Arrey TN, Hogrebe A, Harder A, Olsen JV 2018. Performance evaluation of the Q Exactive HF-X for shotgun proteomics. J. Proteome Res. 17:1727–38
    [Google Scholar]
  89. 89.  Garabedian A, Benigni P, Ramirez CE, Baker ES, Liu T et al. 2017. Towards discovery and targeted peptide biomarker detection using nanoESI-TIMS-TOF MS. J. Am. Soc. Mass Spectrom. 29:5817–26
    [Google Scholar]
  90. 90.  Rosenberger G, Liu Y, Röst HL, Ludwig C, Buil A et al. 2017. Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nat. Biotechnol. 35:8781–88
    [Google Scholar]
  91. 91.  Fu Q, Kowalski MP, Mastali M, Parker SJ, Sobhani K et al. 2018. Highly reproducible automated proteomics sample preparation workflow for quantitative mass spectrometry. J. Proteome Res. 17:1420–28
    [Google Scholar]
  92. 92.  Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G et al. 2017. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH–mass spectrometry. Nat. Commun. 8:1291
    [Google Scholar]
  93. 93.  Chavez JD, Lee CF, Caudal A, Keller A, Tian R, Bruce JE 2018. Chemical crosslinking mass spectrometry analysis of protein conformations and supercomplexes in heart tissue. Cell Syst 6:1136–41.e5
    [Google Scholar]
  94. 94.  Liu Y, Gonzàlez-Porta M, Santos S, Brazma A, Marioni JC et al. 2017. Impact of alternative splicing on the human proteome. Cell Rep 20:51229–41
    [Google Scholar]
  95. 95.  Lujan E, Zunder ER, Ng YH, Goronzy IN, Nolan GP, Wernig M 2015. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521:7552352–56
    [Google Scholar]
  96. 96.  Zunder ER, Lujan E, Goltsev Y, Wernig M, Nolan GP 2015. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16:3323–37
    [Google Scholar]
  97. 97.  Mallanna SK, Cayo MA, Twaroski K, Gundry RL, Duncan SA 2016. Mapping the cell-surface N-glycoproteome of human hepatocytes reveals markers for selecting a homogeneous population of iPSC-derived hepatocytes. Stem Cell Rep 7:3543–56
    [Google Scholar]
  98. 98.  Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K et al. 2017. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546:7658370–75
    [Google Scholar]
  99. 99.  Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K et al. 2018. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D1D608–17
    [Google Scholar]
  100. 100.  Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:734157–63
    [Google Scholar]
  101. 101.  Sato Y, Kobayashi H, Higuchi T, Shimada Y, Ida H, Ohashi T 2017. Metabolomic profiling of Pompe disease–induced pluripotent stem cell–derived cardiomyocytes reveals that oxidative stress is associated with cardiac and skeletal muscle pathology. Stem Cells Transl. Med. 6:131–39
    [Google Scholar]
  102. 102.  Zhao X, Chen H, Xiao D, Yang H, Itzhaki I et al. 2018. Comparison of non-human primate versus human induced pluripotent stem cell–derived cardiomyocytes for treatment of myocardial infarction. Stem Cell Rep 10:2422–35
    [Google Scholar]
  103. 103.  Gilchrist KH, Lewis GF, Gay EA, Sellgren KL, Grego S 2015. High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays. Toxicol. Appl. Pharmacol. 288:2249–57
    [Google Scholar]
  104. 104.  Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA et al. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11:8825–33
    [Google Scholar]
  105. 105.  Rajamohan D, Kalra S, Duc Hoang M, George V, Staniforth A et al. 2016. Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell–derived cardiomyocytes. Stem Cells Dev 25:6439–52
    [Google Scholar]
  106. 106.  Deshpande A, Yadav S, Dao DQ, Wu Z-Y, Hokanson KC et al. 2017. Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Rep 21:102678–87
    [Google Scholar]
  107. 107.  Hwang HS, Kryshtal DO, Feaster TK, Sánchez-Freire V, Zhang J et al. 2015. Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J. Mol. Cell. Cardiol. 85:79–88
    [Google Scholar]
  108. 108.  Paşca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A et al. 2011. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17:121657–62
    [Google Scholar]
  109. 109.  Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK et al. 2013. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12:1101–13
    [Google Scholar]
  110. 110.  Wyles SP, Li X, Hrstka SC, Reyes S, Oommen S et al. 2016. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells. Hum. Mol. Genet. 25:2254–65
    [Google Scholar]
  111. 111.  Ribeiro AJS, Schwab O, Mandegar MA, Ang Y-S, Conklin BR et al. 2017. Multi-imaging method to assay the contractile mechanical output of micropatterned human iPSC-derived cardiac myocytes. Circ. Res. 120:101572–83
    [Google Scholar]
  112. 112.  Hayakawa T, Kunihiro T, Ando T, Kobayashi S, Matsui E et al. 2014. Image-based evaluation of contraction–relaxation kinetics of human-induced pluripotent stem cell–derived cardiomyocytes: correlation and complementarity with extracellular electrophysiology. J. Mol. Cell. Cardiol. 77:178–91
    [Google Scholar]
  113. 113.  Scott CW, Zhang X, Abi-Gerges N, Lamore SD, Abassi YA, Peters MF 2014. An impedance-based cellular assay using human iPSC-derived cardiomyocytes to quantify modulators of cardiac contractility. Toxicol. Sci. 142:2331–38
    [Google Scholar]
  114. 114.  Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V et al. 2012. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4:130130ra47
    [Google Scholar]
  115. 115.  Rodriguez ML, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki NJ 2014. Measuring the contractile forces of human induced pluripotent stem cell–derived cardiomyocytes with arrays of microposts. J. Biomech. Eng. 136:5051005
    [Google Scholar]
  116. 116.  Ribeiro MC, Tertoolen LG, Guadix JA, Bellin M, Kosmidis G et al. 2015. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro—correlation between contraction force and electrophysiology. Biomaterials 51:138–50
    [Google Scholar]
  117. 117.  Streckfuss-Bömeke K, Tiburcy M, Fomin A, Luo X, Li W et al. 2017. Severe DCM phenotype of patient harboring RBM20 mutation s635A can be modeled by patient-specific induced pluripotent stem cell–derived cardiomyocytes. J. Mol. Cell. Cardiol. 113:9–21
    [Google Scholar]
  118. 118.  Carcamo-Orive I, Huang NF, Quertermous T, Knowles JW 2017. Induced pluripotent stem cell–derived endothelial cells in insulin resistance and metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 37:112038–42
    [Google Scholar]
  119. 119.  Wang G, McCain ML, Yang L, He A, Pasqualini FS et al. 2014. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20:6616–23
    [Google Scholar]
  120. 120.  Ebert AD, Kodo K, Liang P, Wu H, Huber BC et al. 2014. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci. Transl. Med. 6:255255ra130
    [Google Scholar]
  121. 121.  Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E et al. 2018. The Library of Integrated Network-Based Cellular Signatures NIH Program: system-level cataloging of human cells response to perturbations. Cell Syst 6:113–24
    [Google Scholar]
  122. 122.  Boyle EA, Li YI, Pritchard JK 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:71177–86
    [Google Scholar]
  123. 123.  Barabási A-L, Gulbahce N, Loscalzo J 2011. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12:156–68
    [Google Scholar]
  124. 124.  Li M, Belmonte JCI 2017. Ground rules of the pluripotency gene regulatory network. Nat. Rev. Genet. 18:3180–91
    [Google Scholar]
  125. 125.  Kolodziejczyk AA, Kim JK, Tsang JCH, Ilicic T, Henriksson J et al. 2015. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17:4471–85
    [Google Scholar]
  126. 126.  Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q et al. 2014. A proteome-scale map of the human interactome network. Cell 159:51212–26
    [Google Scholar]
  127. 127.  Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L et al. 2017. Architecture of the human interactome defines protein communities and disease networks. Nature 545:7655505–9
    [Google Scholar]
  128. 128.  Yan G, Vértes PE, Towlson EK, Chew YL, Walker DS et al. 2017. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550:7677519–23
    [Google Scholar]
  129. 129.  Albert FW, Kruglyak L 2015. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16:4197–212
    [Google Scholar]
  130. 130.  GTEx Consort 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:6235648–60
    [Google Scholar]
  131. 131.  Li X, Kim Y, Tsang EK, Davis JR, Damani FN et al. 2017. The impact of rare variation on gene expression across tissues. Nature 550:7675239–43
    [Google Scholar]
  132. 132.  Matsa E, Burridge PW, Yu K-H, Ahrens JH, Termglinchan V et al. 2016. Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro. Cell Stem Cell 19:3311–25
    [Google Scholar]
  133. 133.  Burrows CK, Banovich NE, Pavlovic BJ, Patterson K, Gallego Romero I et al. 2016. Genetic variation, not cell type of origin, underlies the majority of identifiable regulatory differences in iPSCs. PLOS Genet 12:1e1005793
    [Google Scholar]
  134. 134.  Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D 2014. Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLOS Genet 10:6e1004432
    [Google Scholar]
  135. 135.  Cahan P, Daley GQ 2013. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat. Rev. Mol. Cell Biol. 14:6357–68
    [Google Scholar]
  136. 136.  Panopoulos AD, Smith EN, Arias AD, Shepard PJ, Hishida Y et al. 2017. Aberrant DNA methylation in human iPSCs associates with MYC-binding motifs in a clone-specific manner independent of genetics. Cell Stem Cell 20:4505–17.e6
    [Google Scholar]
  137. 137.  Schwartzentruber J, Foskolou S, Kilpinen H, Rodrigues J, Alasoo K et al. 2018. Molecular and functional variation in iPSC-derived sensory neurons. Nat. Genet. 50:154–61
    [Google Scholar]
  138. 138.  Churko JM, Lee J, Ameen M, Gu M, Venkatasubramanian M et al. 2017. Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods. Nat. Biomed. Eng. 1:826–37
    [Google Scholar]
  139. 139.  Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V et al. 2011. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8:5424–29
    [Google Scholar]
  140. 140.  Churko JM, Burridge PW, Wu JC 2013. Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative Sendai virus in chemically defined conditions. Methods Mol. Biol. 1036:81–88
    [Google Scholar]
  141. 141.  D'Antonio M, Woodruff G, Nathanson JL, D'Antonio-Chronowska A, Arias A et al. 2017. High-throughput and cost-effective characterization of induced pluripotent stem cells. Stem Cell Rep 8:41101–11
    [Google Scholar]
  142. 142.  Tsankov AM, Akopian V, Pop R, Chetty S, Gifford CA et al. 2015. A qPCR scorecard quantifies the differentiation potential of human pluripotent stem cells. Nat. Biotechnol. 33:111182–92
    [Google Scholar]
  143. 143.  Danecek P, McCarthy SA, HipSci Consort, Durbin R 2016. A method for checking genomic integrity in cultured cell lines from SNP genotyping data. PLOS ONE 11:5e0155014
    [Google Scholar]
  144. 144.  Paull D, Sevilla A, Zhou H, Hahn AK, Kim H et al. 2015. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat. Methods 12:9885–92
    [Google Scholar]
  145. 145.  Soares FAC, Sheldon M, Rao M, Mummery C, Vallier L 2014. International coordination of large-scale human induced pluripotent stem cell initiatives: Wellcome Trust and ISSCR workshops white paper. Stem Cell Rep 3:6931–39
    [Google Scholar]
  146. 146.  Warren CR, Jaquish CE, Cowan CA 2017. The NextGen Genetic Association Studies Consortium: a foray into in vitro population genetics. Cell Stem Cell 20:4431–33
    [Google Scholar]
  147. 147.  Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S et al. 2015. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58:2339–52
    [Google Scholar]
  148. 148.  Carcamo-Orive I, Hoffman GE, Cundiff P, Beckmann ND, D'Souza SL et al. 2017. Analysis of transcriptional variability in a large human iPSC library reveals genetic and non-genetic determinants of heterogeneity. Cell Stem Cell 20:4518–32.e9
    [Google Scholar]
  149. 149.  Marx V 2015. Stem cells: disease models that show and tell. Nat. Methods 12:2111–14
    [Google Scholar]
  150. 150.  Pashos EE, Park Y, Wang X, Raghavan A, Yang W et al. 2017. Large, diverse population cohorts of hiPSCS and derived hepatocyte-like cells reveal functional genetic variation at blood lipid–associated loci. Cell Stem Cell 20:4558–70.e10
    [Google Scholar]
  151. 151.  Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P et al. 2014. Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J. Am. Coll. Cardiol. 64:5436–48
    [Google Scholar]
  152. 152.  DeBoever C, Li H, Jakubosky D, Benaglio P, Reyna J et al. 2017. Large-scale profiling reveals the influence of genetic variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell 20:4533–46.e7
    [Google Scholar]
  153. 153.  Panopoulos AD, D'Antonio M, Benaglio P, Williams R, Hashem SI et al. 2017. iPSCORE: a resource of 222 iPSC lines enabling functional characterization of genetic variation across a variety of cell types. Stem Cell Rep 8:41086–100
    [Google Scholar]
  154. 154.  Barabasi AL, Albert R 1999. Emergence of scaling in random networks. Science 286:5439509–12
    [Google Scholar]
  155. 155.  Clune J, Mouret J-B, Lipson H 2013. The evolutionary origins of modularity. Proc. R. Soc. B 280:175520122863
    [Google Scholar]
  156. 156.  Albert R, Jeong H, Barabasi AL 2000. Error and attack tolerance of complex networks. Nature 406:6794378–82
    [Google Scholar]
  157. 157.  Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL 2000. The large-scale organization of metabolic networks. Nature 407:6804651–54
    [Google Scholar]
  158. 158.  Ideker T, Krogan NJ 2012. Differential network biology. Mol. Syst. Biol. 8:565
    [Google Scholar]
  159. 159.  Hu JX, Thomas CE, Brunak S 2016. Network biology concepts in complex disease comorbidities. Nat. Rev. Genet. 17:10615–29
    [Google Scholar]
  160. 160.  Langfelder P, Horvath S 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559
    [Google Scholar]
  161. 161.  Rau CD, Wisniewski N, Orozco LD, Bennett B, Weiss J, Lusis AJ 2013. Maximal information component analysis: a novel non-linear network analysis method. Front. Genet. 4:28
    [Google Scholar]
  162. 162.  Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ 2014. CellNet: network biology applied to stem cell engineering. Cell 158:4903–15
    [Google Scholar]
  163. 163.  Fiers MWEJ, Minnoye L, Aibar S, Bravo González-Blas C, Kalender Atak Z, Aerts S 2018. Mapping gene regulatory networks from single-cell omics data. Brief. Funct. Genom. 17:4246–54
    [Google Scholar]
  164. 164.  Chan TE, Stumpf MPH, Babtie AC 2017. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5:3251–67.e3
    [Google Scholar]
  165. 165.  Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  166. 166.  Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:71883–96.e15
    [Google Scholar]
  167. 167.  Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M et al. 2015. Transcriptional landscape of cardiomyocyte maturation. Cell Rep 13:81705–16
    [Google Scholar]
  168. 168.  Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M et al. 2016. The hybrid mouse diversity panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J. Lipid Res. 57:6925–42
    [Google Scholar]
  169. 169.  Flint J, Eskin E 2012. Genome-wide association studies in mice. Nat. Rev. Genet. 13:11807–17
    [Google Scholar]
  170. 170.  van den Berg CW, Okawa S, Chuva de Sousa Lopes SM, van Iperen L, Passier R et al. 2015. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142:183231–38
    [Google Scholar]
  171. 171.  Zhang ZN, Freitas BC, Qian H, Lux J, Acab A et al. 2016. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. PNAS 113:123185–90
    [Google Scholar]
  172. 172.  Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L et al. 2017. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell–derived cardiomyocytes. Circ. Res. 121:121323–30
    [Google Scholar]
  173. 173.  Ribeiro AJS, Ang YS, Fu JD, Rivas RN, Mohamed TMA et al. 2015. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. PNAS 112:4112705–10
    [Google Scholar]
  174. 174.  Tu C, Chao BS, Wu JC 2018. Strategies for improving the maturity of human induced pluripotent stem cell–derived cardiomyocytes. Circ. Res. 123:5512–14
    [Google Scholar]
  175. 175.  Horvath P, Aulner N, Bickle M, Davies AM, Nery ED et al. 2016. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15:11751–69
    [Google Scholar]
  176. 176.  Tzatzalos E, Abilez OJ, Shukla P, Wu JC 2016. Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv. Drug Deliv. Rev. 96:234–44
    [Google Scholar]
  177. 177.  Abilez OJ, Tzatzalos E, Yang H, Zhao M-T, Jung G et al. 2018. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells 36:2265–77
    [Google Scholar]
  178. 178.  Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LGJ et al. 2017. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144:61008–17
    [Google Scholar]
  179. 179.  Kuijlaars J, Oyelami T, Diels A, Rohrbacher J, Versweyveld S et al. 2016. Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci. Rep. 6:36529
    [Google Scholar]
  180. 180.  Dutta D, Heo I, Clevers H 2017. Disease modeling in stem cell–derived 3D organoid systems. Trends Mol. Med. 23:5393–410
    [Google Scholar]
  181. 181.  Liu C, Oikonomopoulos A, Sayed N, Wu JC 2018. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145:5dev156166
    [Google Scholar]
  182. 182.  Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A 2017. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 35:169–74
    [Google Scholar]
  183. 183.  Sharma A, Diecke S, Zhang WY, Lan F, He C et al. 2013. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 288:2518439–47
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-013046
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-013046
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error