1932

Abstract

Next-generation tools for multiplexed imaging have driven a new wave of innovation in understanding how single-cell function and tissue structure are interrelated. In previous work, we developed multiplexed ion beam imaging by time of flight, a highly multiplexed platform that uses secondary ion mass spectrometry to image dozens of antibodies tagged with metal reporters. As instrument throughput has increased, the breadth and depth of imaging data have increased as well. To extract meaningful information from these data, we have developed tools for cell identification, cell classification, and spatial analysis. In this review, we discuss these tools and provide examples of their application in various contexts, including ductal carcinoma in situ, tuberculosis, and Alzheimer's disease. We hope the synergy between multiplexed imaging and automated image analysis will drive a new era in anatomic pathology and personalized medicine wherein quantitative spatial signatures are used routinely for more accurate diagnosis, prognosis, and therapeutic selection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-030321-091459
2022-01-24
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathmechdis-030321-091459.html?itemId=/content/journals/10.1146/annurev-pathmechdis-030321-091459&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Levenson RM, Borowsky AD, Angelo M. 2015. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab. Investig. 95:4397–405
    [Google Scholar]
  2. 2. 
    de Matos LL, Trufelli DC, de Matos MGL, da Silva Pinhal MA. 2010. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark. Insights 5:9–20
    [Google Scholar]
  3. 3. 
    McCabe A, Dolled-Filhart M, Camp RL, Rimm DL. 2005. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J. Natl. Cancer Inst. 97:241808–15
    [Google Scholar]
  4. 4. 
    Taube JM, Akturk G, Angelo M, Engle EL, Gnjatic S et al. 2020. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J. Immunother. Cancer 8:1e000155
    [Google Scholar]
  5. 5. 
    Zimak J, Schweller RM, Duose DY, Hittelman WN, Diehl MR. 2012. Programming in situ immunofluorescence intensities through interchangeable reactions of dynamic DNA complexes. ChemBioChem 13:182722–28
    [Google Scholar]
  6. 6. 
    Neher R, Neher E. 2004. Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J. Microsc. 213:146–62
    [Google Scholar]
  7. 7. 
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C et al. 2014. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20:4436–42
    [Google Scholar]
  8. 8. 
    Keren L, Bosse M, Marquez D, Angoshtari R, Jain S et al. 2018. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174:61373–87.e19
    [Google Scholar]
  9. 9. 
    Keren L, Bosse M, Thompson S, Risom T, Vijayaragavan K et al. 2019. MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5:10eaax5851
    [Google Scholar]
  10. 10. 
    Hartmann FJ, Mrdjen D, McCaffrey E, Glass DR, Greenwald NF et al. 2021. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39:2186–97
    [Google Scholar]
  11. 11. 
    Risom T, Glass DR, Liu CC, Rivero-Gutiérrez B, Baranski A et al. 2021. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. bioRxiv 2021.01.05.425362. https://doi.org/10.1101/2021.01.05.425362
    [Crossref]
  12. 12. 
    McCaffrey EF, Donato M, Keren L, Chen Z, Fitzpatrick M et al. 2020. Multiplexed imaging of human tuberculosis granulomas uncovers immunoregulatory features conserved across tissue and blood. bioRxiv 2020.06.08.140426. https://doi.org/10.1101/2020.06.08.140426
    [Crossref]
  13. 13. 
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M et al. 2018. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174:4968–81.e15
    [Google Scholar]
  14. 14. 
    Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S et al. 2018. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst 6:125–36.e5
    [Google Scholar]
  15. 15. 
    Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A et al. 2014. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11:4417–22
    [Google Scholar]
  16. 16. 
    Lin J-R, Izar B, Wang S, Yapp C, Mei S et al. 2018. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7:e31657
    [Google Scholar]
  17. 17. 
    Saka SK, Wang Y, Kishi JY, Zhu A, Zeng Y et al. 2019. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37:91080–90
    [Google Scholar]
  18. 18. 
    Greenwald NF, Miller G, Moen E, Kong A, Kagel A et al. 2021. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol https://doi.org/10.1038/s41587-021-01094-0
    [Crossref] [Google Scholar]
  19. 19. 
    Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT et al. 2016. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol. 12:11e1005177
    [Google Scholar]
  20. 20. 
    Bannon D, Moen E, Schwartz M, Borba E, Kudo T et al. 2021. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18:143–45
    [Google Scholar]
  21. 21. 
    Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED et al. 2015. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162:1184–97
    [Google Scholar]
  22. 22. 
    Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. 2014. Automated identification of stratifying signatures in cellular subpopulations. PNAS 111:26E2770–77
    [Google Scholar]
  23. 23. 
    Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP 2016. Automated mapping of phenotype space with single-cell data. Nat. Methods 13:6493–96
    [Google Scholar]
  24. 24. 
    Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P et al. 2015. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87:7636–45
    [Google Scholar]
  25. 25. 
    Hu Z, Jujjavarapu C, Hughey JJ, Andorf S, Lee H-C et al. 2018. MetaCyto: a tool for automated meta-analysis of mass and flow cytometry data. Cell Rep 24:51377–88
    [Google Scholar]
  26. 26. 
    Chen Z, Soifer I, Hilton H, Keren L, Jojic V 2020. Modeling multiplexed images with spatial-LDA reveals novel tissue microenvironments. J. Comput. Biol. 27:81204–18
    [Google Scholar]
  27. 27. 
    Ryser MD, Weaver DL, Zhao F, Worni M, Grimm LJ et al. 2019. Cancer outcomes in DCIS patients without locoregional treatment. J. Natl. Cancer Inst. 111:9952–60
    [Google Scholar]
  28. 28. 
    Erbas B, Provenzano E, Armes J, Gertig D. 2006. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res. Treat. 97:2135–44
    [Google Scholar]
  29. 29. 
    Williams KE, Barnes NLP, Cramer A, Johnson R, Cheema K et al. 2015. Molecular phenotypes of DCIS predict overall and invasive recurrence. Ann. Oncol. 26:51019–25
    [Google Scholar]
  30. 30. 
    Toss MS, Miligy IM, Gorringe KL, AlKawaz A, Khout H et al. 2018. Prolyl-4-hydroxylase Α subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS). Br. J. Cancer 119:121518–26
    [Google Scholar]
  31. 31. 
    Ibrahim AM, Moss MA, Gray Z, Rojo MD, Burke CM et al. 2020. Diverse macrophage populations contribute to the inflammatory microenvironment in premalignant lesions during localized invasion. Front. Oncol. 10:569985
    [Google Scholar]
  32. 32. 
    Toussaint J, Durbecq V, Altintas S, Doriath V, Rouas G et al. 2010. Low CD10 mRNA expression identifies high-risk ductal carcinoma in situ (DCIS). PLOS ONE 5:8e12100
    [Google Scholar]
  33. 33. 
    Barsky SH, Karlin NJ. 2005. Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J. Mammary Gland Biol. Neoplasia 10:3249–60
    [Google Scholar]
  34. 34. 
    WHO (World Health Organ.) 2020. Global tuberculosis report 2020 Geneva: WHO https://www.who.int/publications/i/item/9789240013131
    [Google Scholar]
  35. 35. 
    Bold TD, Ernst JD. 2009. Who benefits from granulomas, mycobacteria or host?. Cell 136:117–19
    [Google Scholar]
  36. 36. 
    Davis JM, Ramakrishnan L. 2009. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:137–49
    [Google Scholar]
  37. 37. 
    Ramakrishnan L. 2012. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12:5352–66
    [Google Scholar]
  38. 38. 
    Oehlers SH. 2019. Revisiting hypoxia therapies for tuberculosis. Clin. Sci. 133:121271–80
    [Google Scholar]
  39. 39. 
    Cadena AM, Fortune SM, Flynn JL. 2017. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17:11691–702
    [Google Scholar]
  40. 40. 
    Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. 2018. PD-1 controls follicular T helper cell positioning and function. Immunity 49:2264–74.e4
    [Google Scholar]
  41. 41. 
    Dieu-Nosjean M-C, Goc J, Giraldo NA, Sautès-Fridman C, Fridman WH. 2014. Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35:11571–80
    [Google Scholar]
  42. 42. 
    Alzheimer's Assoc 2020. 2020 Alzheimer's disease facts and figures. Alzheimer's Dement. 16:3391–460
    [Google Scholar]
  43. 43. 
    Qiu C, Kivipelto M, von Strauss E 2009. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 11:2111–28
    [Google Scholar]
  44. 44. 
    Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. 2019. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 138:5729–49
    [Google Scholar]
  45. 45. 
    Gilissen EP, Staneva-Dobrovski L. 2013. Distinct types of lipofuscin pigment in the hippocampus and cerebellum of aged cheirogaleid primates. Anat. Rec. 296:121895–906
    [Google Scholar]
  46. 46. 
    Jankowsky JL, Zheng H. 2017. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol. Neurodegener. 12:189
    [Google Scholar]
  47. 47. 
    Foidl BM, Humpel C. 2020. Can mouse models mimic sporadic Alzheimer's disease?. Neural Regen. Res. 15:3401–6
    [Google Scholar]
  48. 48. 
    LaFerla FM, Green KN. 2012. Animal models of Alzheimer disease. Cold Spring Harb. . Perspect. Med. 2:11a006320
    [Google Scholar]
  49. 49. 
    Drummond E, Wisniewski T. 2017. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 133:2155–75
    [Google Scholar]
  50. 50. 
    Erickson MA, Banks WA. 2013. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J. Cereb. Blood Flow Metab. 33:101500–13
    [Google Scholar]
  51. 51. 
    Mu Y, Gage FH. 2011. Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol. Neurodegener. 6:85
    [Google Scholar]
  52. 52. 
    Allen G, Barnard H, McColl R, Hester AL, Fields JA et al. 2007. Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64:101482–87
    [Google Scholar]
  53. 53. 
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. 2006. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112:389–404
    [Google Scholar]
  54. 54. 
    Thal DR, Rüb U, Orantes M, Braak H. 2002. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:121791–800
    [Google Scholar]
  55. 55. 
    Morris-Janzen D, Oliveria JP. 2019. Imaging glial cells in Alzheimer's disease: from light microscopy to multiplexed ion beam imaging. Health Sci. Inq. 10:28–30
    [Google Scholar]
  56. 56. 
    Ansorg A, Bornkessel K, Witte OW, Urbach A. 2015. Immunohistochemistry and multiple labeling with antibodies from the same host species to study adult hippocampal neurogenesis. J. Vis. Exp. 98:52551
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-030321-091459
Loading
/content/journals/10.1146/annurev-pathmechdis-030321-091459
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error