1932

Abstract

Genetic diseases cause numerous complex and intractable pathologies. DNA sequences encoding each human's complexity and many disease risks are contained in the mitochondrial genome, nuclear genome, and microbial metagenome. Diagnosis of these diseases has unified around applications of next-generation DNA sequencing. However, translating specific genetic diagnoses into targeted genetic therapies remains a central goal. To date, genetic therapies have fallen into three broad categories: bulk replacement of affected genetic compartments with a new exogenous genome, nontargeted addition of exogenous genetic material to compensate for genetic errors, and most recently, direct correction of causative genetic alterations using gene editing. Generalized methods of diagnosis, therapy, and reagent delivery into each genetic compartment will accelerate the next generations of curative genetic therapies. We discuss the structure and variability of the mitochondrial, nuclear, and microbial metagenomic compartments, as well as the historical development and current practice of genetic diagnostics and gene therapies targeting each compartment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032626
2021-01-24
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathmechdis-012419-032626.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032626&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Motulsky AG. 2010. History of human genetics. Vogel and Motulsky's Human Genetics: Problems and Approaches MR Speicher, AG Motulsky, SE Antonarakis 13–29 Heidelberg, Ger: Springer. , 4th. ed.
    [Google Scholar]
  2. 2. 
    Soler A, Morales C, Mademont-Soler I, Margarit E, Borrell A et al. 2017. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet. Genome Res. 152:81–89
    [Google Scholar]
  3. 3. 
    Baird PA, Anderson TW, Newcombe HB, Lowry RB 1988. Genetic disorders in children and young adults: a population study. Am. J. Hum. Genet. 42:677–93
    [Google Scholar]
  4. 4. 
    Slack J, Evans KA. 1966. The increased risk of death from ischaemic heart disease in first degree relatives of 121 men and 96 women with ischaemic heart disease. J. Med. Genet. 3:239–57
    [Google Scholar]
  5. 5. 
    Ingram VM. 1956. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178:792–94
    [Google Scholar]
  6. 6. 
    Pauling L, Itano HA, Singer SJ, Wells IC 1949. Sickle cell anemia, a molecular disease. Science 110:543–48
    [Google Scholar]
  7. 7. 
    Lejeune J, Gautier M, Turpin R 1959. Etude des chromosomes somatiques de neuf enfants mongoliens. C. R. Hebd. Séances Acad. Sci. 248:1721–22
    [Google Scholar]
  8. 8. 
    Guthrie R. 1961. Blood screening for phenylketonuria. JAMA 178:863
    [Google Scholar]
  9. 9. 
    Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA et al. 1983. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306:234–38
    [Google Scholar]
  10. 10. 
    Friedmann T, Roblin R. 1972. Gene therapy for human genetic disease. Science 175:949–55
    [Google Scholar]
  11. 11. 
    Merril CR, Geier MR, Petricciani JC 1971. Bacterial virus gene expression in human cells. Nature 233:398–400
    [Google Scholar]
  12. 12. 
    Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA et al. 1990. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323:570–78
    [Google Scholar]
  13. 13. 
    Cline MJ, Stang H, Mercola K, Morse L, Ruprecht R et al. 1980. Gene transfer in intact animals. Nature 284:422–25
    [Google Scholar]
  14. 14. 
    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB et al. 2017. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377:2531–44
    [Google Scholar]
  15. 15. 
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M et al. 2018. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378:439–48
    [Google Scholar]
  16. 16. 
    Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF et al. 2017. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:849–60
    [Google Scholar]
  17. 17. 
    Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ 2019. Clinical application and potential of fecal microbiota transplantation. Annu. Rev. Med. 70:335–51
    [Google Scholar]
  18. 18. 
    Carroll D. 2014. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83:409–39
    [Google Scholar]
  19. 19. 
    Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG, Jakobs S 2011. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. PNAS 108:13534–39
    [Google Scholar]
  20. 20. 
    Cole LW. 2016. The evolution of per-cell organelle number. Front. Cell Dev. Biol. 4:85
    [Google Scholar]
  21. 21. 
    Jansen RPS. 2000. Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum. Reprod. 15:Suppl. 2112–28
    [Google Scholar]
  22. 22. 
    Zaidi AA, Wilton PR, Su MSW, Paul IM, Arbeithuber B et al. 2019. Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. PNAS 50:25172–78
    [Google Scholar]
  23. 23. 
    Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG 2018. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557:101–5
    [Google Scholar]
  24. 24. 
    Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65
    [Google Scholar]
  25. 25. 
    Gray MW. 2012. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4:a011403
    [Google Scholar]
  26. 26. 
    Khrapko K, Coller HA, André PC, Li XC, Hanekamp JS, Thilly WG 1997. Mitochondrial mutational spectra in human cells and tissues. PNAS 94:13798–803
    [Google Scholar]
  27. 27. 
    Li M, Schröder R, Ni S, Madea B, Stoneking M 2015. Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. PNAS 112:2491–96
    [Google Scholar]
  28. 28. 
    Li H, Slone J, Fei L, Huang T 2019. Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations. Cells 8:608
    [Google Scholar]
  29. 29. 
    Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF 2004. The epidemiology of mitochondrial disorders. Biochim. Biophys. Acta Bioenerg. 1659:115–20
    [Google Scholar]
  30. 30. 
    Larsson N-G. 2010. Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 79:683–706
    [Google Scholar]
  31. 31. 
    Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C et al. 2019. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176:1325–39
    [Google Scholar]
  32. 32. 
    Patananan AN, Wu T-H, Chiou P-Y, Teitell MA 2016. Modifying the mitochondrial genome. Cell Metab 23:785–96
    [Google Scholar]
  33. 33. 
    Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L et al. 2009. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461:367–72
    [Google Scholar]
  34. 34. 
    Zhang Y, Tian Z, Yuan J, Liu C, Liu HL et al. 2018. The progress of gene therapy for Leber's optic hereditary neuropathy. Curr. Gene Ther. 17:320–26
    [Google Scholar]
  35. 35. 
    Yu H, Koilkonda RD, Chou T-H, Porciatti V, Ozdemir SS et al. 2012. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model. PNAS 109:E1238–47
    [Google Scholar]
  36. 36. 
    Thyagarajan B, Padua RA, Campbell C 1996. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 271:27536–43
    [Google Scholar]
  37. 37. 
    Hagström E, Freyer C, Battersby BJ, Stewart JB, Larsson NG 2014. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res 42:1111–16
    [Google Scholar]
  38. 38. 
    Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A et al. 2015. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Ther. 23:1592–99
    [Google Scholar]
  39. 39. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  40. 40. 
    de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD 2011. Repetitive elements may comprise over two-thirds of the human genome. PLOS Genet 7:e1002384
    [Google Scholar]
  41. 41. 
    Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR et al. 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  42. 42. 
    Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB et al. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87
    [Google Scholar]
  43. 43. 
    Kuroki Y, Toyoda A, Noguchi H, Taylor TD, Itoh T et al. 2006. Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nat. Genet. 38:158–67
    [Google Scholar]
  44. 44. 
    McCulloch SD, Kunkel TA. 2008. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148–61
    [Google Scholar]
  45. 45. 
    Crow JF. 2000. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1:40–47
    [Google Scholar]
  46. 46. 
    Drost JB, Lee WR. 1995. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ. Mol. Mutagen. 25:48–64
    [Google Scholar]
  47. 47. 
    Jarvis GE. 2017. Early embryo mortality in natural human reproduction: what the data say. F1000Research 5:2765
    [Google Scholar]
  48. 48. 
    Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR et al. 2019. Overlooked roles of DNA damage and maternal age in generating human germline mutations. PNAS 116:9491–500
    [Google Scholar]
  49. 49. 
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P et al. 2012. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488:471–75
    [Google Scholar]
  50. 50. 
    MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J et al. 2012. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–28
    [Google Scholar]
  51. 51. 
    Amberger JS, Bocchini CA, Scott AF, Hamosh A 2019. OMIM.org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res 47:D1038–43
    [Google Scholar]
  52. 52. 
    Bartha I, Di Iulio J, Venter JC, Telenti A 2018. Human gene essentiality. Nat. Rev. Genet 19:51–62
    [Google Scholar]
  53. 53. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  54. 54. 
    Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET et al. 2020. A brief history of human disease genetics. Nature 577:179–89
    [Google Scholar]
  55. 55. 
    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI et al. 2017. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101:5–22
    [Google Scholar]
  56. 56. 
    Murray JM, Davies KE, Harper PS, Meredith L, Mueller CR, Williamson R 1982. Linkage relationship of a cloned DNA sequence on the short arm of the X chromosome to Duchenne muscular dystrophy. Nature 300:69–71
    [Google Scholar]
  57. 57. 
    Kan YW, Dozy AM. 1978. Polymorphism of DNA sequence adjacent to human β-globin structural gene: relationship to sickle mutation. PNAS 75:5631–35
    [Google Scholar]
  58. 58. 
    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR et al. 2010. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86:749–64
    [Google Scholar]
  59. 59. 
    Clark MM, Stark Z, Farnaes L, Tan TY, White SM et al. 2018. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. npj Genom. Med. 3:16
    [Google Scholar]
  60. 60. 
    Bianchi DW. 2004. Circulating fetal DNA: its origin and diagnostic potential—a review. Placenta 25:Suppl.S93–101
    [Google Scholar]
  61. 61. 
    Treff NR, Zimmerman RS. 2017. Advances in preimplantation genetic testing for monogenic disease and aneuploidy. Annu. Rev. Genom. Hum. Genet. 18:189–200
    [Google Scholar]
  62. 62. 
    Kaplan F. 1998. Tay-Sachs disease carrier screening: a model for prevention of genetic disease. Genet. Test. 2:271–92
    [Google Scholar]
  63. 63. 
    Gyngell C, Douglas T, Savulescu J 2017. The ethics of germline gene editing. J. Appl. Philos. 34:498–513
    [Google Scholar]
  64. 64. 
    Lander ES, Baylis F, Zhang F, Charpentier E, Berg P et al. 2019. Adopt a moratorium on heritable genome editing. Nature 567:165–68
    [Google Scholar]
  65. 65. 
    Greely HT. 2019. CRISPR'd babies: human germline genome editing in the “He Jiankui affair. .” J. Law Biosci. 6:111–83
    [Google Scholar]
  66. 66. 
    Tomasetti C, Vogelstein B. 2015. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81
    [Google Scholar]
  67. 67. 
    Barker N, Van De Wetering M, Clevers H 2008. The intestinal stem cell. Genes Dev 22:1856–64
    [Google Scholar]
  68. 68. 
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK et al. 2015. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98
    [Google Scholar]
  69. 69. 
    Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J 2017. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8:15183
    [Google Scholar]
  70. 70. 
    García-Nieto PE, Morrison AJ, Fraser HB 2019. The somatic mutation landscape of the human body. Genome Biol 20:298
    [Google Scholar]
  71. 71. 
    Qin L, Wang J, Tian X, Yu H, Truong C et al. 2016. Detection and quantification of mosaic mutations in disease genes by next-generation sequencing. J. Mol. Diagn. 18:446–53
    [Google Scholar]
  72. 72. 
    Armaghany T, Wilson JD, Chu Q, Mills G 2012. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 5:19–27
    [Google Scholar]
  73. 73. 
    Yizhak K, Aguet F, Kim J, Hess JM, Kübler K et al. 2019. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364:eaaw0726
    [Google Scholar]
  74. 74. 
    Steensma DP, Ebert BL. 2020. Clonal hematopoiesis as a model for premalignant changes during aging. Exp. Hematol. 83:48–56
    [Google Scholar]
  75. 75. 
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–78
    [Google Scholar]
  76. 76. 
    Janssen JWG, Steenvoorden ACM, Lyons J, Anger B, Bohlke JU et al. 1987. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. PNAS 84:9228–32
    [Google Scholar]
  77. 77. 
    Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D et al. 2018. Comprehensive characterization of cancer driver genes and mutations. Cell 173:371–85
    [Google Scholar]
  78. 78. 
    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501
    [Google Scholar]
  79. 79. 
    Shaw KRM, Maitra A. 2019. The status and impact of clinical tumor genome sequencing. Annu. Rev. Genom. Hum. Genet. 20:413–32
    [Google Scholar]
  80. 80. 
    Corcoran RB, Chabner BA. 2018. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 379:1754–65
    [Google Scholar]
  81. 81. 
    Kanaan N, Devuyst O, Pirson Y 2014. Renal transplantation in autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 10:455–65
    [Google Scholar]
  82. 82. 
    Mann R, Mulligan RC, Baltimore D 1983. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–59
    [Google Scholar]
  83. 83. 
    Naldini L, Trono D, Verma IM 2016. Lentiviral vectors, two decades later. Science 353:1101–2
    [Google Scholar]
  84. 84. 
    Ferrua F, Aiuti A. 2017. Twenty-five years of gene therapy for ADA-SCID: from bubble babies to an approved drug. Hum. Gene Ther. 28:9792–81
    [Google Scholar]
  85. 85. 
    June CH, Sadelain M. 2018. Chimeric antigen receptor therapy. N. Engl. J. Med. 379:64–73
    [Google Scholar]
  86. 86. 
    Mannucci PM, Tuddenham EGD. 2001. The hemophilias—from royal genes to gene therapy. N. Engl. J. Med. 344:1773–79
    [Google Scholar]
  87. 87. 
    Nathwani AC, Reiss UM, Tuddenham EGD, Rosales C, Chowdary P et al. 2014. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371:1994–2004
    [Google Scholar]
  88. 88. 
    Cronin J, Zhang X-Y, Reiser J 2005. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5:387–98
    [Google Scholar]
  89. 89. 
    Asokan A, Schaffer DV, Samulski RJ 2012. The AAV vector toolkit: poised at the clinical crossroads. Mol. Ther. 20:699–708
    [Google Scholar]
  90. 90. 
    Chamberlain JS. 2002. Gene therapy of muscular dystrophy. Hum. Mol. Genet. 11:2355–62
    [Google Scholar]
  91. 91. 
    Orkin SH. 1990. Globin gene regulation and switching: circa 1990. Cell 63:665–72
    [Google Scholar]
  92. 92. 
    Marshall E. 1999. Gene therapy death prompts review of adenovirus vector. Science 286:2244–45
    [Google Scholar]
  93. 93. 
    Wilson JM. 2009. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol. Genet. Metab. 96:151–57
    [Google Scholar]
  94. 94. 
    Ferrer A, Wells KE, Wells DJ 2000. Immune responses to dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Gene Ther 7:1439–46
    [Google Scholar]
  95. 95. 
    Kohn DB, Sadelain M, Glorioso JC 2003. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 3:477–88
    [Google Scholar]
  96. 96. 
    Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:3132–42
    [Google Scholar]
  97. 97. 
    Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 118:3143–50
    [Google Scholar]
  98. 98. 
    Frank KM, Hogarth DK, Miller JL, Mandal S, Mease PJ et al. 2009. Investigation of the cause of death in a gene-therapy trial. N. Engl. J. Med. 361:161–69
    [Google Scholar]
  99. 99. 
    Jasin M, Rothstein R. 2013. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5:a012740
    [Google Scholar]
  100. 100. 
    Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS 1985. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317:230–34
    [Google Scholar]
  101. 101. 
    Thomas KR, Folger KR, Capecchi MR 1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–28
    [Google Scholar]
  102. 102. 
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–51
    [Google Scholar]
  103. 103. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  104. 104. 
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  105. 105. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–57
    [Google Scholar]
  106. 106. 
    Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS 112:10437–42
    [Google Scholar]
  107. 107. 
    Dever DP, Bak RO, Reinisch A, Camarena J, Washington G et al. 2016. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:384–89
    [Google Scholar]
  108. 108. 
    Porteus MH. 2019. A new class of medicines through DNA editing. N. Engl. J. Med. 380:947–59
    [Google Scholar]
  109. 109. 
    Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:405–9
    [Google Scholar]
  110. 110. 
    Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ et al. 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–11
    [Google Scholar]
  111. 111. 
    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA et al. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–7
    [Google Scholar]
  112. 112. 
    Wang D, Zhang F, Gao G 2020. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181:136–50
    [Google Scholar]
  113. 113. 
    Jenkins MK, Chu HH, McLachlan JB, Moon JJ 2010. On the composition of the preimmune repertoire of T cells specific for peptide–major histocompatibility complex ligands. Annu. Rev. Immunol. 28:275–94
    [Google Scholar]
  114. 114. 
    Chaudhary N, Wesemann DR. 2018. Analyzing immunoglobulin repertoires. Front. Immunol. 9:462
    [Google Scholar]
  115. 115. 
    Mora T, Walczak AM. 2019. How many different clonotypes do immune repertoires contain. Curr. Opin. Syst. Biol. 18:104–10
    [Google Scholar]
  116. 116. 
    Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D et al. 2014. Diversity and clonal selection in the human T-cell repertoire. PNAS 111:13139–44
    [Google Scholar]
  117. 117. 
    Walker LSK, Abbas AK. 2002. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2:11–19
    [Google Scholar]
  118. 118. 
    Nemazee D. 2017. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17:281–94
    [Google Scholar]
  119. 119. 
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:991–98
    [Google Scholar]
  120. 120. 
    Swart JF, Delemarre EM, Van Wijk F, Boelens JJ, Kuball J et al. 2017. Haematopoietic stem cell transplantation for autoimmune diseases. Nat. Rev. Rheumatol. 13:244–56
    [Google Scholar]
  121. 121. 
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–29
    [Google Scholar]
  122. 122. 
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI 2007. The Human Microbiome Project. Nature 449:804–10
    [Google Scholar]
  123. 123. 
    Sender R, Fuchs S, Milo R 2016. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol 14:e1002533
    [Google Scholar]
  124. 124. 
    Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  125. 125. 
    Land M, Hauser L, Jun SR, Nookaew I, Leuze MR et al. 2015. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genom. 15:141–61
    [Google Scholar]
  126. 126. 
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
    [Google Scholar]
  127. 127. 
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J et al. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550:61–66
    [Google Scholar]
  128. 128. 
    Pimbley DW, Patel PD. 1998. A review of analytical methods for the detection of bacterial toxins. J. Appl. Microbiol. Symp. Suppl. 84:S98–109
    [Google Scholar]
  129. 129. 
    Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74:5088–90
    [Google Scholar]
  130. 130. 
    Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45:2761–64
    [Google Scholar]
  131. 131. 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB et al. 2019. A new genomic blueprint of the human gut microbiota. Nature 568:499–504
    [Google Scholar]
  132. 132. 
    Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH 2019. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16:167–70
    [Google Scholar]
  133. 133. 
    Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE et al. 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36:857–64
    [Google Scholar]
  134. 134. 
    Shepherd ES, Deloache WC, Pruss KM, Whitaker WR, Sonnenburg JL 2018. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557:434–38
    [Google Scholar]
  135. 135. 
    Lee HL, Shen H, Hwang IY, Ling H, Yew WS et al. 2018. Targeted approaches for in situ gut microbiome manipulation. Genes 9:351
    [Google Scholar]
  136. 136. 
    Roth TL, Li PJ, Blaeschke F, Roybal K, Shifrut E, Marson A 2020. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181:728–44
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032626
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032626
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error