1932

Abstract

Organoids are in vitro–cultured three-dimensional structures that recapitulate key aspects of in vivo organs. They can be established from pluripotent stem cells and from adult stem cells, the latter being the subject of this review. Organoids derived from adult stem cells exploit the tissue regeneration process that is driven by these cells, and they can be established directly from the healthy or diseased epithelium of many organs. Organoids are amenable to any experimental approach that has been developed for cell lines. Applications in experimental biology involve the modeling of tissue physiology and disease, including malignant, hereditary, and infectious diseases. Biobanks of patient-derived tumor organoids are used in drug development research, and they hold promise for developing personalized and regenerative medicine. In this review, we discuss the applications of adult stem cell–derived organoids in the laboratory and the clinic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032611
2020-01-24
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032611.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032611&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    John T, Kohler D, Pintilie M, Yanagawa N, Pham N-A et al. 2011. The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non–small cell lung cancer. Clin. Cancer Res. 17:134–41
    [Google Scholar]
  2. 2. 
    Clevers H. 2016. Modeling development and disease with organoids. Cell 165:1586–97
    [Google Scholar]
  3. 3. 
    Rookmaaker MB, Schutgens F, Verhaar MC, Clevers H 2015. Development and application of human adult stem or progenitor cell organoids. Nat. Rev. Nephrol. 11:546–54
    [Google Scholar]
  4. 4. 
    Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–58
    [Google Scholar]
  5. 5. 
    Drost J, Van Jaarsveld RH, Ponsioen B, Zimberlin C, Van Boxtel R et al. 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47
    [Google Scholar]
  6. 6. 
    Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N et al. 2017. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358:234–38
    [Google Scholar]
  7. 7. 
    McCracken KW, Howell JC, Wells JM, Spence JR 2011. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6:1920–28
    [Google Scholar]
  8. 8. 
    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ et al. 2015. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–68
    [Google Scholar]
  9. 9. 
    Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R et al. 2015. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6:8715
    [Google Scholar]
  10. 10. 
    Garcez PP, Loiola EC, da Costa RM, Higa LM, Trindade P et al. 2016. Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–18
    [Google Scholar]
  11. 11. 
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–32
    [Google Scholar]
  12. 12. 
    McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M et al. 2014. Modeling human development and disease in pluripotent stem cell–derived gastric organoids. Nature 516:400–4
    [Google Scholar]
  13. 13. 
    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ et al. 2015. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–68
    [Google Scholar]
  14. 14. 
    Chen Y-W, Huang SX, De Carvalho ALRT, Ho S-H, Islam MN et al. 2017. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19:542–49
    [Google Scholar]
  15. 15. 
    Takebe T, Sekine K, Enomura M, Koike H, Kimura M et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–84
    [Google Scholar]
  16. 16. 
    Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD 2018. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23:869–81.e8
    [Google Scholar]
  17. 17. 
    McCauley HA, Wells JM. 2017. Pluripotent stem cell–derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144:958–62
    [Google Scholar]
  18. 18. 
    Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H et al. 2015. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–36.e6
    [Google Scholar]
  19. 19. 
    Boj SF, Hwang CI, Baker LA, Chio II, Engle DD et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–38
    [Google Scholar]
  20. 20. 
    Sato T, Stange DE, Ferrante M, Vries RG, van Es JH et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–72
    [Google Scholar]
  21. 21. 
    Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F et al. 2015. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312
    [Google Scholar]
  22. 22. 
    van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–45
    [Google Scholar]
  23. 23. 
    Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, De Jonge HR et al. 2016. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8:344ra84
    [Google Scholar]
  24. 24. 
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  25. 25. 
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. . Nature 449:1003–7
    [Google Scholar]
  26. 26. 
    Nanduri LSY, Baanstra M, Faber H, Rocchi C, Zwart E et al. 2014. Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Rep 3:957–64
    [Google Scholar]
  27. 27. 
    Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S et al. 2015. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat. Commun. 6:8989
    [Google Scholar]
  28. 28. 
    Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG et al. 2018. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov 8:1404–21
    [Google Scholar]
  29. 29. 
    Broutier L, Mastrogiovanni G, Verstegen MMA, Francies HE, Gavarró LM et al. 2017. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat. Med. 23:1424–35
    [Google Scholar]
  30. 30. 
    Hu H, Gehart H, Artegiani B, López-Iglesias C, Dekkers F et al. 2018. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175:1591–606
    [Google Scholar]
  31. 31. 
    Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R et al. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159:163–75
    [Google Scholar]
  32. 32. 
    Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G et al. 2018. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172:373–86.e10
    [Google Scholar]
  33. 33. 
    Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L et al. 2018. Long-term expanding human airway organoids for disease modeling. EMBO J 38:e100300
    [Google Scholar]
  34. 34. 
    Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K et al. 2014. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. PNAS 111:16401–6
    [Google Scholar]
  35. 35. 
    Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ et al. 2017. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19:568–77
    [Google Scholar]
  36. 36. 
    Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J et al. 2019. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37:303–13
    [Google Scholar]
  37. 37. 
    Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M et al. 2018. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564:263–67
    [Google Scholar]
  38. 38. 
    Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H 2017. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20:177–90
    [Google Scholar]
  39. 39. 
    Beumer J, Artegiani B, Post Y, Reimann F, Gribble F et al. 2018. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20:909–16
    [Google Scholar]
  40. 40. 
    Olivier M, Hollstein M, Hainaut P 2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2:a001008
    [Google Scholar]
  41. 41. 
    Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F et al. 2018. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175:1607–19
    [Google Scholar]
  42. 42. 
    Yamada Y, Kirillova I, Peschon JJ, Fausto N 1997. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. PNAS 94:1441–46
    [Google Scholar]
  43. 43. 
    Blokzijl F, De Ligt J, Jager M, Sasselli V, Roerink S et al. 2016. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:260–64
    [Google Scholar]
  44. 44. 
    Checkley W, White AC Jr., Jaganath D, Arrowood MJ, Chalmers RM et al. 2015. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect. . Dis 15:85–94
    [Google Scholar]
  45. 45. 
    Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B et al. 2018. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3:814–23
    [Google Scholar]
  46. 46. 
    Salama NR, Hartung ML, Müller A 2013. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. . Microbiol 11:385–99
    [Google Scholar]
  47. 47. 
    Huang JY, Sweeney EG, Sigal M, Zhang HC, Remington SJ et al. 2015. Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe 18:147–56
    [Google Scholar]
  48. 48. 
    Shukla VK, Singh H, Pandey M, Upadhyay SK, Nath G 2000. Carcinoma of the gallbladder—Is it a sequel of typhoid?. Dig. Dis. Sci. 45:900–3
    [Google Scholar]
  49. 49. 
    Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu L-E et al. 2015. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17:763–74
    [Google Scholar]
  50. 50. 
    Ramani S, Atmar RL, Estes MK 2014. Epidemiology of human noroviruses and updates on vaccine development. Curr. Opin. Gastroenterol. 30:25–33
    [Google Scholar]
  51. 51. 
    Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U et al. 2016. Replication of human noroviruses in stem cell–derived human enteroids. Science 353:1387–93
    [Google Scholar]
  52. 52. 
    Hirsch HH, Brennan DC, Drachenberg CB, Ginevri F, Gordon J et al. 2005. Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation 79:1277–86
    [Google Scholar]
  53. 53. 
    Bohl DL, Brennan DC. 2007. BK virus nephropathy and kidney transplantation. Clin. J. Am. Soc. Nephrol. 2: Suppl. 1 S36–46
    [Google Scholar]
  54. 54. 
    Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA et al. 2010. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375:1545–55
    [Google Scholar]
  55. 55. 
    Mueller NJ, Kuwaki K, Knosalla C, Dor FJ, Gollackner B et al. 2005. Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation 12:59–62
    [Google Scholar]
  56. 56. 
    WHO (World Health Organ.) 2018. Human infection with avian influenza A(H7N9) virus—China: update. WHO https://www.who.int/csr/don/05-september-2018-ah7n9-china/en/
    [Google Scholar]
  57. 57. 
    WHO (World Health Organ.) 2016. Tool for Influenza Pandemic Risk Assessment (TIPRA) Geneva: WHO
    [Google Scholar]
  58. 58. 
    Zhou J, Li C, Sachs N, Chiu MC, Wong BH-Y et al. 2018. Differentiated human airway organoids to assess infectivity of emerging influenza virus. PNAS 115:6822–27
    [Google Scholar]
  59. 59. 
    Hui KPY, Ching RHH, Chan SKH, Nicholls JM, Sachs N et al. 2018. Tropism, replication competence, and innate immune responses of influenza virus: an analysis of human airway organoids and ex-vivo bronchus cultures. Lancet Respir. Med. 6:846–54
    [Google Scholar]
  60. 60. 
    Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY et al. 2014. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147:65–68.e10
    [Google Scholar]
  61. 61. 
    Bigorgne AE, Farin HF, Lemoine R, Mahlaoui N, Lambert N et al. 2014. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Investig. 124:328–37
    [Google Scholar]
  62. 62. 
    Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM et al. 2013. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19:939–45
    [Google Scholar]
  63. 63. 
    Berkers G, van Mourik P, Vonk AM, Kruisselbrink E, Dekkers JF et al. 2019. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep 26:1701–8.e3
    [Google Scholar]
  64. 64. 
    Sondo E, Caci E, Galietta LJV 2014. The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. Int. J. Biochem. Cell Biol. 52:73–76
    [Google Scholar]
  65. 65. 
    Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB et al. 2018. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556:457–62
    [Google Scholar]
  66. 66. 
    Matano M, Date S, Shimokawa M, Takano A, Fujii M et al. 2015. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21:256–62
    [Google Scholar]
  67. 67. 
    Weren RDA, Ligtenberg MJL, Kets CM, de Voer RM, Verwiel ETP et al. 2015. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 47:668–71
    [Google Scholar]
  68. 68. 
    Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D et al. 2016. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47–54
    [Google Scholar]
  69. 69. 
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R et al. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–48
    [Google Scholar]
  70. 70. 
    Driehuis E, Clevers H. 2017. CRISPR-induced TMPRSS2–ERG gene fusions in mouse prostate organoids. JSM Biotechnol. Biomed. Eng. 4:1076
    [Google Scholar]
  71. 71. 
    de Sousa e Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD et al. 2017. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543:676–80
    [Google Scholar]
  72. 72. 
    Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A et al. 2017. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545:187–92
    [Google Scholar]
  73. 73. 
    Fumagalli A, Drost J, Suijkerbuijk SJE, van Boxtel R, De Ligt J et al. 2017. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. PNAS 114:E2357–64
    [Google Scholar]
  74. 74. 
    Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A et al. 2017. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35:569–76
    [Google Scholar]
  75. 75. 
    Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K et al. 2016. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18:203–13
    [Google Scholar]
  76. 76. 
    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR et al. 2014. Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–87
    [Google Scholar]
  77. 77. 
    Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB et al. 2018. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173:515–28
    [Google Scholar]
  78. 78. 
    Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O et al. 2015. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. PNAS 112:13308–11
    [Google Scholar]
  79. 79. 
    Fujii M, Shimokawa M, Date S, Takano A, Matano M et al. 2016. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18:827–38
    [Google Scholar]
  80. 80. 
    Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K et al. 2018. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22:454–67
    [Google Scholar]
  81. 81. 
    Bailey P, Chang DK, Nones K, Johns AL, Patch A-M et al. 2016. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52
    [Google Scholar]
  82. 82. 
    Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A et al. 2018. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov 8:1112–29
    [Google Scholar]
  83. 83. 
    Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J et al. 2018. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359:920–26
    [Google Scholar]
  84. 84. 
    Cancer Genome Atlas Res. Netw 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609–15
    [Google Scholar]
  85. 85. 
    Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N et al. 2019. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25:838–49
    [Google Scholar]
  86. 86. 
    Srivatanakul P, Sriplung H, Deerasamee S 2004. Epidemiology of liver cancer: an overview. Asian Pac. J. Cancer Prev. 5:118–25
    [Google Scholar]
  87. 87. 
    Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T et al. 2017. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 7:462–77
    [Google Scholar]
  88. 88. 
    Bredenoord AL, Clevers H, Knoblich JA 2017. Human tissues in a dish: the research and ethical implications of organoid technology. Science 355: eaaf9414
    [Google Scholar]
  89. 89. 
    Boers SN, van Delden JJM, Bredenoord AL 2015. Broad consent is consent for governance. Am. J. Bioeth. 15:53–55
    [Google Scholar]
  90. 90. 
    Boers SN, van Delden JJM, Clevers H, Bredenoord AL 2016. Organoid biobanking: identifying the ethics. Organoids revive old and raise new ethical challenges for basic research and therapeutic use. EMBO Rep 17:938–41
    [Google Scholar]
  91. 91. 
    Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T et al. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18:618–23
    [Google Scholar]
  92. 92. 
    Huch M, Dorrell C, Boj SF, van Es JH, Li VS et al. 2013. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–50
    [Google Scholar]
  93. 93. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  94. 94. 
    Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J et al. 2018. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–43
    [Google Scholar]
  95. 95. 
    Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL et al. 2018. Organoid modeling of the tumor immune microenvironment. Cell 175:1972–88
    [Google Scholar]
  96. 96. 
    Rosenberg SA, Restifo NP. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68
    [Google Scholar]
  97. 97. 
    Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J et al. 2018. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174:1586–98
    [Google Scholar]
  98. 98. 
    Cutting GR. 2015. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16:45–56
    [Google Scholar]
  99. 99. 
    Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–64
    [Google Scholar]
  100. 100. 
    Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M et al. 2010. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–43
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032611
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error