1932

Abstract

Autoinflammation describes a collection of diverse diseases caused by indiscriminate activation of the immune system in an antigen-independent manner. The rapid advancement of genetic diagnostics has allowed for the identification of a wide array of monogenic causes of autoinflammation. While the clinical picture of these syndromes is diverse, it is possible to thematically group many of these diseases under broad categories that provide insight into the mechanisms of disease and therapeutic possibilities. This review covers archetypical examples of inherited autoinflammatory diseases in five major categories: inflammasomopathy, interferonopathy, unfolded protein/cellular stress response, relopathy, and uncategorized. This framework can suggest where future work is needed to identify other genetic causes of autoinflammation, what types of diagnostics need to be developed to care for this patient population, and which options might be considered for novel therapeutic targeting.

Keyword(s): geneticsimmunologyinflammation
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-030121-041528
2022-01-24
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathmechdis-030121-041528.html?itemId=/content/journals/10.1146/annurev-pathmechdis-030121-041528&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. 2009. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10:241–47
    [Google Scholar]
  2. 2. 
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  3. 3. 
    Zheng D, Liwinski T, Elinav E. 2020. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6:36
    [Google Scholar]
  4. 4. 
    Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M. 1999. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10:127–36
    [Google Scholar]
  5. 5. 
    Granowitz EV, Clark BD, Mancilla J, Dinarello CA 1991. Interleukin-1 receptor antagonist competitively inhibits the binding of interleukin-1 to the type II interleukin-1 receptor. J. Biol. Chem. 266:14147–50
    [Google Scholar]
  6. 6. 
    Haskill S, Martin G, Van Le L, Morris J, Peace A et al. 1991. cDNA cloning of an intracellular form of the human interleukin 1 receptor antagonist associated with epithelium. PNAS 88:3681–85
    [Google Scholar]
  7. 7. 
    Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B et al. 2009. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113:2324–35
    [Google Scholar]
  8. 8. 
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM et al. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–18
    [Google Scholar]
  9. 9. 
    Int. FMF Consort 1997. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807
    [Google Scholar]
  10. 10. 
    Xu H, Yang J, Gao W, Li L, Li P et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–41
    [Google Scholar]
  11. 11. 
    Park YH, Remmers EF, Lee W, Ombrello AK, Chung LK et al. 2020. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21:857–67
    [Google Scholar]
  12. 12. 
    Park YH, Wood G, Kastner DL, Chae JJ. 2016. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17:914–21
    [Google Scholar]
  13. 13. 
    Shoham NG, Centola M, Mansfield E, Hull KM, Wood G et al. 2003. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. PNAS 100:13501–6
    [Google Scholar]
  14. 14. 
    Omenetti A, Carta S, Caorsi R, Finetti M, Marotto D et al. 2016. Disease activity accounts for long-term efficacy of IL-1 blockers in pyogenic sterile arthritis pyoderma gangrenosum and severe acne syndrome. Rheumatology 55:1325–35
    [Google Scholar]
  15. 15. 
    Neven B, Callebaut I, Prieur AM, Feldmann J, Bodemer C et al. 2004. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 103:2809–15
    [Google Scholar]
  16. 16. 
    Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT et al. 2002. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–48
    [Google Scholar]
  17. 17. 
    Levy R, Gerard L, Kuemmerle-Deschner J, Lachmann HJ, Kone-Paut I et al. 2015. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann. Rheum. Dis. 74:2043–49
    [Google Scholar]
  18. 18. 
    Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J et al. 2009. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360:2426–37
    [Google Scholar]
  19. 19. 
    Puren AJ, Fantuzzi G, Dinarello CA. 1999. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1β are differentially regulated in human blood mononuclear cells and mouse spleen cells. PNAS 96:2256–61
    [Google Scholar]
  20. 20. 
    Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr. et al. 1999. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J. Immunol. 162:6829–35
    [Google Scholar]
  21. 21. 
    Hurgin V, Novick D, Rubinstein M 2002. The promoter of IL-18 binding protein: activation by an IFN-γ-induced complex of IFN regulatory factor 1 and CCAAT/enhancer binding protein β. PNAS 99:16957–62
    [Google Scholar]
  22. 22. 
    Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46:1135–39
    [Google Scholar]
  23. 23. 
    Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46:1140–46
    [Google Scholar]
  24. 24. 
    Canna SW, Girard C, Malle L, de Jesus A, Romberg N et al. 2017. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 139:1698–701
    [Google Scholar]
  25. 25. 
    Hu Z, Yan C, Liu P, Huang Z, Ma R et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–75
    [Google Scholar]
  26. 26. 
    Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K 2014. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211:2385–96
    [Google Scholar]
  27. 27. 
    Volker-Touw CM, de Koning HD, Giltay JC, de Kovel CG, van Kempen TS et al. 2017. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br. J. Dermatol. 176:244–48
    [Google Scholar]
  28. 28. 
    Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V et al. 2006. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–14
    [Google Scholar]
  29. 29. 
    Yabal M, Muller N, Adler H, Knies N, Gross CJ et al. 2014. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep 7:1796–808
    [Google Scholar]
  30. 30. 
    Wada T, Kanegane H, Ohta K, Katoh F, Imamura T et al. 2014. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine 65:74–78
    [Google Scholar]
  31. 31. 
    Lam MT, Coppola S, Krumbach OHF, Prencipe G, Insalaco A et al. 2019. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216:2778–99
    [Google Scholar]
  32. 32. 
    Gernez Y, de Jesus AA, Alsaleem H, Macaubas C, Roy A et al. 2019. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J. Allergy Clin. Immunol. 144:1122–25.e6
    [Google Scholar]
  33. 33. 
    McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A 2015. Type I interferons in infectious disease. Nat. Rev. Immunol. 15:87–103
    [Google Scholar]
  34. 34. 
    Banchereau J, Pascual V. 2006. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–92
    [Google Scholar]
  35. 35. 
    Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ et al. 2007. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13:59–68
    [Google Scholar]
  36. 36. 
    Manns MP, Wedemeyer H, Cornberg M. 2006. Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55:1350–59
    [Google Scholar]
  37. 37. 
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH et al. 2020. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370:eabd4585
    [Google Scholar]
  38. 38. 
    Rodero MP, Crow YJ. 2016. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213:2527–38
    [Google Scholar]
  39. 39. 
    Rice GI, Del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH et al. 2014. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46:503–9
    [Google Scholar]
  40. 40. 
    Duncan CJA, Thompson BJ, Chen R, Rice GI, Gothe F et al. 2019. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci. Immunol. 4:eaav7501
    [Google Scholar]
  41. 41. 
    Basters A, Knobeloch KP, Fritz G. 2018. USP18—a multifunctional component in the interferon response. Biosci. Rep. 38:BSR20180250
    [Google Scholar]
  42. 42. 
    Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S et al. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213:1163–74
    [Google Scholar]
  43. 43. 
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD et al. 2015. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89–93
    [Google Scholar]
  44. 44. 
    Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y et al. 2015. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am. J. Hum. Genet. 96:275–82
    [Google Scholar]
  45. 45. 
    Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ et al. 2015. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet. 96:266–74
    [Google Scholar]
  46. 46. 
    Wu B, Peisley A, Richards C, Yao H, Zeng X et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–89
    [Google Scholar]
  47. 47. 
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE et al. 2014. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371:507–18
    [Google Scholar]
  48. 48. 
    Vanderver A, Adang L, Gavazzi F, McDonald K, Helman G et al. 2020. Janus kinase inhibition in the Aicardi-Goutières syndrome. N. Engl. J. Med. 383:986–89
    [Google Scholar]
  49. 49. 
    Rice GI, Meyzer C, Bouazza N, Hully M, Boddaert N et al. 2018. Reverse-transcriptase inhibitors in the Aicardi-Goutières syndrome. N. Engl. J. Med. 379:2275–77
    [Google Scholar]
  50. 50. 
    Walter P, Ron D 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–86
    [Google Scholar]
  51. 51. 
    Lee RJ, Liu CW, Harty C, McCracken AA, Latterich M et al. 2004. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J 23:2206–15
    [Google Scholar]
  52. 52. 
    Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. 2016. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16:469–84
    [Google Scholar]
  53. 53. 
    Smith JA, Turner MJ, DeLay ML, Klenk EI, Sowders DP, Colbert RA. 2008. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-β induction via X-box binding protein 1. Eur. J. Immunol. 38:1194–203
    [Google Scholar]
  54. 54. 
    Poli MC, Ebstein F, Nicholas SK, de Guzman MM, Forbes LR et al. 2018. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102:1126–42
    [Google Scholar]
  55. 55. 
    Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E et al. 2015. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Investig. 125:4196–211
    [Google Scholar]
  56. 56. 
    Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T et al. 2011. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. PNAS 108:14914–19
    [Google Scholar]
  57. 57. 
    Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD et al. 2010. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87:866–72
    [Google Scholar]
  58. 58. 
    Ebstein F, Poli Harlowe MC, Studencka-Turski M, Krüger E 2019. Contribution of the unfolded protein response (UPR) to the pathogenesis of proteasome-associated autoinflammatory syndromes (PRAAS). Front. Immunol. 10:2756
    [Google Scholar]
  59. 59. 
    Cudrici C, Deuitch N, Aksentijevich I. 2020. Revisiting TNF receptor-associated periodic syndrome (TRAPS): current perspectives. Int. J. Mol. Sci. 21:3263
    [Google Scholar]
  60. 60. 
    Lobito AA, Kimberley FC, Muppidi JR, Komarow H, Jackson AJ et al. 2006. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108:1320–27
    [Google Scholar]
  61. 61. 
    Dickie LJ, Aziz AM, Savic S, Lucherini OM, Cantarini L et al. 2012. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann. Rheum. Dis. 71:2035–43
    [Google Scholar]
  62. 62. 
    Ter Haar N, Lachmann H, Ozen S, Woo P, Uziel Y et al. 2013. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann. Rheum. Dis. 72:678–85
    [Google Scholar]
  63. 63. 
    Nedjai B, Hitman GA, Quillinan N, Coughlan RJ, Church L et al. 2009. Proinflammatory action of the antiinflammatory drug infliximab in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 60:619–25
    [Google Scholar]
  64. 64. 
    De Benedetti F, Gattorno M, Anton J, Ben-Chetrit E, Frenkel J et al. 2018. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N. Engl. J. Med. 378:1908–19
    [Google Scholar]
  65. 65. 
    Aeschlimann FA, Batu ED, Canna SW, Go E, Gul A et al. 2018. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann. Rheum. Dis. 77:728–35
    [Google Scholar]
  66. 66. 
    Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH et al. 2016. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48:67–73
    [Google Scholar]
  67. 67. 
    Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D et al. 2016. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. PNAS 113:10127–32
    [Google Scholar]
  68. 68. 
    Oda H, Beck DB, Kuehn HS, Sampaio Moura N, Hoffmann P et al. 2019. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC. Front. Immunol. 10:479
    [Google Scholar]
  69. 69. 
    Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N et al. 2015. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212:939–51
    [Google Scholar]
  70. 70. 
    Cuchet-Lourenco D, Eletto D, Wu C, Plagnol V, Papapietro O et al. 2018. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361:810–13
    [Google Scholar]
  71. 71. 
    Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL et al. 2020. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577:103–8
    [Google Scholar]
  72. 72. 
    Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C et al. 2014. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370:911–20
    [Google Scholar]
  73. 73. 
    Ombrello AK, Qin J, Hoffmann PM, Kumar P, Stone D et al. 2019. Treatment strategies for deficiency of adenosine deaminase 2. N. Engl. J. Med. 380:1582–84
    [Google Scholar]
  74. 74. 
    Zhou Q, Lee GS, Brady J, Datta S, Katan M et al. 2012. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91:713–20
    [Google Scholar]
  75. 75. 
    Ombrello MJ, Remmers EF, Sun G, Freeman AF, Datta S et al. 2012. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366:330–38
    [Google Scholar]
  76. 76. 
    Drenth JP, Cuisset L, Grateau G, Vasseur C, van de Velde-Visser SD et al. 1999. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat. Genet. 22:178–81
    [Google Scholar]
  77. 77. 
    Prietsch V, Mayatepek E, Krastel H, Haas D, Zundel D et al. 2003. Mevalonate kinase deficiency: enlarging the clinical and biochemical spectrum. Pediatrics 111:258–61
    [Google Scholar]
  78. 78. 
    Houten SM, Frenkel J, Rijkers GT, Wanders RJ, Kuis W, Waterham HR 2002. Temperature dependence of mutant mevalonate kinase activity as a pathogenic factor in hyper-IgD and periodic fever syndrome. Hum. Mol. Genet. 11:3115–24
    [Google Scholar]
  79. 79. 
    Dang EV, Cyster JG. 2019. Loss of sterol metabolic homeostasis triggers inflammasomes—how and why. Curr. Opin. Immunol. 56:1–9
    [Google Scholar]
  80. 80. 
    DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. 2009. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 60:2633–43
    [Google Scholar]
  81. 81. 
    Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J 2001. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294:1540–43
    [Google Scholar]
  82. 82. 
    Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA et al. 2007. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum 56:3784–92
    [Google Scholar]
  83. 83. 
    Schroder K, Zhou R, Tschopp J. 2010. The NLRP3 inflammasome: a sensor for metabolic danger?. Science 327:296–300
    [Google Scholar]
  84. 84. 
    Schlesinger N, Alten RE, Bardin T, Schumacher HR, Bloch M et al. 2012. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann. Rheum. Dis. 71:1839–48
    [Google Scholar]
  85. 85. 
    Mizuta M, Shimizu M, Inoue N, Ikawa Y, Nakagishi Y et al. 2020. Clinical significance of interleukin-18 for the diagnosis and prediction of disease course in systemic juvenile idiopathic arthritis. Rheumatology 60:2421–26
    [Google Scholar]
  86. 86. 
    Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S et al. 2001. CARD15 mutations in Blau syndrome. Nat. Genet. 29:19–20
    [Google Scholar]
  87. 87. 
    Belkaya S, Michailidis E, Korol CB, Kabbani M, Cobat A et al. 2019. Inherited IL-18BP deficiency in human fulminant viral hepatitis. J. Exp. Med. 216:1777–90
    [Google Scholar]
  88. 88. 
    Borghini S, Tassi S, Chiesa S, Caroli F, Carta S et al. 2011. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 63:830–39
    [Google Scholar]
  89. 89. 
    Ferguson PJ, Chen S, Tayeh MK, Ochoa L, Leal SM et al. 2005. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J. Med. Genet. 42:551–57
    [Google Scholar]
  90. 90. 
    Standing AS, Malinova D, Hong Y, Record J, Moulding D et al. 2017. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J. Exp. Med. 214:59–71
    [Google Scholar]
  91. 91. 
    Rice G, Newman WG, Dean J, Patrick T, Parmar R et al. 2007. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutières syndrome. Am. J. Hum. Genet. 80:811–15
    [Google Scholar]
  92. 92. 
    Boyden SE, Desai A, Cruse G, Young ML, Bolan HC et al. 2016. Vibratory urticaria associated with a missense variant in ADGRE2. N. Engl. J. Med. 374:656–63
    [Google Scholar]
  93. 93. 
    Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK et al. 2017. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J. Exp. Med. 214:1937–47
    [Google Scholar]
  94. 94. 
    Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH et al. 2011. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89:432–37
    [Google Scholar]
  95. 95. 
    Chakraborty PK, Schmitz-Abe K, Kennedy EK, Mamady H, Naas T et al. 2014. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–71
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-030121-041528
Loading
/content/journals/10.1146/annurev-pathmechdis-030121-041528
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error