1932

Abstract

The human eosinophil has long been thought to favorably influence innate mucosal immunity but at times has also been incriminated in disease pathophysiology. Research into eosinophil biology has uncovered a number of interesting contributions by eosinophils to health and disease. However, it appears that not all eosinophils from all species are created equal. It remains unclear, for example, exactly how having eosinophils benefits the human host when helminth infections in the developed world have become scarce. This review focuses on our current state of knowledge as it relates to human eosinophils. When information is lacking, we discuss lessons learned from mouse studies that may or may not directly apply to human biology and disease. It is an exciting time to be an “eosinophilosopher” because the use of biologic agents that selectively target eosinophils provides an unprecedented opportunity to define the contribution of this cell to eosinophil-associated human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032756
2020-01-24
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032756.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032756&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    McGarry MP. 2012. The evolutionary origins and presence of eosinophils in extant species. Eosinophils in Health and Disease JJ Lee, HF Rosenberg 13–18 Amsterdam: Elsevier
    [Google Scholar]
  2. 2. 
    Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS et al. 2018. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J. Leukoc. Biol. 104:95–108
    [Google Scholar]
  3. 3. 
    Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA 2010. Eosinophils in health and disease: the LIAR hypothesis. Clin. Exp. Allergy 40:563–75
    [Google Scholar]
  4. 4. 
    Weller PF, Spencer LA. 2017. Functions of tissue-resident eosinophils. Nat. Rev. Immunol. 17:746–60
    [Google Scholar]
  5. 5. 
    Klion AD. 2017. Recent advances in understanding eosinophil biology. F1000Research 6:1084
    [Google Scholar]
  6. 6. 
    Rosenberg HF, Dyer KD, Foster PS 2013. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13:9–22
    [Google Scholar]
  7. 7. 
    Bochner BS. 2018. The eosinophil: for better or worse, in sickness and in health. Ann. Allergy Asthma Immunol. 12:1150–55
    [Google Scholar]
  8. 8. 
    Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA et al. 1996. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24
    [Google Scholar]
  9. 9. 
    Mori Y, Iwasaki H, Kohno K, Yoshimoto G, Kikushige Y et al. 2009. Identification of the human eosinophil lineage–committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206:183–93
    [Google Scholar]
  10. 10. 
    McNagny K, Graf T. 2002. Making eosinophils through subtle shifts in transcription factor expression. J. Exp. Med. 195:F43–47
    [Google Scholar]
  11. 11. 
    Hirasawa R, Shimizu R, Takahashi S, Osawa M, Takayanagi S et al. 2002. Essential and instructive roles of GATA factors in eosinophil development. J. Exp. Med. 195:1379–86
    [Google Scholar]
  12. 12. 
    Yu C, Cantor AB, Yang H, Browne C, Wells RA et al. 2002. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195:1387–95
    [Google Scholar]
  13. 13. 
    Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE et al. 2002. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPε isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J. Biol. Chem. 277:43481–94
    [Google Scholar]
  14. 14. 
    Ackerman SJ, Du J. 2013. Transcriptional regulation of eosinophil lineage commitment and differentiation. Eosinophils in Health and Disease JJ Lee, HF Rosenberg 76–89 London: Elsevier
    [Google Scholar]
  15. 15. 
    Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ 2009. Human C/EBP-ε activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 113:317–27
    [Google Scholar]
  16. 16. 
    Yamanaka R, Lekstrom-Himes J, Barlow C, Wynshaw-Boris A, Xanthopoulos KG 1998. CCAAT/enhancer binding proteins are critical components of the transcriptional regulation of hematopoiesis (review). Int. J. Mol. Med. 1:213–21
    [Google Scholar]
  17. 17. 
    Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A et al. 2007. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 109:5191–98
    [Google Scholar]
  18. 18. 
    Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ et al. 2013. MiR-223 deficiency increases eosinophil progenitor proliferation. J. Immunol. 190:1576–82
    [Google Scholar]
  19. 19. 
    Lu TX, Lim EJ, Itskovich S, Besse JA, Plassard AJ et al. 2013. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth. PLOS ONE 8:e59397
    [Google Scholar]
  20. 20. 
    Fulkerson PC. 2017. Transcription factors in eosinophil development and as therapeutic targets. Front. Med. 4:115
    [Google Scholar]
  21. 21. 
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183:195–201
    [Google Scholar]
  22. 22. 
    Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M et al. 2007. EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur. J. Immunol. 37:2797–802
    [Google Scholar]
  23. 23. 
    Legrand F, Tomasevic N, Simakova O, Lee CC, Wang Z et al. 2014. The eosinophil surface receptor epidermal growth factor–like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J. Allergy Clin. Immunol. 133:1439–47
    [Google Scholar]
  24. 24. 
    Matthews AN, Friend DS, Zimmerrmann N, Sarafi MN, Luster AD et al. 1998. Eotaxin is required for the baseline level of tissue eosinophils. PNAS 95:6273–78
    [Google Scholar]
  25. 25. 
    Blanchard C, Wang N, Stringer KF, Mishra A, Fulkerson PC et al. 2006. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J. Clin. Investig. 116:536–47
    [Google Scholar]
  26. 26. 
    Stacy NI, Raskin RE. 2015. Reptilian eosinophils: beauty and diversity by light microscopy. Vet. Clin. Pathol. 44:177–78
    [Google Scholar]
  27. 27. 
    Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y et al. 2010. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116:3944–54
    [Google Scholar]
  28. 28. 
    Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP et al. 2004. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–76
    [Google Scholar]
  29. 29. 
    Doyle AD, Jacobsen EA, Ochkur SI, McGarry MP, Shim KG et al. 2013. Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122:781–90
    [Google Scholar]
  30. 30. 
    Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM et al. 2012.. Human versus mouse eosinophils: “ that which we call an eosinophil, by any other name would stain as red. .” J. Allergy Clin. Immunol. 130:572–84
    [Google Scholar]
  31. 31. 
    Drissen R, Thongjuea S, Theilgaard-Mönch K, Nerlov C 2019. Identification of two distinct pathways of human myelopoiesis. Sci. Immunol. 4:eaau7148
    [Google Scholar]
  32. 32. 
    Acharya KR, Ackerman SJ. 2014. Eosinophil granule proteins: form and function. J. Biol. Chem. 289:17406–15
    [Google Scholar]
  33. 33. 
    Zhang J, Dyer KD, Rosenberg HF 2000. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. PNAS 97:4701–6
    [Google Scholar]
  34. 34. 
    Persson EK, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H et al. 2019. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 364:eaaw4295
    [Google Scholar]
  35. 35. 
    Malm-Erjefalt M, Persson CG, Erjefalt JS 2001. Degranulation status of airway tissue eosinophils in mouse models of allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 24:352–59
    [Google Scholar]
  36. 36. 
    Persson C, Uller L. 2014. Theirs but to die and do: primary lysis of eosinophils and free eosinophil granules in asthma. Am. J. Respir. Crit. Care Med. 189:628–33
    [Google Scholar]
  37. 37. 
    Farahi N, Loutsios C, Simmonds RP, Porter L, Gillett D et al. 2014. Measurement of eosinophil kinetics in healthy volunteers. Methods Mol. Biol. 1178:165–76
    [Google Scholar]
  38. 38. 
    Farahi N, Loutsios C, Tregay N, Wright AKA, Berair R et al. 2018. In vivo imaging reveals increased eosinophil uptake in the lungs of obese asthmatic patients. J. Allergy Clin. Immunol. 142:1659–62
    [Google Scholar]
  39. 39. 
    Symon FA, Walsh GM, Watson SR, Wardlaw AJ 1994. Eosinophil adhesion to nasal polyp endothelium is P-selectin-dependent. J. Exp. Med. 180:371–76
    [Google Scholar]
  40. 40. 
    Woltmann G, McNulty CA, Dewson G, Symon FA, Wardlaw AJ 2000. Interleukin-13 induces PSGL-1/P-selectin-dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. Blood 95:3146–52
    [Google Scholar]
  41. 41. 
    Bochner BS. 2000. Road signs guiding leukocytes along the inflammation superhighway. J. Allergy Clin. Immunol. 106:817–28
    [Google Scholar]
  42. 42. 
    Sturla L, Puglielli L, Tonetti M, Berninsone P, Hirschberg CB et al. 2001. Impairment of the Golgi GDP-l-fucose transport and unresponsiveness to fucose replacement therapy in LAD II patients. Pediatr. Res. 49:537–42
    [Google Scholar]
  43. 43. 
    Wun T, Styles L, DeCastro L, Telen MJ, Kuypers F et al. 2014. Phase 1 study of the E-selectin inhibitor GMI 1070 in patients with sickle cell anemia. PLOS ONE 9:e101301
    [Google Scholar]
  44. 44. 
    Rosenberg HF, Phipps S, Foster PS 2007. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol. 119:1303–10
    [Google Scholar]
  45. 45. 
    Muller WA. 2016. Transendothelial migration: unifying principles from the endothelial perspective. Immunol. Rev. 273:61–75
    [Google Scholar]
  46. 46. 
    Anderson DC, Springer TA. 1987. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med. 38:175–94
    [Google Scholar]
  47. 47. 
    Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP et al. 2003. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348:15–23
    [Google Scholar]
  48. 48. 
    Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M et al. 2018. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N. Engl. J. Med. 378:2475–85
    [Google Scholar]
  49. 49. 
    Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER 2009. The binding specificity and selective antagonism of vedolizumab, an anti-α4β7 integrin therapeutic antibody in development for inflammatory bowel diseases. J. Pharmacol. Exp. Ther. 330:864–75
    [Google Scholar]
  50. 50. 
    Neighbour H, Boulet LP, Lemiere C, Sehmi R, Leigh R et al. 2014. Safety and efficacy of an oral CCR3 antagonist in patients with asthma and eosinophilic bronchitis: a randomized, placebo-controlled clinical trial. Clin. Exp. Allergy 44:508–16
    [Google Scholar]
  51. 51. 
    Grozdanovic M, Laffey KG, Abdelkarim H, Hitchinson B, Harijith A et al. 2019. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J. Allergy Clin. Immunol. 143:669–80
    [Google Scholar]
  52. 52. 
    Johansson MW. 2017. Eosinophil activation status in separate compartments and association with asthma. Front. Med. 4:75
    [Google Scholar]
  53. 53. 
    Johansson MW, Kelly EA, Nguyen CL, Jarjour NN, Bochner BS 2018. Characterization of Siglec-8 expression on lavage cells after segmental lung allergen challenge. Int. Arch. Allergy Immunol. 177:16–28
    [Google Scholar]
  54. 54. 
    Wilkerson EM, Johansson MW, Hebert AS, Westphall MS, Mathur SK et al. 2016. The peripheral blood eosinophil proteome. J. Proteome Res. 15:1524–33
    [Google Scholar]
  55. 55. 
    Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S et al. 2012. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 119:3790–98
    [Google Scholar]
  56. 56. 
    Liu LY, Sedgwick JB, Bates ME, Vrtis RF, Gern JE et al. 2002. Decreased expression of membrane IL-5 receptor α on human eosinophils: I. Loss of membrane IL-5 receptor α on airway eosinophils and increased soluble IL-5 receptor α in the airway after allergen challenge. J. Immunol. 169:6452–58
    [Google Scholar]
  57. 57. 
    Molfino NA, Kuna P, Leff JA, Oh CK, Singh D et al. 2016. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma. BMJ Open 6:e007709
    [Google Scholar]
  58. 58. 
    Robb CT, Regan KH, Dorward DA, Rossi AG 2016. Key mechanisms governing resolution of lung inflammation. Semin. Immunopathol. 38:425–48
    [Google Scholar]
  59. 59. 
    Kotzin JJ, Spencer SP, McCright SJ, Kumar DB, Collet MA et al. 2016. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537:239–43
    [Google Scholar]
  60. 60. 
    Busse WW, Katial R, Gossage D, Sari S, Wang B et al. 2010. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor α antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol. 125:1237–44
    [Google Scholar]
  61. 61. 
    Legrand F, Cao Y, Wechsler J, Zhu X, Zimmermann N et al. 2019. Siglec-8 in eosinophilic disorders: receptor expression and targeting using chimeric antibodies. J. Allergy Clin. Immunol. 143:2227–37
    [Google Scholar]
  62. 62. 
    Rasmussen HS, Chang AT, Tomasevic N, Bebbington C 2018. A randomized, double-blind, placebo-controlled, ascending dose phase 1 study of AK002, a novel Siglec-8 selective monoclonal antibody, in healthy subjects. J. Allergy Clin. Immunol. 141: AB403 (Abstr.)
    [Google Scholar]
  63. 63. 
    Ueki S, Tokunaga T, Melo RCN, Saito H, Honda K et al. 2018. Charcot–Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood 132:2183–87
    [Google Scholar]
  64. 64. 
    Melo RCN, Weller PF. 2018. Contemporary understanding of the secretory granules in human eosinophils. J. Leukoc. Biol. 104:85–93
    [Google Scholar]
  65. 65. 
    Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM et al. 2008. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14:949–53
    [Google Scholar]
  66. 66. 
    Kephart GM, Gleich GJ, Connor DH, Gibson DW, Ackerman SJ 1984. Deposition of eosinophil granule major basic protein onto microfilariae of Onchocerca volvulus in the skin of patients treated with diethylcarbamazine. Lab. Investig. 50:51–61
    [Google Scholar]
  67. 67. 
    Huang L, Appleton JA. 2016. Eosinophils in helminth infection: defenders and dupes. Trends Parasitol 32:798–807
    [Google Scholar]
  68. 68. 
    Hagan P, Wilkins HA, Blumenthal UJ, Hayes RJ, Greenwood BM 1985. Eosinophilia and resistance to Schistosoma haematobium in man. Parasite Immunol 7:625–32
    [Google Scholar]
  69. 69. 
    Harley WB, Blaser MJ. 1994. Disseminated coccidioidomycosis associated with extreme eosinophilia. Clin. Infect. Dis. 18:627–29
    [Google Scholar]
  70. 70. 
    Ueki S, Konno Y, Takeda M, Moritoki Y, Hirokawa M et al. 2016. Eosinophil extracellular trap cell death–derived DNA traps: their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 137:258–67
    [Google Scholar]
  71. 71. 
    Cohen AJ, Steigbigel RT. 1996. Eosinophilia in patients infected with human immunodeficiency virus. J. Infect. Dis. 174:615–18
    [Google Scholar]
  72. 72. 
    Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER et al. 2014. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 123:743–52
    [Google Scholar]
  73. 73. 
    Samarasinghe AE, Melo RC, Duan S, LeMessurier KS, Liedmann S et al. 2017. Eosinophils promote antiviral immunity in mice infected with influenza A virus. J. Immunol. 198:3214–26
    [Google Scholar]
  74. 74. 
    Bjerregaard A, Laing IA, Backer V, Fally M, Khoo SK et al. 2017. Clinical characteristics of eosinophilic asthma exacerbations. Respirology 22:295–300
    [Google Scholar]
  75. 75. 
    Sabogal Piñeros YS, Bal SM, van de Pol MA, Dierdorp BS, Dekker T et al. 2019. Anti-IL-5 in mild asthma alters rhinovirus-induced macrophage, B-cell, and neutrophil responses (MATERIAL). A placebo-controlled, double-blind study. Am. J. Respir. Crit. Care Med. 199:508–17
    [Google Scholar]
  76. 76. 
    Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y et al. 2009. TLR2-dependent eosinophil interactions with mycobacteria: role of α-defensins. Blood 113:3235–44
    [Google Scholar]
  77. 77. 
    Buonomo EL, Cowardin CA, Wilson MG, Saleh MM, Pramoonjago P, Petri WA Jr 2016. Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep 16:432–43
    [Google Scholar]
  78. 78. 
    Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G et al. 2018. Eosinophils: the unsung heroes in cancer?. Oncoimmunology 7:e1393134
    [Google Scholar]
  79. 79. 
    Simon SCS, Utikal J, Umansky V 2019. Opposing roles of eosinophils in cancer. Cancer Immunol. Immunother. 68:823–33
    [Google Scholar]
  80. 80. 
    Krause JR, Boggs DR. 1987. Search for eosinopenia in hospitalized patients with normal blood leukocyte concentration. Am. J. Hematol. 24:55–63
    [Google Scholar]
  81. 81. 
    Kelesidis T, Yang O. 2010. Good's syndrome remains a mystery after 55 years: a systematic review of the scientific evidence. Clin. Immunol. 135:347–63
    [Google Scholar]
  82. 82. 
    Gleich GJ, Klion AD, Lee JJ, Weller PF 2013. The consequences of not having eosinophils. Allergy 68:829–35
    [Google Scholar]
  83. 83. 
    Serwas NK, Huemer J, Dieckmann R, Mejstrikova E, Garncarz W et al. 2018. CEBPE-mutant specific granule deficiency correlates with aberrant granule organization and substantial proteome alterations in neutrophils. Front. Immunol. 9:588
    [Google Scholar]
  84. 84. 
    Rosenberg HF, Gallin JI. 1993. Neutrophil-specific granule deficiency includes eosinophils. Blood 82:268–73
    [Google Scholar]
  85. 85. 
    Zabucchi G, Soranzo MR, Menegazzi R, Vecchio M, Knowles A et al. 1992. Eosinophil peroxidase deficiency: morphological and immunocytochemical studies of the eosinophil-specific granules. Blood 80:2903–10
    [Google Scholar]
  86. 86. 
    Aceves SS, Broide DH. 2008. Airway fibrosis and angiogenesis due to eosinophil trafficking in chronic asthma. Curr. Mol. Med. 8:350–58
    [Google Scholar]
  87. 87. 
    Rubinstein E, Cho JY, Rosenthal P, Chao J, Miller M et al. 2011. Siglec-F inhibition reduces esophageal eosinophilia and angiogenesis in a mouse model of eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 53:409–16
    [Google Scholar]
  88. 88. 
    Cho JY, Doshi A, Rosenthal P, Beppu A, Miller M et al. 2014. Smad3-deficient mice have reduced esophageal fibrosis and angiogenesis in a model of egg-induced eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 59:10–16
    [Google Scholar]
  89. 89. 
    Letuve S, Pretolani M. 2013. Potential role of eosinophil granule proteins in tissue remodeling and fibrosis. Eosinophils in Health and Disease HF Rosenberg, JJ Lee 393–98 London: Elsevier
    [Google Scholar]
  90. 90. 
    Gomes I, Mathur SK, Espenshade BM, Mori Y, Varga J, Ackerman SJ 2005. Eosinophil-fibroblast interactions induce fibroblast IL-6 secretion and extracellular matrix gene expression: implications in fibrogenesis. J. Allergy Clin. Immunol. 116:796–804
    [Google Scholar]
  91. 91. 
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–47
    [Google Scholar]
  92. 92. 
    Marichal T, Mesnil C, Bureau F 2017. Homeostatic eosinophils: characteristics and functions. Front. Med. 4:101
    [Google Scholar]
  93. 93. 
    Zhang Y, Yang P, Cui R, Zhang M, Li H et al. 2015. Eosinophils reduce chronic inflammation in adipose tissue by secreting Th2 cytokines and promoting M2 macrophages polarization. Int. J. Endocrinol. 2015:565760
    [Google Scholar]
  94. 94. 
    Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X et al. 2014. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–308
    [Google Scholar]
  95. 95. 
    Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210:535–49
    [Google Scholar]
  96. 96. 
    Rozenberg P, Reichman H, Zab-Bar I, Itan M, Pasmanik-Chor M et al. 2017. CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. Sci. Rep. 7:5922
    [Google Scholar]
  97. 97. 
    Knights AJ, Vohralik EJ, Hoehn KL, Crossley M, Quinlan KGR 2018. Defining eosinophil function in adiposity and weight loss. BioEssays 40:e1800098
    [Google Scholar]
  98. 98. 
    Chu VT, Frohlich A, Steinhauser G, Scheel T, Roch T et al. 2011. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12:151–59
    [Google Scholar]
  99. 99. 
    Forman R, Bramhall M, Logunova L, Svensson-Frej M, Cruickshank SM, Else KJ 2016. Eosinophils may play regionally disparate roles in influencing IgA+ plasma cell numbers during large and small intestinal inflammation. BMC Immunol 17:12
    [Google Scholar]
  100. 100. 
    Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH et al. 2015. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 8:930–42
    [Google Scholar]
  101. 101. 
    Chu VT, Beller A, Rausch S, Strandmark J, Zanker M et al. 2014. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40:582–93
    [Google Scholar]
  102. 102. 
    Bortnick A, Chernova I, Spencer SP, Allman D 2018. No strict requirement for eosinophils for bone marrow plasma cell survival. Eur. J. Immunol. 48:815–21
    [Google Scholar]
  103. 103. 
    Haberland K, Ackermann JA, Ipseiz N, Culemann S, Pracht K et al. 2018. Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow. Eur. J. Immunol. 48:822–28
    [Google Scholar]
  104. 104. 
    Wong TW, Doyle AD, Lee JJ, Jelinek DF 2014. Eosinophils regulate peripheral B cell numbers in both mice and humans. J. Immunol. 192:3548–58
    [Google Scholar]
  105. 105. 
    Wang HB, Ghiran I, Matthaei K, Weller PF 2007. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J. Immunol. 179:7585–92
    [Google Scholar]
  106. 106. 
    Weller PF, Rand TH, Barrett T, Elovic A, Wong DTW, Finberg RW 1993. Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1α expression. J. Immunol. 150:2554–62
    [Google Scholar]
  107. 107. 
    Farhan RK, Vickers MA, Ghaemmaghami AM, Hall AM, Barker RN, Walsh GM 2016. Effective antigen presentation to helper T cells by human eosinophils. Immunology 149:413–22
    [Google Scholar]
  108. 108. 
    Valent P, Klion AD, Horny HP, Roufosse F, Gotlib J et al. 2012. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 130:607–12
    [Google Scholar]
  109. 109. 
    Bochner BS, Book W, Busse WW, Butterfield J, Furuta GT et al. 2012. Workshop report from the National Institutes of Health Taskforce on the Research Needs of Eosinophil-Associated Diseases (TREAD). J. Allergy Clin. Immunol. 130:587–96
    [Google Scholar]
  110. 110. 
    Khoury P, Akuthota P, Ackerman SJ, Arron JR, Bochner BS et al. 2018. Revisiting the NIH Taskforce on the Research Needs of Eosinophil-Associated Diseases (RE-TREAD). J. Leukoc. Biol. 104:69–83
    [Google Scholar]
  111. 111. 
    Khoury P, Bochner BS. 2018. Consultation for elevated blood eosinophils: clinical presentations, high value diagnostic tests, and treatment options. J. Allergy Clin. Immunol. Pract. 6:1446–53
    [Google Scholar]
  112. 112. 
    Khoury P, Makiya M, Klion AD 2017. Clinical and biological markers in hypereosinophilic syndromes. Front. Med. 4:240
    [Google Scholar]
  113. 113. 
    Klion AD. 2018. Hypereosinophilic syndrome: approach to treatment in the era of precision medicine. Hematology 2018:326–31
    [Google Scholar]
  114. 114. 
    Khoury P, Desmond R, Pabon A, Holland-Thomas N, Ware JM et al. 2016. Clinical features predict responsiveness to imatinib in platelet-derived growth factor receptor-α-negative hypereosinophilic syndrome. Allergy 71:803–10
    [Google Scholar]
  115. 115. 
    Klion AD, Noel P, Akin C, Law MA, Gilliland DG et al. 2003. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 101:4660–66
    [Google Scholar]
  116. 116. 
    Roufosse F, Cogan E, Goldman M 2007. Lymphocytic variant hypereosinophilic syndromes. Immunol. Allergy Clin. N. Am. 27:389–413
    [Google Scholar]
  117. 117. 
    Khoury P, Herold J, Alpaugh A, Dinerman E, Holland-Thomas N et al. 2015. Episodic angioedema with eosinophilia (Gleich syndrome) is a multilineage cell cycling disorder. Haematologica 100:300–7
    [Google Scholar]
  118. 118. 
    Alexander ES, Martin LJ, Collins MH, Kottyan LC, Sucharew H et al. 2014. Twin and family studies reveal strong environmental and weaker genetic cues explaining heritability of eosinophilic esophagitis. J. Allergy Clin. Immunol. 134:1084–92
    [Google Scholar]
  119. 119. 
    Bonatti F, Reina M, Neri TM, Martorana D 2014. Genetic susceptibility to ANCA-associated vasculitis: state of the art. Front. Immunol. 5:577
    [Google Scholar]
  120. 120. 
    Prakash Babu S, Chen YK, Bonne-Annee S, Yang J, Maric I et al. 2017. Dysregulation of interleukin 5 expression in familial eosinophilia. Allergy 72:1338–45
    [Google Scholar]
  121. 121. 
    Klion AD. 2015. How I treat hypereosinophilic syndromes. Blood 126:1069–77
    [Google Scholar]
  122. 122. 
    Ogbogu PU, Bochner BS, Butterfield JH, Gleich GJ, Huss-Marp J et al. 2009. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J. Allergy Clin. Immunol. 124:1319–25
    [Google Scholar]
  123. 123. 
    Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF et al. 2008. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358:1215–28
    [Google Scholar]
  124. 124. 
    Wechsler JB, Hirano I. 2018. Biological therapies for eosinophilic gastrointestinal diseases. J. Allergy Clin. Immunol. 142:24–31
    [Google Scholar]
  125. 125. 
    Kuang FL, Fay MP, Ware J, Wetzler L, Holland-Thomas N et al. 2018. Long-term clinical outcomes of high-dose mepolizumab treatment for hypereosinophilic syndrome. J. Allergy Clin. Immunol. Pract. 6:1518–27
    [Google Scholar]
  126. 126. 
    Kuang FL, Legrand F, Makiya M, Ware J, Wetzler L et al. 2019. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N. Engl. J. Med. 380:1336–46
    [Google Scholar]
  127. 127. 
    Youngblood BA, Brock EC, Leung J, Falahati R, Bryce PJ et al. 2019. AK002, a humanized Siglec-8 antibody that induces ADCC against human eosinophils and inhibits mast cell-mediated anaphylaxis in mice. Int. Arch. Allergy Immunol 180:91–102
    [Google Scholar]
  128. 128. 
    Panch SR, Bozik ME, Brown T, Makiya M, Prussin C et al. 2018. Dexpramipexole as an oral steroid–sparing agent in hypereosinophilic syndromes. Blood 132:501–9
    [Google Scholar]
  129. 129. 
    Laidlaw TM, Prussin C, Panettieri RA, Lee S, Ferguson BJ et al. 2019. Dexpramipexole depletes blood and tissue eosinophils in nasal polyps with no change in polyp size. Laryngoscope 129:E61–66
    [Google Scholar]
  130. 130. 
    Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T et al. 2011. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J. Allergy Clin. Immunol. 128:989–95
    [Google Scholar]
  131. 131. 
    Bachert C, Mannent L, Naclerio RM, Mullol J, Ferguson BJ et al. 2016. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA 315:469–79
    [Google Scholar]
  132. 132. 
    Zeitlin PL, Leong M, Cole J, Mallory RM, Shih VH et al. 2018. Benralizumab does not impair antibody response to seasonal influenza vaccination in adolescent and young adult patients with moderate to severe asthma: results from the Phase IIIb ALIZE trial. J. Asthma Allergy 11:181–92
    [Google Scholar]
  133. 133. 
    Klion AD, Robyn J, Akin C, Noel P, Brown M et al. 2004. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 103:473–78
    [Google Scholar]
  134. 134. 
    Wilson TM, Maric I, Shukla J, Brown M, Santos C et al. 2011. IL-5 receptor α levels in patients with marked eosinophilia or mastocytosis. J. Allergy Clin. Immunol. 128:1086–92
    [Google Scholar]
  135. 135. 
    Yamada T, Miyabe Y, Ueki S, Fujieda S, Tokunaga T et al. 2019. Eotaxin-3 as a plasma biomarker for mucosal eosinophil infiltration in chronic rhinosinusitis. Front. Immunol. 10:74
    [Google Scholar]
  136. 136. 
    Wen T, Stucke EM, Grotjan TM, Kemme KA, Abonia JP et al. 2013. Molecular diagnosis of eosinophilic esophagitis by gene expression profiling. Gastroenterology 145:1289–99
    [Google Scholar]
  137. 137. 
    Dellon ES, Veerappan R, Selitsky SR, Parker JS, Higgins LL et al. 2017. A gene expression panel is accurate for diagnosis and monitoring treatment of eosinophilic esophagitis in adults. Clin. Transl. Gastroenterol. 8:e74
    [Google Scholar]
  138. 138. 
    Wen T, Aronow BJ, Rochman Y, Rochman M, KC K et al. 2019. Single-cell RNA sequencing identifies inflammatory tissue T cells in eosinophilic esophagitis. J. Clin. Investig. 130:2014–28
    [Google Scholar]
  139. 139. 
    de Lavareille A, Roufosse F, Schmid-Grendelmeier P, Roumier AS, Schandené L et al. 2002. High serum thymus and activation-regulated chemokine levels in the lymphocytic variant of the hypereosinophilic syndrome. J. Allergy Clin. Immunol. 110:476–79
    [Google Scholar]
  140. 140. 
    Giusti D, Le Jan S, Gatouillat G, Bernard P, Pham BN, Antonicelli F 2017. Biomarkers related to bullous pemphigoid activity and outcome. Exp. Dermatol. 26:1240–47
    [Google Scholar]
  141. 141. 
    Butterfield JH, Weiler D, Peterson EA, Gleich GJ, Leiferman KM 1990. Sequestration of eosinophil major basic protein in human mast cells. Lab. Investig. 62:77–86
    [Google Scholar]
  142. 142. 
    Leiferman KM, Ackerman SJ, Sampson HA, Haugen HS, Venencie PY, Gleich GJ 1985. Dermal deposition of eosinophil-granule major basic protein in atopic dermatitis. Comparison with onchocerciasis. N. Engl. J. Med. 313:282–85
    [Google Scholar]
  143. 143. 
    Konikoff MR, Blanchard C, Kirby C, Buckmeier BK, Cohen MB et al. 2006. Potential of blood eosinophils, eosinophil-derived neurotoxin, and eotaxin-3 as biomarkers of eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 4:1328–36
    [Google Scholar]
  144. 144. 
    Dellon ES, Rusin S, Gebhart JH, Covey S, Higgins LL et al. 2015. Utility of a noninvasive serum biomarker panel for diagnosis and monitoring of eosinophilic esophagitis: a prospective study. Am. J. Gastroenterol. 110:821–27
    [Google Scholar]
  145. 145. 
    Hines BT, Rank MA, Wright BL, Marks LA, Hagan JB et al. 2018. Minimally invasive biomarker studies in eosinophilic esophagitis: a systematic review. Ann. Allergy Asthma Immunol. 121:218–28
    [Google Scholar]
  146. 146. 
    Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV et al. 2012. Asthma outcomes: biomarkers. J. Allergy Clin. Immunol. 129:Suppl. 3S9–23
    [Google Scholar]
  147. 147. 
    Nair P, Ochkur SI, Protheroe C, Radford K, Efthimiadis A et al. 2013. Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy 68:1177–84
    [Google Scholar]
  148. 148. 
    Wolfe MG, Mukherjee M, Radford K, Brennan JD, Nair P 2019. Rapid quantification of sputum eosinophil peroxidase on a lateral flow test strip. Allergy 74:1176–78
    [Google Scholar]
  149. 149. 
    Furuta GT, Kagalwalla AF, Lee JJ, Alumkal P, Maybruck BT et al. 2013. The oesophageal string test: a novel, minimally invasive method measures mucosal inflammation in eosinophilic oesophagitis. Gut 62:1395–405
    [Google Scholar]
  150. 150. 
    Ackerman SJ, Kagalwalla AF, Hirano I, Gonsalves N, Menard-Katcher P et al. 2019. The 1-hour esophageal string test: a non-endoscopic minimally invasive test to accurately detect disease activity in eosinophilic esophagitis. Am. J. Gastroenterol 114:1614–25
    [Google Scholar]
  151. 151. 
    Januszewicz W, Tan WK, Lehovsky K, Debiram-Beecham I, Nuckcheddy T et al. 2019. Safety and acceptability of esophageal Cytosponge cell collection device in a pooled analysis of data from individual patients. Clin. Gastroenterol. Hepatol. 17:647–56
    [Google Scholar]
  152. 152. 
    Katzka DA, Geno DM, Ravi A, Smyrk TC, Lao-Sirieix P et al. 2015. Accuracy, safety, and tolerability of tissue collection by Cytosponge versus endoscopy for evaluation of eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 13:77–83
    [Google Scholar]
  153. 153. 
    Henriksen DP, Bodtger U, Sidenius K, Maltbaek N, Pedersen L et al. 2018. Efficacy, adverse events, and inter-drug comparison of mepolizumab and reslizumab anti-IL-5 treatments of severe asthma—a systematic review and meta-analysis. Eur. Clin. Respir. J. 5:1536097
    [Google Scholar]
  154. 154. 
    Busse W, Chupp G, Nagase H, Albers FC, Doyle S et al. 2019. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: indirect treatment comparison. J. Allergy Clin. Immunol. 143:190–200
    [Google Scholar]
  155. 155. 
    Bochner BS. 2015. Novel therapies for eosinophilic disorders. Immunol. Allergy Clin. N. Am. 35:577–98
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032756
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error