1932

Abstract

Immunotherapy has revolutionized cancer treatment over the past decade. Nonetheless, prolonged survival is limited to relatively few patients. Cancers enforce a multifaceted immune-suppressive network whose nature is progressively shaped by systemic and local cues during tumor development. Monocytes bridge innate and adaptive immune responses and can affect the tumor microenvironment through various mechanisms that induce immune tolerance, angiogenesis, and increased dissemination of tumor cells. Yet monocytes can also give rise to antitumor effectors and activate antigen-presenting cells. This yin-yang activity relies on the plasticity of monocytes in response to environmental stimuli. In this review, we summarize current knowledge of the ontogeny, heterogeneity, and functions of monocytes and monocyte-derived cells in cancer, pinpointing the main pathways that are important for modeling the immunosuppressive tumor microenvironment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-013058
2021-01-24
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathmechdis-012418-013058.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-013058&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ribas A, Wolchok JD. 2018. Cancer immunotherapy using checkpoint blockade. Science 359:1350–55
    [Google Scholar]
  2. 2. 
    June CH, Sadelain M. 2018. Chimeric antigen receptor therapy. N. Engl. J. Med. 379:64–73
    [Google Scholar]
  3. 3. 
    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M et al. 2013. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–95
    [Google Scholar]
  4. 4. 
    Galon J, Bruni D. 2019. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18:197–218
    [Google Scholar]
  5. 5. 
    Chen DS, Mellman I. 2017. Elements of cancer immunity and the cancer-immune set point. Nature 541:321–30
    [Google Scholar]
  6. 6. 
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS et al. 2018. The immune landscape of cancer. Immunity 48:812–30.e14
    [Google Scholar]
  7. 7. 
    Schumacher TN, Scheper W, Kvistborg P 2019. Cancer neoantigens. Annu. Rev. Immunol. 37:173–200
    [Google Scholar]
  8. 8. 
    Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD et al. 2012. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–35
    [Google Scholar]
  9. 9. 
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V 2012. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12:253–68
    [Google Scholar]
  10. 10. 
    Kim IS, Gao Y, Welte T, Wang H, Liu J et al. 2019. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21:1113–26
    [Google Scholar]
  11. 11. 
    Schultze JL, Mass E, Schlitzer A 2019. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity 50:288–301
    [Google Scholar]
  12. 12. 
    Guilliams M, Mildner A, Yona S 2018. Developmental and functional heterogeneity of monocytes. Immunity 49:595–613
    [Google Scholar]
  13. 13. 
    Itoh-Nakadai A, Matsumoto M, Kato H, Sasaki J, Uehara Y et al. 2017. A Bach2-Cebp gene regulatory network for the commitment of multipotent hematopoietic progenitors. Cell Rep 18:2401–14
    [Google Scholar]
  14. 14. 
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91
    [Google Scholar]
  15. 15. 
    Jung K, Heishi T, Incio J, Huang Y, Beech EY et al. 2017. Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. PNAS 114:10455–60
    [Google Scholar]
  16. 16. 
    Notta F, Zandi S, Takayama N, Dobson S, Gan OI et al. 2016. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116
    [Google Scholar]
  17. 17. 
    Robb L. 2007. Cytokine receptors and hematopoietic differentiation. Oncogene 26:6715–23
    [Google Scholar]
  18. 18. 
    Auffray C, Sieweke MH, Geissmann F 2009. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27:669–92
    [Google Scholar]
  19. 19. 
    Wu WC, Sun HW, Chen HT, Liang J, Yu XJ et al. 2014. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. PNAS 111:4221–26
    [Google Scholar]
  20. 20. 
    King KY, Goodell MA. 2011. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat. Rev. Immunol. 11:685–92
    [Google Scholar]
  21. 21. 
    Steube KG, Meyer C, Drexler HG 1998. Secretion of functional hematopoietic growth factors by human carcinoma cell lines. Int. J. Cancer 78:120–24
    [Google Scholar]
  22. 22. 
    Casbon AJ, Reynaud D, Park C, Khuc E, Gan DD et al. 2015. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. PNAS 112:E566–75
    [Google Scholar]
  23. 23. 
    Huynh H, Zheng J, Umikawa M, Silvany R, Xie XJ et al. 2011. Components of the hematopoietic compartments in tumor stroma and tumor-bearing mice. PLOS ONE 6:e18054
    [Google Scholar]
  24. 24. 
    Al Sayed MF, Amrein MA, Buhrer ED, Huguenin AL, Radpour R et al. 2019. T-cell-secreted TNFα induces emergency myelopoiesis and myeloid-derived suppressor cell differentiation in cancer. Cancer Res 79:346–59
    [Google Scholar]
  25. 25. 
    Zhao X, Rong L, Zhao X, Li X, Liu X et al. 2012. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Investig. 122:4094–104
    [Google Scholar]
  26. 26. 
    Haverkamp JM, Smith AM, Weinlich R, Dillon CP, Qualls JE et al. 2014. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity 41:947–59
    [Google Scholar]
  27. 27. 
    Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G et al. 2018. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat. Commun. 9:5193
    [Google Scholar]
  28. 28. 
    Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M et al. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172:147–61.e12
    [Google Scholar]
  29. 29. 
    Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R et al. 2016. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167:1354–68.e14
    [Google Scholar]
  30. 30. 
    Zhang C, Wang S, Liu Y, Yang C 2016. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer. Oncotarget 7:57452–63
    [Google Scholar]
  31. 31. 
    Locati M, Curtale G, Mantovani A 2020. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. Mech. Dis. 15:123–47
    [Google Scholar]
  32. 32. 
    Nutt SL, Metcalf D, D'Amico A, Polli M, Wu L 2005. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201:221–31
    [Google Scholar]
  33. 33. 
    Yanez A, Ng MY, Hassanzadeh-Kiabi N, Goodridge HS 2015. IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil versus monocyte production. Blood 125:1452–59
    [Google Scholar]
  34. 34. 
    Tamura A, Hirai H, Yokota A, Sato A, Shoji T et al. 2015. Accelerated apoptosis of peripheral blood monocytes in Cebpb-deficient mice. Biochem. Biophys. Res. Commun. 464:654–58
    [Google Scholar]
  35. 35. 
    Marigo I, Bosio E, Solito S, Mesa C, Fernandez A et al. 2010. Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity 32:790–802
    [Google Scholar]
  36. 36. 
    Saha S, Murmu KC, Biswas M, Chakraborty S, Basu J et al. 2019. Transcriptomic analysis identifies RNA binding proteins as putative regulators of myelopoiesis and leukemia. Front. Oncol. 9:692
    [Google Scholar]
  37. 37. 
    Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N et al. 2016. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537:698–702
    [Google Scholar]
  38. 38. 
    Wu X, Briseno CG, Grajales-Reyes GE, Haldar M, Iwata A et al. 2016. Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. PNAS 113:14775–80
    [Google Scholar]
  39. 39. 
    Yanez A, Coetzee SG, Olsson A, Muench DE, Berman BP et al. 2017. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47:890–902.e4
    [Google Scholar]
  40. 40. 
    Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M et al. 2017. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541:96–101
    [Google Scholar]
  41. 41. 
    Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E et al. 2009. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41:1207–15
    [Google Scholar]
  42. 42. 
    Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T, Furukawa Y 2009. Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J. Biol. Chem. 284:30673–83
    [Google Scholar]
  43. 43. 
    Challen GA, Sun D, Mayle A, Jeong M, Luo M et al. 2014. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15:350–64
    [Google Scholar]
  44. 44. 
    Sun D, Luo M, Jeong M, Rodriguez B, Xia Z et al. 2014. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14:673–88
    [Google Scholar]
  45. 45. 
    Ji H, Ehrlich LI, Seita J, Murakami P, Doi A et al. 2010. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–42
    [Google Scholar]
  46. 46. 
    Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A et al. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610
    [Google Scholar]
  47. 47. 
    Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N et al. 2017. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–65.e17
    [Google Scholar]
  48. 48. 
    Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D et al. 2019. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50:1317–34.e10
    [Google Scholar]
  49. 49. 
    Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C et al. 2018. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174:1293–308.e36
    [Google Scholar]
  50. 50. 
    Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK 2016. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17:34–40
    [Google Scholar]
  51. 51. 
    Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19:1423–37
    [Google Scholar]
  52. 52. 
    Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R 2007. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res. 13:1472–79
    [Google Scholar]
  53. 53. 
    Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C et al. 2019. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177:1330–45.e18
    [Google Scholar]
  54. 54. 
    Zhang Q, He Y, Luo N, Patel SJ, Han Y et al. 2019. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179:829–45.e20
    [Google Scholar]
  55. 55. 
    Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D et al. 2017. An immune atlas of clear cell renal cell carcinoma. Cell 169:736–49.e18
    [Google Scholar]
  56. 56. 
    Tuit S, Salvagno C, Kapellos TS, Hau CS, Seep L et al. 2019. Transcriptional signature derived from murine tumor-associated macrophages correlates with poor outcome in breast cancer patients. Cell Rep 29:1221–35.e5
    [Google Scholar]
  57. 57. 
    Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353:aaf4238
    [Google Scholar]
  58. 58. 
    Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR et al. 2014. The cellular and molecular origin of tumor-associated macrophages. Science 344:921–25
    [Google Scholar]
  59. 59. 
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–51
    [Google Scholar]
  60. 60. 
    Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I et al. 2019. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178:1509–25.e19
    [Google Scholar]
  61. 61. 
    Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL et al. 2017. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47:323–38.e6
    [Google Scholar]
  62. 62. 
    Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM et al. 2019. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35:588–602.e10
    [Google Scholar]
  63. 63. 
    Lapenna A, De Palma M, Lewis CE 2018. Perivascular macrophages in health and disease. Nat. Rev. Immunol. 18:689–702
    [Google Scholar]
  64. 64. 
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20
    [Google Scholar]
  65. 65. 
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B et al. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–64
    [Google Scholar]
  66. 66. 
    Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P 2017. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14:399–416
    [Google Scholar]
  67. 67. 
    Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL et al. 2014. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:638–52
    [Google Scholar]
  68. 68. 
    Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D et al. 2016. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:669–84
    [Google Scholar]
  69. 69. 
    Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M et al. 2008. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26:4410–17
    [Google Scholar]
  70. 70. 
    Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH 2019. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19:307–25
    [Google Scholar]
  71. 71. 
    Finkin S, Yuan D, Stein I, Taniguchi K, Weber A et al. 2015. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16:1235–44
    [Google Scholar]
  72. 72. 
    Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M et al. 2020. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577:561–65
    [Google Scholar]
  73. 73. 
    Helmink BA, Reddy SM, Gao J, Zhang S, Basar R et al. 2020. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577:549–55
    [Google Scholar]
  74. 74. 
    Kuhn S, Yang J, Ronchese F 2015. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and antitumor responses after local immunotherapy. Front. Immunol. 6:584
    [Google Scholar]
  75. 75. 
    Theisen DJ, Davidson JT IV, Briseño CG, Gargaro M, Lauron EJ et al. 2018. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:694–99
    [Google Scholar]
  76. 76. 
    Merad M, Sathe P, Helft J, Miller J, Mortha A 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604
    [Google Scholar]
  77. 77. 
    Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G et al. 2013. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38:336–48
    [Google Scholar]
  78. 78. 
    Sharma MD, Rodriguez PC, Koehn BH, Baban B, Cui Y et al. 2018. Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c+CD103+ monocytic antigen-presenting cells in tumors. Immunity 48:91–106.e6
    [Google Scholar]
  79. 79. 
    Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AH et al. 2016. T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30:377–90
    [Google Scholar]
  80. 80. 
    De Sanctis F, Solito S, Ugel S, Molon B, Bronte V, Marigo I 2016. MDSCs in cancer: conceiving new prognostic and therapeutic targets. Biochim. Biophys. Acta Rev. Cancer 1865:35–48
    [Google Scholar]
  81. 81. 
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A et al. 2012. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18:1254–61
    [Google Scholar]
  82. 82. 
    Trovato R, Fiore A, Sartori S, Cane S, Giugno R et al. 2019. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J. Immunother. Cancer 7:255
    [Google Scholar]
  83. 83. 
    Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB et al. 2016. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7:12150
    [Google Scholar]
  84. 84. 
    Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A et al. 2010. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40:22–35
    [Google Scholar]
  85. 85. 
    Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S et al. 2012. Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep 2:628–39
    [Google Scholar]
  86. 86. 
    Ugel S, De Sanctis F, Mandruzzato S, Bronte V 2015. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Investig. 125:3365–76
    [Google Scholar]
  87. 87. 
    Sonda N, Simonato F, Peranzoni E, Cali B, Bortoluzzi S et al. 2013. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis. Immunity 38:1236–49
    [Google Scholar]
  88. 88. 
    Sangaletti S, Talarico G, Chiodoni C, Cappetti B, Botti L et al. 2019. SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities. Front. Immunol. 10:1369
    [Google Scholar]
  89. 89. 
    Waight JD, Netherby C, Hensen ML, Miller A, Hu Q et al. 2013. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J. Clin. Investig. 123:4464–78
    [Google Scholar]
  90. 90. 
    Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E et al. 2013. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Investig. 123:1580–89
    [Google Scholar]
  91. 91. 
    Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S et al. 2008. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205:2235–49
    [Google Scholar]
  92. 92. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  93. 93. 
    Wenes M, Shang M, Di Matteo M, Goveia J, Martin-Perez R et al. 2016. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24:701–15
    [Google Scholar]
  94. 94. 
    Brown JM, Wilson WR. 2004. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4:437–47
    [Google Scholar]
  95. 95. 
    Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI et al. 2010. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207:2439–53
    [Google Scholar]
  96. 96. 
    Liu G, Bi Y, Shen B, Yang H, Zhang Y et al. 2014. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res 74:727–37
    [Google Scholar]
  97. 97. 
    Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A et al. 2011. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475:226–30
    [Google Scholar]
  98. 98. 
    Palazon A, Tyrakis PA, Macias D, Velica P, Rundqvist H et al. 2017. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32:669–83.e5
    [Google Scholar]
  99. 99. 
    Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG et al. 2013. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Investig. 123:4479–88
    [Google Scholar]
  100. 100. 
    Cao TM, Takatani T, King MR 2013. Effect of extracellular pH on selectin adhesion: theory and experiment. Biophys. J. 104:292–99
    [Google Scholar]
  101. 101. 
    Vishvakarma NK, Singh SM. 2010. Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: implication in antitumor activation of tumor-associated macrophages. Immunol. Lett. 134:83–92
    [Google Scholar]
  102. 102. 
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L 2013. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31:51–72
    [Google Scholar]
  103. 103. 
    Huber R, Meier B, Otsuka A, Fenini G, Satoh T et al. 2016. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages. Sci. Rep. 6:29914
    [Google Scholar]
  104. 104. 
    Xu MM, Pu Y, Han D, Shi Y, Cao X et al. 2017. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 47:363–73.e5
    [Google Scholar]
  105. 105. 
    Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10:712–23
    [Google Scholar]
  106. 106. 
    Kobayashi N, Miyoshi S, Mikami T, Koyama H, Kitazawa M et al. 2010. Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Res 70:7073–83
    [Google Scholar]
  107. 107. 
    Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS 2015. Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling. Cell Rep 13:2851–64
    [Google Scholar]
  108. 108. 
    Ma D, Liu S, Lal B, Wei S, Wang S et al. 2019. Extracellular matrix protein tenascin C increases phagocytosis mediated by CD47 loss of function in glioblastoma. Cancer Res 79:2697–708
    [Google Scholar]
  109. 109. 
    Roberts AW, Lee BL, Deguine J, John S, Shlomchik MJ, Barton GM 2017. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells. Immunity 47:913–27.e6
    [Google Scholar]
  110. 110. 
    Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp HS 2018. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Investig. 128:2356–69
    [Google Scholar]
  111. 111. 
    Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A et al. 2015. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161:1527–38
    [Google Scholar]
  112. 112. 
    Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D et al. 2006. A2A adenosine receptor protects tumors from antitumor T cells. PNAS 103:13132–37
    [Google Scholar]
  113. 113. 
    Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S et al. 2017. Use of luciferase probes to measure ATP in living cells and animals. Nat. Protoc. 12:1542–62
    [Google Scholar]
  114. 114. 
    Maj T, Wang W, Crespo J, Zhang H, Wang W et al. 2017. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18:1332–41
    [Google Scholar]
  115. 115. 
    Cekic C, Day YJ, Sag D, Linden J 2014. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res 74:7250–59
    [Google Scholar]
  116. 116. 
    Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J 2012. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188:198–205
    [Google Scholar]
  117. 117. 
    Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y et al. 2008. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–31
    [Google Scholar]
  118. 118. 
    Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B et al. 2015. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol. Res. 3:506–17
    [Google Scholar]
  119. 119. 
    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM et al. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–63
    [Google Scholar]
  120. 120. 
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–42
    [Google Scholar]
  121. 121. 
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS et al. 2008. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:807–11
    [Google Scholar]
  122. 122. 
    Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A et al. 2018. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 28:463–75.e4
    [Google Scholar]
  123. 123. 
    Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R 2017. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356:513–19
    [Google Scholar]
  124. 124. 
    Huang SC, Smith AM, Everts B, Colonna M, Pearce EL et al. 2016. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45:817–30
    [Google Scholar]
  125. 125. 
    Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ et al. 2015. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21:65–80
    [Google Scholar]
  126. 126. 
    Palsson-McDermott EM, Dyck L, Zaslona Z, Menon D, McGettrick AF et al. 2017. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front. Immunol. 8:1300
    [Google Scholar]
  127. 127. 
    Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G 2010. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. PNAS 107:7817–22
    [Google Scholar]
  128. 128. 
    Cader MZ, Boroviak K, Zhang Q, Assadi G, Kempster SL et al. 2016. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol. 17:1046–56
    [Google Scholar]
  129. 129. 
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–20
    [Google Scholar]
  130. 130. 
    Currie GA. 1978. Activated macrophages kill tumour cells by releasing arginase. Nature 273:758–59
    [Google Scholar]
  131. 131. 
    Palmieri EM, Menga A, Martin-Perez R, Quinto A, Riera-Domingo C et al. 2017. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 20:1654–66
    [Google Scholar]
  132. 132. 
    Leone RD, Zhao L, Englert JM, Sun IM, Oh MH et al. 2019. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366:1013–21
    [Google Scholar]
  133. 133. 
    Wang D, Dubois RN. 2010. Eicosanoids and cancer. Nat. Rev. Cancer 10:181–93
    [Google Scholar]
  134. 134. 
    Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N et al. 2015. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162:1257–70
    [Google Scholar]
  135. 135. 
    Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D 2016. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–48
    [Google Scholar]
  136. 136. 
    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF et al. 2017. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503
    [Google Scholar]
  137. 137. 
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature 527:329–35
    [Google Scholar]
  138. 138. 
    Fleming V, Hu X, Weller C, Weber R, Groth C et al. 2019. Melanoma extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling. Cancer Res 79:4715–28
    [Google Scholar]
  139. 139. 
    Zheng P, Chen L, Yuan X, Luo Q, Liu Y et al. 2017. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J. Exp. Clin. Cancer Res. 36:53
    [Google Scholar]
  140. 140. 
    Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y et al. 2016. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167:829–42.e13
    [Google Scholar]
  141. 141. 
    Bronte V, Zanovello P. 2005. Regulation of immune responses by l-arginine metabolism. Nat. Rev. Immunol. 5:641–54
    [Google Scholar]
  142. 142. 
    Martí i Líndez AA, Dunand-Sauthier I, Conti M, Gobet F, Núñez N et al. 2019. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 4:e132975
    [Google Scholar]
  143. 143. 
    Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y et al. 2005. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–42
    [Google Scholar]
  144. 144. 
    Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR et al. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176:6752–61
    [Google Scholar]
  145. 145. 
    Halaby MJ, Hezaveh K, Lamorte S, Ciudad MT, Kloetgen A et al. 2019. GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Sci. Immunol. 4:eaax8189
    [Google Scholar]
  146. 146. 
    Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S 2010. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77
    [Google Scholar]
  147. 147. 
    Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S et al. 2009. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182:5693–701
    [Google Scholar]
  148. 148. 
    De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S et al. 2014. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front. Immunol. 5:69
    [Google Scholar]
  149. 149. 
    Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S et al. 2011. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208:1949–62
    [Google Scholar]
  150. 150. 
    Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA et al. 2018. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin. Cancer Res. 24:1891–904
    [Google Scholar]
  151. 151. 
    Lin H, Wei S, Hurt EM, Green MD, Zhao L et al. 2018. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Investig. 128:805–15
    [Google Scholar]
  152. 152. 
    Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S et al. 2006. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203:871–81
    [Google Scholar]
  153. 153. 
    Li J, Lee Y, Li Y, Jiang Y, Lu H et al. 2018. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8+ T cells. Immunity 48:773–86.e5
    [Google Scholar]
  154. 154. 
    Schuette V, Embgenbroich M, Ulas T, Welz M, Schulte-Schrepping J et al. 2016. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4. PNAS 113:10649–54
    [Google Scholar]
  155. 155. 
    Zhu J, Powis de Tenbossche CG, Cane S, Colau D, van Baren N et al. 2017. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 8:1404
    [Google Scholar]
  156. 156. 
    Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P et al. 2013. Tumor-associated macrophages in glioma: friend or foe. J. Oncol. 2013:486912
    [Google Scholar]
  157. 157. 
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K et al. 2018. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–48
    [Google Scholar]
  158. 158. 
    De Sanctis F, Bronte V, Ugel S 2016. Tumor-induced myeloid-derived suppressor cells. Microbiol. Spectr. 4: https://doi.org/10.1128/microbiolspec.MCHD-0016-2015
    [Crossref] [Google Scholar]
  159. 159. 
    Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM et al. 2014. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26:623–37
    [Google Scholar]
  160. 160. 
    Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F 2020. The engagement between MDSCs and metastases: partners in crime. Front. Oncol. 10:165
    [Google Scholar]
  161. 161. 
    Sidibe A, Ropraz P, Jemelin S, Emre Y, Poittevin M et al. 2018. Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours. Nat. Commun. 9:355
    [Google Scholar]
  162. 162. 
    Xu L, Duda DG, di Tomaso E, Ancukiewicz M, Chung DC et al. 2009. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1α, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res 69:7905–10
    [Google Scholar]
  163. 163. 
    De Sanctis F, Ugel S, Facciponte J, Facciabene A 2018. The dark side of tumor-associated endothelial cells. Semin. Immunol. 35:35–47
    [Google Scholar]
  164. 164. 
    Kessenbrock K, Plaks V, Werb Z 2010. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67
    [Google Scholar]
  165. 165. 
    Condeelis J, Pollard JW. 2006. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–66
    [Google Scholar]
  166. 166. 
    Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA 2012. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12:35
    [Google Scholar]
  167. 167. 
    Sangaletti S, Tripodo C, Santangelo A, Castioni N, Portararo P et al. 2016. Mesenchymal transition of high-grade breast carcinomas depends on extracellular matrix control of myeloid suppressor cell activity. Cell Rep 17:233–48
    [Google Scholar]
  168. 168. 
    Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A et al. 2014. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147:1393–404
    [Google Scholar]
  169. 169. 
    Lu H, Clauser KR, Tam WL, Frose J, Ye X et al. 2014. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16:1105–17
    [Google Scholar]
  170. 170. 
    Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S et al. 2014. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515:134–37
    [Google Scholar]
  171. 171. 
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J et al. 2011. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–25
    [Google Scholar]
  172. 172. 
    Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD et al. 2015. Patrolling monocytes control tumor metastasis to the lung. Science 350:985–90
    [Google Scholar]
  173. 173. 
    Liu M, O'Connor RS, Trefely S, Graham K, Snyder NW, Beatty GL 2019. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated ‘don't-eat-me’ signal. Nat. Immunol. 20:265–75
    [Google Scholar]
  174. 174. 
    Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN et al. 2017. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8:1747
    [Google Scholar]
  175. 175. 
    Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR et al. 2016. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov 6:870–85
    [Google Scholar]
  176. 176. 
    Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR et al. 2011. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–16
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-013058
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-013058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error