1932

Abstract

Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10–15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032810
2020-01-24
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032810.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032810&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA et al. 2017. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues Lyon: IARC (Int. Agency Res. Cancer). Revis. , 4th ed..
    [Google Scholar]
  2. 2. 
    Cerhan JR, Slager SL. 2015. Familial predisposition and genetic risk factors for lymphoma. Blood 126:2265–73
    [Google Scholar]
  3. 3. 
    Law PJ, Berndt SI, Speedy HE, Camp NJ, Sava GP et al. 2017. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nat. Commun. 8:14175
    [Google Scholar]
  4. 4. 
    Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J et al. 2015. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:519–24
    [Google Scholar]
  5. 5. 
    Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG et al. 2015. Mutations driving CLL and their evolution in progression and relapse. Nature 526:525–30
    [Google Scholar]
  6. 6. 
    Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A et al. 2012. Epigenomic analysis detects widespread gene–body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44:1236–42
    [Google Scholar]
  7. 7. 
    Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M et al. 2016. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 48:253–64
    [Google Scholar]
  8. 8. 
    Beekman R, Chapaprieta V, Russinol N, Vilarrasa-Blasi R, Verdaguer-Dot N et al. 2018. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat. Med. 24:868–80
    [Google Scholar]
  9. 9. 
    Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G et al. 2017. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primers 3:16096
    [Google Scholar]
  10. 10. 
    Went M, Sud A, Speedy H, Sunter NJ, Forsti A et al. 2019. Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology. Blood Cancer J 9:1
    [Google Scholar]
  11. 11. 
    Rudd MF, Sellick GS, Webb EL, Catovsky D, Houlston RS 2006. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood 108:638–44
    [Google Scholar]
  12. 12. 
    Enjuanes A, Benavente Y, Bosch F, Martin-Guerrero I, Colomer D et al. 2008. Genetic variants in apoptosis and immunoregulation-related genes are associated with risk of chronic lymphocytic leukemia. Cancer Res 68:10178–86
    [Google Scholar]
  13. 13. 
    Speedy HE, Kinnersley B, Chubb D, Broderick P, Law PJ et al. 2016. Germline mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood 128:2319–26
    [Google Scholar]
  14. 14. 
    Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z et al. 2016. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat. Commun. 7:10933
    [Google Scholar]
  15. 15. 
    Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD et al. 2007. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129:879–90
    [Google Scholar]
  16. 16. 
    Tiao G, Improgo MR, Kasar S, Poh W, Kamburov A et al. 2017. Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia 31:2244–47
    [Google Scholar]
  17. 17. 
    Beekman R, Campo E. 2016. Shelterins, a genetic crossroad in CLL. Blood 128:2279–80
    [Google Scholar]
  18. 18. 
    Kandaswamy R, Sava GP, Speedy HE, Bea S, Martin-Subero JI et al. 2016. Genetic predisposition to chronic lymphocytic leukemia is mediated by a BMF super-enhancer polymorphism. Cell Rep 16:2061–67
    [Google Scholar]
  19. 19. 
    Speedy H, Beekman R, Chapaprieta V, Orlando G, Law PJ et al. 2019. Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics. Nat Commun 10:3615
    [Google Scholar]
  20. 20. 
    Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S et al. 2011. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20:246–59
    [Google Scholar]
  21. 21. 
    Gahn B, Schafer C, Neef J, Troff C, Feuring-Buske M et al. 1997. Detection of trisomy 12 and Rb-deletion in CD34+ cells of patients with B-cell chronic lymphocytic leukemia. Blood 89:4275–81
    [Google Scholar]
  22. 22. 
    Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V et al. 2014. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 4:1088–101
    [Google Scholar]
  23. 23. 
    Marsilio S, Khiabanian H, Fabbri G, Vergani S, Scuoppo C et al. 2018. Somatic CLL mutations occur at multiple distinct hematopoietic maturation stages: documentation and cautionary note regarding cell fraction purity. Leukemia 32:1041–44
    [Google Scholar]
  24. 24. 
    Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F et al. 2012. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 119:4467–75
    [Google Scholar]
  25. 25. 
    Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P 2017. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia 31:282–91
    [Google Scholar]
  26. 26. 
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A et al. 1999. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–47
    [Google Scholar]
  27. 27. 
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK 1999. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–54
    [Google Scholar]
  28. 28. 
    Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S et al. 2012. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 209:2183–98
    [Google Scholar]
  29. 29. 
    Stamatopoulos B, Smith T, Crompot E, Pieters K, Clifford R et al. 2018. The light chain IgLV3-21 defines a new poor prognostic subgroup in chronic lymphocytic leukemia: results of a multicenter study. Clin. Cancer Res. 24:5048–57
    [Google Scholar]
  30. 30. 
    Lanemo Myhrinder A, Hellqvist E, Sidorova E, Söderberg A, Baxendale H et al. 2008. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 111:3838–48
    [Google Scholar]
  31. 31. 
    Dühren-von Minden M, Übelhart R, Schneider D, Wossning T, Bach MP et al. 2012. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489:309–12
    [Google Scholar]
  32. 32. 
    Minici C, Gounari M, Übelhart R, Scarfo L, Dühren-von Minden M et al. 2017. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat. Commun. 8:15746
    [Google Scholar]
  33. 33. 
    Queiros AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M et al. 2015. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 29:598–605
    [Google Scholar]
  34. 34. 
    Bhoi S, Ljungstrom V, Baliakas P, Mattsson M, Smedby KE et al. 2016. Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: the case of subset #2. Epigenetics 11:449–55
    [Google Scholar]
  35. 35. 
    Giacopelli B, Zhao Q, Ruppert AS, Agyeman A, Weigel C et al. 2019. Developmental subtypes assessed by DNA methylation–iPLEX forecast the natural history of chronic lymphocytic leukemia. Blood 134:688–90
    [Google Scholar]
  36. 36. 
    Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G et al. 1990. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N. Engl. J. Med. 323:720–24
    [Google Scholar]
  37. 37. 
    Dierlamm J, Michaux L, Criel A, Wlodarska I, Van den Berghe H, Hossfeld DK 1997. Genetic abnormalities in chronic lymphocytic leukemia and their clinical and prognostic implications. Cancer Genet. Cytogenet. 94:27–35
    [Google Scholar]
  38. 38. 
    Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A et al. 2000. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343:1910–16
    [Google Scholar]
  39. 39. 
    Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T 2007. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and immunophenotyping. Leukemia 21:2442–51
    [Google Scholar]
  40. 40. 
    Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J et al. 2006. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 107:742–51
    [Google Scholar]
  41. 41. 
    Rigolin GM, Cibien F, Martinelli S, Formigaro L, Rizzotto L et al. 2012. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with “normal” FISH: correlations with clinicobiologic parameters. Blood 119:2310–13
    [Google Scholar]
  42. 42. 
    Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K et al. 2014. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am. J. Hematol. 89:249–55
    [Google Scholar]
  43. 43. 
    Herling CD, Klaumunzer M, Rocha CK, Altmuller J, Thiele H et al. 2016. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood 128:395–404
    [Google Scholar]
  44. 44. 
    Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E et al. 2007. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 21:1532–44
    [Google Scholar]
  45. 45. 
    Kuppers R, Sonoki T, Satterwhite E, Gesk S, Harder L et al. 2002. Lack of somatic hypermutation of IG VH genes in lymphoid malignancies with t(2;14)(p13;q32) translocation involving the BCL11A gene. Leukemia 16:937–39
    [Google Scholar]
  46. 46. 
    Fang H, Reichard KK, Rabe KG, Hanson CA, Call TG et al. 2019. IGH translocations in chronic lymphocytic leukemia: clinicopathologic features and clinical outcomes. Am. J. Hematol. 94:338–45
    [Google Scholar]
  47. 47. 
    Huh YO, Abruzzo LV, Rassidakis GZ, Parry-Jones N, Schlette E et al. 2007. The t(14;19)(q32;q13)-positive small B-cell leukaemia: a clinicopathologic and cytogenetic study of seven cases. Br. J. Haematol. 136:220–28
    [Google Scholar]
  48. 48. 
    Edelmann J, Holzmann K, Miller F, Winkler D, Buhler A et al. 2012. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 120:4783–94
    [Google Scholar]
  49. 49. 
    Chun K, Wenger GD, Chaubey A, Dash DP, Kanagal-Shamanna R et al. 2018. Assessing copy number aberrations and copy-neutral loss-of-heterozygosity across the genome as best practice: an evidence-based review from the Cancer Genomics Consortium (CGC) working group for chronic lymphocytic leukemia. Cancer Genet 228–229:236–50
    [Google Scholar]
  50. 50. 
    Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C et al. 2007. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 109:1202–10
    [Google Scholar]
  51. 51. 
    Chapiro E, Leporrier N, Radford-Weiss I, Bastard C, Mossafa H et al. 2010. Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk. Res. 34:63–68
    [Google Scholar]
  52. 52. 
    Parker H, Rose-Zerilli MJ, Larrayoz M, Clifford R, Edelmann J et al. 2016. Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia. Leukemia 30:2179–86
    [Google Scholar]
  53. 53. 
    Schweighofer CD, Coombes KR, Majewski T, Barron LL, Lerner S et al. 2013. Genomic variation by whole-genome SNP mapping arrays predicts time-to-event outcome in patients with chronic lymphocytic leukemia: a comparison of CLL and HapMap genotypes. J. Mol. Diagn. 15:196–209
    [Google Scholar]
  54. 54. 
    Rigolin GM, Saccenti E, Guardalben E, Cavallari M, Formigaro L et al. 2018. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br. J. Haematol. 181:229–33
    [Google Scholar]
  55. 55. 
    Puiggros A, Collado R, Calasanz MJ, Ortega M, Ruiz-Xiville N et al. 2017. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget 8:54297–303
    [Google Scholar]
  56. 56. 
    Baliakas P, Jeromin S, Iskas M, Puiggros A, Plevova K et al. 2019. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations and clinical impact. Blood 133:1205–16
    [Google Scholar]
  57. 57. 
    Salaverria I, Martin-Garcia D, Lopez C, Clot G, Garcia-Aragones M et al. 2015. Detection of chromothripsis-like patterns with a custom array platform for chronic lymphocytic leukemia. Genes Chromosomes Cancer 54:668–80
    [Google Scholar]
  58. 58. 
    Baliakas P, Puiggros A, Xochelli A, Sutton LA, Nguyen-Khac F et al. 2016. Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica 101:e299–302
    [Google Scholar]
  59. 59. 
    Klintman J, Barmpouti K, Knight SJL, Robbe P, Dreau H et al. 2018. Clinical-grade validation of whole genome sequencing reveals robust detection of low-frequency variants and copy number alterations in CLL. Br. J. Haematol. 182:412–17
    [Google Scholar]
  60. 60. 
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40
    [Google Scholar]
  61. 61. 
    Shen MM. 2013. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 23:567–69
    [Google Scholar]
  62. 62. 
    Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR et al. 2011. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–5
    [Google Scholar]
  63. 63. 
    Quesada V, Conde L, Villamor N, Ordonez GR, Jares P et al. 2011. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44:47–52
    [Google Scholar]
  64. 64. 
    Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C et al. 2011. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365:2497–506
    [Google Scholar]
  65. 65. 
    Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K et al. 2013. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152:714–26
    [Google Scholar]
  66. 66. 
    Kasar S, Kim J, Improgo R, Tiao G, Polak P et al. 2015. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6:8866
    [Google Scholar]
  67. 67. 
    Burns A, Alsolami R, Becq J, Stamatopoulos B, Timbs A et al. 2018. Whole-genome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHVmut and IgHVunmut subgroups. Leukemia 32:332–42
    [Google Scholar]
  68. 68. 
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21
    [Google Scholar]
  69. 69. 
    Rodriguez D, Bretones G, Quesada V, Villamor N, Arango JR et al. 2015. Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood 126:195–202
    [Google Scholar]
  70. 70. 
    Martinez-Trillos A, Pinyol M, Navarro A, Aymerich M, Jares P et al. 2014. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood 123:3790–96
    [Google Scholar]
  71. 71. 
    Improgo MR, Tesar B, Klitgaard JL, Magori-Cohen R, Yu L et al. 2019. MYD88 L265P mutations identify a prognostic gene expression signature and a pathway for targeted inhibition in CLL. Br. J. Haematol. 184:925–36
    [Google Scholar]
  72. 72. 
    Nadeu F, Clot G, Delgado J, Martin-Garcia D, Baumann T et al. 2018. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 32:645–53
    [Google Scholar]
  73. 73. 
    Puente XS, Jares P, Campo E 2018. Chronic lymphocytic leukemia and mantle cell lymphoma: crossroads of genetic and microenvironment interactions. Blood 131:2283–96
    [Google Scholar]
  74. 74. 
    Gimenez N, Martinez-Trillos A, Montraveta A, Lopez-Guerra M, Rosich L et al. 2019. Mutations in the RAS-BRAF-MAPK-ERK pathway define a specific subgroup of patients with adverse clinical features and provide new therapeutic options in chronic lymphocytic leukemia. Haematologica 104:576–86
    [Google Scholar]
  75. 75. 
    Ouillette P, Fossum S, Parkin B, Ding L, Bockenstedt P et al. 2010. Aggressive chronic lymphocytic leukemia with elevated genomic complexity is associated with multiple gene defects in the response to DNA double-strand breaks. Clin. Cancer Res. 16:835–47
    [Google Scholar]
  76. 76. 
    Campo E, Cymbalista F, Ghia P, Jager U, Pospisilova S et al. 2018. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica 103:1956–68
    [Google Scholar]
  77. 77. 
    Stankovic T, Skowronska A. 2014. The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia. Leuk. Lymphoma 55:1227–39
    [Google Scholar]
  78. 78. 
    Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T et al. 2016. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127:2122–30
    [Google Scholar]
  79. 79. 
    Brown JR, Hillmen P, O'Brien S, Barrientos JC, Reddy NM et al. 2018. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia 32:83–91
    [Google Scholar]
  80. 80. 
    Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A et al. 2014. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 123:2139–47
    [Google Scholar]
  81. 81. 
    Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C et al. 2016. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127:582–95
    [Google Scholar]
  82. 82. 
    Fabbri G, Dalla-Favera R. 2016. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 16:145–62
    [Google Scholar]
  83. 83. 
    Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G et al. 2018. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 131:2745–60
    [Google Scholar]
  84. 84. 
    Ramsay AJ, Quesada V, Foronda M, Conde L, Martinez-Trillos A et al. 2013. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 45:526–30
    [Google Scholar]
  85. 85. 
    Fabbri G, Holmes AB, Viganotti M, Scuoppo C, Belver L et al. 2017. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. PNAS 114:E2911–19
    [Google Scholar]
  86. 86. 
    Bittolo T, Pozzo F, Bomben R, D'Agaro T, Bravin V et al. 2017. Mutations in the 3′ untranslated region of NOTCH1 are associated with low CD20 expression levels chronic lymphocytic leukemia. Haematologica 102:e305–9
    [Google Scholar]
  87. 87. 
    Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M et al. 2009. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113:856–65
    [Google Scholar]
  88. 88. 
    Close V, Close W, Kugler SJ, Reichenzeller M, Yosifov DY et al. 2019. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood 133:830–39
    [Google Scholar]
  89. 89. 
    Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P et al. 2011. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365:1384–95
    [Google Scholar]
  90. 90. 
    Mortera-Blanco T, Dimitriou M, Woll PS, Karimi M, Elvarsdottir E et al. 2017. SF3B1-initiating mutations in MDS–RSs target lymphomyeloid hematopoietic stem cells. Blood 130:881–90
    [Google Scholar]
  91. 91. 
    Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H et al. 2011. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118:6904–8
    [Google Scholar]
  92. 92. 
    Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A et al. 2013. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 3:1122–29
    [Google Scholar]
  93. 93. 
    Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A et al. 2014. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res 24:212–26
    [Google Scholar]
  94. 94. 
    Wang L, Brooks AN, Fan J, Wan Y, Gambe R et al. 2016. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30:750–63
    [Google Scholar]
  95. 95. 
    Mansouri L, Grabowski P, Degerman S, Svenson U, Gunnarsson R et al. 2013. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. Am. J. Hematol. 88:647–51
    [Google Scholar]
  96. 96. 
    Strefford JC, Sutton LA, Baliakas P, Agathangelidis A, Malcikova J et al. 2013. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 27:2196–99
    [Google Scholar]
  97. 97. 
    Yin S, Gambe RG, Sun J, Martinez AZ, Cartun ZJ et al. 2019. A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of Sf3b1 mutation and Atm deletion. Cancer Cell 35:283–96
    [Google Scholar]
  98. 97a. 
    Shuai S, Suzuki H, Diaz-Navarro A, Nadeu F, Kumar SAet al. 2019. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 574:712–16
    [Google Scholar]
  99. 98. 
    Ljungstrom V, Cortese D, Young E, Pandzic T, Mansouri L et al. 2016. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood 127:1007–16
    [Google Scholar]
  100. 99. 
    Bretones G, Alvarez MG, Arango JR, Rodriguez D, Nadeu F et al. 2018. Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia. Blood 132:2375–88
    [Google Scholar]
  101. 100. 
    Mansouri L, Papakonstantinou N, Ntoufa S, Stamatopoulos K, Rosenquist R 2016. NF-κB activation in chronic lymphocytic leukemia: a point of convergence of external triggers and intrinsic lesions. Semin. Cancer Biol. 39:40–48
    [Google Scholar]
  102. 101. 
    Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S et al. 2012. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119:2854–62
    [Google Scholar]
  103. 102. 
    Mansouri L, Sutton LA, Ljungstrom V, Bondza S, Arngarden L et al. 2015. Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia. J. Exp. Med. 212:833–43
    [Google Scholar]
  104. 103. 
    Young E, Noerenberg D, Mansouri L, Ljungstrom V, Frick M et al. 2017. EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia. Leukemia 31:1547–54
    [Google Scholar]
  105. 104. 
    Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D et al. 2013. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. PNAS 110:18250–25
    [Google Scholar]
  106. 105. 
    Giménez Carabaza N, Schulz R, Higashi M, Aymerich M, Villamor N et al. 2019. Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia https://doi.org/10.1038/s41375-019-0507-8
    [Crossref] [Google Scholar]
  107. 106. 
    Guieze R, Robbe P, Clifford R, de Guibert S, Pereira B et al. 2015. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood 126:2110–17
    [Google Scholar]
  108. 107. 
    Lionetti M, Fabris S, Cutrona G, Agnelli L, Ciardullo C et al. 2014. High-throughput sequencing for the identification of NOTCH1 mutations in early stage chronic lymphocytic leukaemia: biological and clinical implications. Br. J. Haematol. 165:629–39
    [Google Scholar]
  109. 108. 
    Baliakas P, Mattsson M, Stamatopoulos K, Rosenquist R 2016. Prognostic indices in chronic lymphocytic leukaemia: Where do we stand how do we proceed?. J. Intern. Med. 279:347–57
    [Google Scholar]
  110. 109. 
    Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD et al. 2012. The life history of 21 breast cancers. Cell 149:994–1007
    [Google Scholar]
  111. 110. 
    Klein U, Lia M, Crespo M, Siegel R, Shen Q et al. 2010. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17:28–40
    [Google Scholar]
  112. 111. 
    Schuh A, Becq J, Humphray S, Alexa A, Burns A et al. 2012. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120:4191–96
    [Google Scholar]
  113. 112. 
    Ojha J, Ayres J, Secreto C, Tschumper R, Rabe K et al. 2015. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood 125:492–98
    [Google Scholar]
  114. 113. 
    Rose-Zerilli MJ, Gibson J, Wang J, Tapper W, Davis Z et al. 2016. Longitudinal copy number, whole exome and targeted deep sequencing of ‘good risk’ IGHV-mutated CLL patients with progressive disease. Leukemia 30:1301–10
    [Google Scholar]
  115. 114. 
    Schwaederle M, Ghia E, Rassenti LZ, Obara M, Dell'Aquila ML et al. 2013. Subclonal evolution involving SF3B1 mutations in chronic lymphocytic leukemia. Leukemia 27:1214–17
    [Google Scholar]
  116. 115. 
    Ouillette P, Saiya-Cork K, Seymour E, Li C, Shedden K, Malek SN 2013. Clonal evolution, genomic drivers, and effects of therapy in chronic lymphocytic leukemia. Clin. Cancer Res. 19:2893–904
    [Google Scholar]
  117. 116. 
    Amin NA, Seymour E, Saiya-Cork K, Parkin B, Shedden K, Malek SN 2016. A quantitative analysis of subclonal and clonal gene mutations before and after therapy in chronic lymphocytic leukemia. Clin. Cancer Res. 22:4525–35
    [Google Scholar]
  118. 117. 
    Landau DA, Sun C, Rosebrock D, Herman SEM, Fein J et al. 2017. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat. Commun. 8:2185
    [Google Scholar]
  119. 118. 
    Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M et al. 2014. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370:2286–94
    [Google Scholar]
  120. 119. 
    Furman RR, Cheng S, Lu P, Setty M, Perez AR et al. 2014. Ibrutinib resistance in chronic lymphocytic leukemia. N. Engl. J. Med. 370:2352–54
    [Google Scholar]
  121. 120. 
    Ahn IE, Underbayev C, Albitar A, Herman SE, Tian X et al. 2017. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 129:1469–79
    [Google Scholar]
  122. 121. 
    Kanagal-Shamanna R, Jain P, Patel KP, Routbort M, Bueso-Ramos C et al. 2019. Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor–resistant chronic lymphocytic leukemia with disease progression and Richter transformation. Cancer 125:559–74
    [Google Scholar]
  123. 122. 
    Herling CD, Abedpour N, Weiss J, Schmitt A, Jachimowicz RD et al. 2018. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat. Commun. 9:727
    [Google Scholar]
  124. 123. 
    Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW et al. 2019. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov 9:342–53
    [Google Scholar]
  125. 124. 
    Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H et al. 2016. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7:11589
    [Google Scholar]
  126. 125. 
    Kiss R, Alpar D, Gango A, Nagy N, Eyupoglu E et al. 2019. Spatial clonal evolution leading to ibrutinib resistance and disease progression in chronic lymphocytic leukemia. Haematologica 104:e38–41
    [Google Scholar]
  127. 126. 
    Rossi D, Spina V, Gaidano G 2018. Biology and treatment of Richter syndrome. Blood 131:2761–72
    [Google Scholar]
  128. 127. 
    Rossi D, Spina V, Forconi F, Capello D, Fangazio M et al. 2012. Molecular history of Richter syndrome: origin from a cell already present at the time of chronic lymphocytic leukemia diagnosis. Int. J. Cancer 130:3006–10
    [Google Scholar]
  129. 128. 
    Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M et al. 2013. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J. Exp. Med. 210:2273–88
    [Google Scholar]
  130. 129. 
    Innocenti I, Rossi D, Trape G, Autore F, Larocca LM et al. 2018. Clinical, pathological, and biological characterization of Richter syndrome developing after ibrutinib treatment for relapsed chronic lymphocytic leukemia. Hematol. Oncol. 36:600–3
    [Google Scholar]
  131. 130. 
    Miller CR, Ruppert AS, Heerema NA, Maddocks KJ, Labanowska J et al. 2017. Near-tetraploidy is associated with Richter transformation in chronic lymphocytic leukemia patients receiving ibrutinib. Blood Adv 1:1584–88
    [Google Scholar]
  132. 131. 
    Chigrinova E, Rinaldi A, Kwee I, Rossi D, Rancoita PM et al. 2013. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 122:2673–82
    [Google Scholar]
  133. 132. 
    Rossi D, Spina V, Deambrogi C, Rasi S, Laurenti L et al. 2011. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood 117:3391–401
    [Google Scholar]
  134. 133. 
    Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE et al. 2001. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194:1639–47
    [Google Scholar]
  135. 134. 
    Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G et al. 2001. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194:1625–38
    [Google Scholar]
  136. 135. 
    Cahill N, Bergh AC, Kanduri M, Goransson-Kultima H, Mansouri L et al. 2013. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 27:150–58
    [Google Scholar]
  137. 136. 
    Smith EN, Ghia EM, DeBoever CM, Rassenti LZ, Jepsen K et al. 2015. Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development. Blood Cancer J 5:e303
    [Google Scholar]
  138. 137. 
    Landau DA, Clement K, Ziller MJ, Boyle P, Fan J et al. 2014. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26:813–25
    [Google Scholar]
  139. 138. 
    Oakes CC, Claus R, Gu L, Assenov Y, Hullein J et al. 2014. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov 4:348–61
    [Google Scholar]
  140. 139. 
    Ott CJ, Federation AJ, Schwartz LS, Kasar S, Klitgaard JL et al. 2018. Enhancer architecture and essential core regulatory circuitry of chronic lymphocytic leukemia. Cancer Cell 34:982–95.e7
    [Google Scholar]
  141. 140. 
    Rendeiro AF, Schmidl C, Strefford JC, Walewska R, Davis Z et al. 2016. Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks. Nat. Commun. 7:11938
    [Google Scholar]
  142. 141. 
    Papakonstantinou N, Ntoufa S, Chartomatsidou E, Kotta K, Agathangelidis A et al. 2016. The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia. Oncotarget 7:35946–59
    [Google Scholar]
  143. 142. 
    Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS 1975. Clinical staging of chronic lymphocytic leukemia. Blood 46:219–34
    [Google Scholar]
  144. 143. 
    Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H et al. 1981. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 48:198–206
    [Google Scholar]
  145. 144. 
    Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S et al. 2013. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 121:1403–12
    [Google Scholar]
  146. 145. 
    Baliakas P, Moysiadis T, Hadzidimitriou A, Xochelli A, Jeromin S et al. 2019. Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica 104:360–69
    [Google Scholar]
  147. 146. 
    Int. CLL-IPI Work. Group 2016. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 17:779–90
    [Google Scholar]
  148. 147. 
    Delgado J, Doubek M, Baumann T, Kotaskova J, Molica S et al. 2017. Chronic lymphocytic leukemia: a prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI. Am. J. Hematol. 92:375–80
    [Google Scholar]
  149. 148. 
    Fischer K, Bahlo J, Fink AM, Goede V, Herling CD et al. 2016. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 127:208–15
    [Google Scholar]
  150. 149. 
    Thompson PA, Tam CS, O'Brien SM, Wierda WG, Stingo F et al. 2016. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 127:303–9
    [Google Scholar]
  151. 150. 
    Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G et al. 2015. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood 126:1921–24
    [Google Scholar]
  152. 151. 
    Moreno C, Greil R, Demirkan F, Tedeschi A, Anz B et al. 2019. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20:43–56
    [Google Scholar]
  153. 152. 
    Woyach JA, Ruppert AS, Heerema NA, Zhao W, Booth AM et al. 2018. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N. Engl. J. Med. 379:2517–28
    [Google Scholar]
  154. 153. 
    Stilgenbauer S, Eichhorst B, Schetelig J, Hillmen P, Seymour JF et al. 2018. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J. Clin. Oncol. 36:1973–80
    [Google Scholar]
  155. 154. 
    Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM et al. 2014. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370:997–1007
    [Google Scholar]
  156. 155. 
    Dreger P, Ghia P, Schetelig J, van Gelder M, Kimby E et al. 2018. High-risk chronic lymphocytic leukemia in the era of pathway inhibitors: integrating molecular and cellular therapies. Blood 132:892–902
    [Google Scholar]
  157. 156. 
    Malcikova J, Tausch E, Rossi D, Sutton LA, Soussi T et al. 2018. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—update on methodological approaches and results interpretation. Leukemia 32:1070–80
    [Google Scholar]
  158. 157. 
    Sutton LA, Young E, Baliakas P, Hadzidimitriou A, Moysiadis T et al. 2016. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica 101:959–67
    [Google Scholar]
  159. 158. 
    Gu Z, Gu L, Elis R, Schlesner M, Brors B 2014. circlize Implements and enhances circular visualization in R. Bioinformatics 30:192811–12
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032810
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error