1932

Abstract

Tumor cells release extracellular vesicles (EVs) that can function as mediators of intercellular communication in the tumor microenvironment. EVs contain a host of bioactive cargo, including membrane, cytosolic, and nuclear proteins, in addition to noncoding RNAs, other RNA types, and double-stranded DNA fragments. These shed vesicles may deposit paracrine information and can also be taken up by stromal cells, causing the recipient cells to undergo phenotypic changes that profoundly impact diverse facets of cancer progression. For example, this unique form of cellular cross talk helps condition the premetastatic niche, facilitates evasion of the immune response, and promotes invasive and metastatic activity. These findings, coupled with those demonstrating that the number and content of EVs produced by tumors can vary depending on their tumor of origin, disease stage, or response to therapy, have raised the exciting possibility that EVs can be used for risk stratification, diagnostic, and even prognostic purposes. We summarize recent developments and the current knowledge of EV cargoes, their impact on disease progression, and implementation of EV-based liquid biopsies as tumor biomarkers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-022116
2023-01-24
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-022116.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-022116&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Trams EG, Lauter CJ, Salem N Jr., Heine U. 1981. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta Biomembr. 645:63–70
    [Google Scholar]
  2. 2.
    Boomgarden AC, Sheehan C, D'Souza-Schorey C 2020. Extracellular vesicles in the tumor microenvironment: various implications in tumor progression. Adv. Exp. Med. Biol. 1259:155–70
    [Google Scholar]
  3. 3.
    Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. 2016. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–48
    [Google Scholar]
  4. 4.
    Sheehan C, D'Souza-Schorey C. 2019. Tumor-derived extracellular vesicles: molecular parcels that enable regulation of the immune response in cancer. J. Cell Sci. 132:20jcs235085
    [Google Scholar]
  5. 5.
    Willms E, Cabanas C, Mager I, Wood MJA, Vader P. 2018. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 9:738
    [Google Scholar]
  6. 6.
    van Niel G, D'Angelo G, Raposo G 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19:213–28
    [Google Scholar]
  7. 7.
    Clancy JW, Schmidtmann M, D'Souza-Schorey C 2021. The ins and outs of microvesicles. FASEB Bioadv. 3:399–406
    [Google Scholar]
  8. 8.
    Abels ER, Breakefield XO. 2016. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol. 36:301–12
    [Google Scholar]
  9. 9.
    D'Souza-Schorey C, Schorey JS. 2018. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem. 62:125–33
    [Google Scholar]
  10. 10.
    Pegtel DM, Gould SJ. 2019. Exosomes. Annu. Rev. Biochem. 88:487–514
    [Google Scholar]
  11. 11.
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z et al. 2018. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20:332–43
    [Google Scholar]
  12. 12.
    Zhang Q, Jeppesen DK, Higginbotham JN, Graves-Deal R, Trinh VQ et al. 2021. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23:1240–54
    [Google Scholar]
  13. 13.
    Clancy JW, Boomgarden AC, D'Souza-Schorey C 2021. Profiling and promise of supermeres. Nat. Cell Biol. 23:1217–19
    [Google Scholar]
  14. 14.
    Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7:1535750
    [Google Scholar]
  15. 15.
    Clancy JW, Tricarico CJ, D'Souza-Schorey C 2015. Tumor-derived microvesicles in the tumor microenvironment: how vesicle heterogeneity can shape the future of a rapidly expanding field. Bioessays 37:1309–16
    [Google Scholar]
  16. 16.
    O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. 2020. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21:585–606
    [Google Scholar]
  17. 17.
    Vidal M. 2019. Exosomes: revisiting their role as “garbage bags. .” Traffic 20:815–28
    [Google Scholar]
  18. 18.
    Wortzel I, Dror S, Kenific CM, Lyden D. 2019. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49:347–60
    [Google Scholar]
  19. 19.
    LeBleu VS, Kalluri R. 2020. Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer 6:767–74
    [Google Scholar]
  20. 20.
    Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D et al. 2021. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann. Oncol. 32:466–77
    [Google Scholar]
  21. 21.
    Butreddy A, Kommineni N, Dudhipala N. 2021. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: insights from drug delivery to clinical perspectives. Nanomaterials 11:1481
    [Google Scholar]
  22. 22.
    Dao TNT, Kim MG, Koo B, Liu H, Jang YO et al. 2022. Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles. J. Extracell. Vesicles 11:e12195
    [Google Scholar]
  23. 23.
    Wang S, Li F, Ye T, Wang J, Lyu C et al. 2021. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13:eabb6981
    [Google Scholar]
  24. 24.
    Kalluri R, LeBleu VS. 2020. The biology, function, and biomedical applications of exosomes. Science 367:6478eaau6977
    [Google Scholar]
  25. 25.
    Clancy JW, Tricarico CJ, Marous DR, D'Souza-Schorey C 2019. Coordinated regulation of intracellular fascin distribution governs tumor microvesicle release and invasive cell capacity. Mol. Cell. Biol. 39:e00264–18
    [Google Scholar]
  26. 26.
    Sedgwick AE, Clancy JW, Olivia Balmert M, D'Souza-Schorey C 2015. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci. Rep. 5:14748
    [Google Scholar]
  27. 27.
    Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P et al. 2009. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19:1875–85
    [Google Scholar]
  28. 28.
    Wang T, Gilkes DM, Takano N, Xiang L, Luo W et al. 2014. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. PNAS 111:E3234–42
    [Google Scholar]
  29. 29.
    Li B, Antonyak MA, Zhang J, Cerione RA. 2012. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31:4740–49
    [Google Scholar]
  30. 30.
    Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G et al. 2015. Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat. Commun. 6:6919
    [Google Scholar]
  31. 31.
    Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q et al. 2019. Reassessment of exosome composition. Cell 177:428–45.e18
    [Google Scholar]
  32. 32.
    Clancy JW, Sheehan CS, Boomgarden AC, D'Souza-Schorey C 2022. Recruitment of DNA to tumor-derived microvesicles. Cell Rep. 38:110443
    [Google Scholar]
  33. 33.
    Clancy JW, Zhang Y, Sheehan C, D'Souza-Schorey C 2019. An ARF6-exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat. Cell Biol. 21:856–66
    [Google Scholar]
  34. 34.
    Muturi HT, Dreesen JD, Nilewski E, Jastrow H, Giebel B et al. 2013. Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior. PLOS ONE 8:e74654
    [Google Scholar]
  35. 35.
    Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X et al. 2021. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell Biol. 23:631–41
    [Google Scholar]
  36. 36.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP et al. 2016. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. PNAS 113:E968–77
    [Google Scholar]
  37. 37.
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G et al. 2012. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14:677–85
    [Google Scholar]
  38. 38.
    Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE et al. 2016. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6:22519
    [Google Scholar]
  39. 39.
    Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M et al. 2020. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182:1044–61.e18
    [Google Scholar]
  40. 40.
    Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. 2012. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. PNAS 109:4146–51
    [Google Scholar]
  41. 41.
    Wang Q, Lu Q. 2017. Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat. Commun. 8:709
    [Google Scholar]
  42. 42.
    Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. 2018. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9:960
    [Google Scholar]
  43. 43.
    Lee H, Li C, Zhang Y, Zhang D, Otterbein LE, Jin Y 2019. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J. Exp. Med. 216:2202–20
    [Google Scholar]
  44. 44.
    Ayre DC, Chute IC, Joy AP, Barnett DA, Hogan AM et al. 2017. CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo. Sci. Rep. 7:8642
    [Google Scholar]
  45. 45.
    Vagner T, Spinelli C, Minciacchi VR, Balaj L, Zandian M et al. 2018. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7:1505403
    [Google Scholar]
  46. 46.
    Reis-Sobreiro M, Chen JF, Novitskaya T, You S, Morley S et al. 2018. Emerin deregulation links nuclear shape instability to metastatic potential. Cancer Res. 78:6086–97
    [Google Scholar]
  47. 47.
    Ratajczak MZ, Ratajczak J. 2020. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future?. Leukemia 34:3126–35
    [Google Scholar]
  48. 48.
    Malkin EZ, Bratman SV. 2020. Bioactive DNA from extracellular vesicles and particles. Cell Death. Dis. 11:584
    [Google Scholar]
  49. 49.
    Garcia-Martin R, Wang G, Brandao BB, Zanotto TM, Shah S et al. 2022. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601:446–51
    [Google Scholar]
  50. 50.
    Chu KJ, Ma YS, Jiang XH, Wu TM, Wu ZJ et al. 2020. Whole-transcriptome sequencing identifies key differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs associated with CHOL. Mol. Ther. Nucleic Acids 21:592–603
    [Google Scholar]
  51. 51.
    Shi X, Wang B, Feng X, Xu Y, Lu K, Sun M. 2020. circRNAs and exosomes: a mysterious frontier for human cancer. Mol. Ther. Nucleic Acids 19:384–92
    [Google Scholar]
  52. 52.
    Degli Esposti C, Iadarola B, Maestri S, Beltrami C, Lavezzari D et al. 2021. Exosomes from plasma of neuroblastoma patients contain doublestranded DNA reflecting the mutational status of parental tumor cells. Int. J. Mol. Sci. 22:73667
    [Google Scholar]
  53. 53.
    Maire CL, Fuh MM, Kaulich K, Fita KD, Stevic I et al. 2021. Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro. Oncol. 23:1087–99
    [Google Scholar]
  54. 54.
    Hinshaw DC, Shevde LA. 2019. The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–66
    [Google Scholar]
  55. 55.
    Stefanius K, Servage K, de Souza Santos M, Gray HF, Toombs JE et al. 2019. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. Elife 8:e40226
    [Google Scholar]
  56. 56.
    Webber J, Steadman R, Mason MD, Tabi Z, Clayton A 2010. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70:9621–30
    [Google Scholar]
  57. 57.
    Wang D, Zhao C, Xu F, Zhang A, Jin M et al. 2021. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 11:2860–75
    [Google Scholar]
  58. 58.
    Wu HJ, Hao M, Yeo SK, Guan JL. 2020. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene 39:2539–49
    [Google Scholar]
  59. 59.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR et al. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–56
    [Google Scholar]
  60. 60.
    Sansone P, Savini C, Kurelac I, Chang Q, Amato LB et al. 2017. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. PNAS 114:E9066–75
    [Google Scholar]
  61. 61.
    Zhao H, Yang L, Baddour J, Achreja A, Bernard V et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 5:e10250
    [Google Scholar]
  62. 62.
    Yan W, Jiang S. 2020. Immune cell-derived exosomes in the cancer-immunity cycle. Trends Cancer 6:506–17
    [Google Scholar]
  63. 63.
    Liu J, Geng X, Hou J, Wu G. 2021. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int. 21:389
    [Google Scholar]
  64. 64.
    Kugeratski FG, Kalluri R. 2021. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J. 288:10–35
    [Google Scholar]
  65. 65.
    Ham S, Lima LG, Chai EPZ, Muller A, Lobb RJ et al. 2018. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling. Front. Immunol. 9:871
    [Google Scholar]
  66. 66.
    Linton SS, Abraham T, Liao J, Clawson GA, Butler PJ et al. 2018. Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages. PLOS ONE 13:e0206759
    [Google Scholar]
  67. 67.
    Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. 2017. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168:692–706
    [Google Scholar]
  68. 68.
    He C, Hua W, Liu J, Fan L, Wang H, Sun G. 2020. Exosomes derived from endoplasmic reticulum-stressed liver cancer cells enhance the expression of cytokines in macrophages via the STAT3 signaling pathway. Oncol. Lett. 20:589–600
    [Google Scholar]
  69. 69.
    Ying X, Wu Q, Wu X, Zhu Q, Wang X et al. 2016. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 7:43076–87
    [Google Scholar]
  70. 70.
    Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI et al. 2018. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9:771
    [Google Scholar]
  71. 71.
    Hsieh CH, Tai SK, Yang MH. 2018. Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering MiR-21-abundant exosomes. Neoplasia 20:775–88
    [Google Scholar]
  72. 72.
    Wang X, Luo G, Zhang K, Cao J, Huang C et al. 2018. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 78:4586–98
    [Google Scholar]
  73. 73.
    Wang D, Wang X, Si M, Yang J, Sun S et al. 2020. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474:36–52
    [Google Scholar]
  74. 74.
    Pathania AS, Prathipati P, Challagundla KB. 2021. New insights into exosome mediated tumor-immune escape: clinical perspectives and therapeutic strategies. Biochim. Biophys. Acta Rev. Cancer 1876:188624
    [Google Scholar]
  75. 75.
    Hwang WL, Lan HY, Cheng WC, Huang SC, Yang MH. 2019. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J. Hematol. Oncol. 12:10
    [Google Scholar]
  76. 76.
    Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. 2018. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol. Cancer 17:146
    [Google Scholar]
  77. 77.
    Leal AC, Mizurini DM, Gomes T, Rochael NC, Saraiva EM et al. 2017. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci. Rep. 7:6438
    [Google Scholar]
  78. 78.
    Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M et al. 2010. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Investig. 120:457–71
    [Google Scholar]
  79. 79.
    Guo X, Qiu W, Liu Q, Qian M, Wang S et al. 2018. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten pathways. Oncogene 37:4239–59
    [Google Scholar]
  80. 80.
    Javeed N, Gustafson MP, Dutta SK, Lin Y, Bamlet WR et al. 2017. Immunosuppressive CD14+HLA-DRlo/neg monocytes are elevated in pancreatic cancer and “primed” by tumor-derived exosomes. Oncoimmunology 6:e1252013
    [Google Scholar]
  81. 81.
    Haderk F, Schulz R, Iskar M, Cid LL, Worst T et al. 2017. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol. 2:13eaah5509
    [Google Scholar]
  82. 82.
    Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL et al. 2018. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7:e1412909
    [Google Scholar]
  83. 83.
    Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. 2014. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell. Immunol. 292:65–69
    [Google Scholar]
  84. 84.
    Yu S, Liu C, Su K, Wang J, Liu Y et al. 2007. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178:6867–75
    [Google Scholar]
  85. 85.
    Torralba D, Baixauli F, Villarroya-Beltri C, Fernandez-Delgado I, Latorre-Pellicer A et al. 2018. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9:2658
    [Google Scholar]
  86. 86.
    Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ et al. 2017. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198:1649–59
    [Google Scholar]
  87. 87.
    Diamond JM, Vanpouille-Box C, Spada S, Rudqvist NP, Chapman JR et al. 2018. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6:910–20
    [Google Scholar]
  88. 88.
    Jiang M, Zhang W, Zhang R, Liu P, Ye Y et al. 2020. Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene 39:4681–94
    [Google Scholar]
  89. 89.
    Gao Y, Xu H, Li N, Wang H, Ma L et al. 2020. Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression. Cell Commun. Signal. 18:106
    [Google Scholar]
  90. 90.
    Li L, Cao B, Liang X, Lu S, Luo H et al. 2019. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene 38:2830–43
    [Google Scholar]
  91. 91.
    Briand J, Garnier D, Nadaradjane A, Clement-Colmou K, Potiron V et al. 2020. Radiotherapy-induced overexpression of exosomal miRNA-378a-3p in cancer cells limits natural killer cells cytotoxicity. Epigenomics 12:397–408
    [Google Scholar]
  92. 92.
    Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C et al. 2005. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65:5238–47
    [Google Scholar]
  93. 93.
    Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. 2021. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39:583–609
    [Google Scholar]
  94. 94.
    Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M et al. 2011. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. PNAS 108:15336–41
    [Google Scholar]
  95. 95.
    Capello M, Vykoukal JV, Katayama H, Bantis LE, Wang H et al. 2019. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 10:254
    [Google Scholar]
  96. 96.
    Ye L, Zhang Q, Cheng Y, Chen X, Wang G et al. 2018. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J. Immunother. Cancer 6:145
    [Google Scholar]
  97. 97.
    Han S, Feng S, Ren M, Ma E, Wang X et al. 2014. Glioma cell-derived placental growth factor induces regulatory B cells. Int. J. Biochem. Cell Biol. 57:63–68
    [Google Scholar]
  98. 98.
    Pucci F, Garris C, Lai CP, Newton A, Pfirschke C et al. 2016. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242–46
    [Google Scholar]
  99. 99.
    Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE et al. 2005. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol. Dis. 35:169–73
    [Google Scholar]
  100. 100.
    Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. 2009. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J. Immunol. 183:3720–30
    [Google Scholar]
  101. 101.
    Huber V, Fais S, Iero M, Lugini L, Canese P et al. 2005. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–804
    [Google Scholar]
  102. 102.
    Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC et al. 2018. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv. 4:eaar2766
    [Google Scholar]
  103. 103.
    Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. 2018. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 24:896–905
    [Google Scholar]
  104. 104.
    Yang Y, Li CW, Chan LC, Wei Y, Hsu JM et al. 2018. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28:862–64
    [Google Scholar]
  105. 105.
    Daassi D, Mahoney KM, Freeman GJ. 2020. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 20:209–15
    [Google Scholar]
  106. 106.
    Gifford V, Itoh Y. 2019. MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms. Biochem. Soc. Trans. 47:811–26
    [Google Scholar]
  107. 107.
    Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM et al. 2012. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181:1573–84
    [Google Scholar]
  108. 108.
    Ciardiello C, Leone A, Lanuti P, Roca MS, Moccia T et al. 2019. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J. Exp. Clin. Cancer Res. 38:317
    [Google Scholar]
  109. 109.
    Hager MH, Morley S, Bielenberg DR, Gao S, Morello M et al. 2012. DIAPH3 governs the cellular transition to the amoeboid tumour phenotype. EMBO Mol. Med. 4:743–60
    [Google Scholar]
  110. 110.
    Di Vizio D, Kim J, Hager MH, Morello M, Yang W et al. 2009. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69:5601–9
    [Google Scholar]
  111. 111.
    Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S et al. 2013. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 5:1159–68
    [Google Scholar]
  112. 112.
    Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. 2015. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 6:7164
    [Google Scholar]
  113. 113.
    Sung BH, von Lersner A, Guerrero J, Krystofiak ES, Inman D et al. 2020. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 11:2092
    [Google Scholar]
  114. 114.
    Bertolini I, Ghosh JC, Kossenkov AV, Mulugu S, Krishn SR et al. 2020. Small extracellular vesicle regulation of mitochondrial dynamics reprograms a hypoxic tumor microenvironment. Dev. Cell 55:163–77.e6
    [Google Scholar]
  115. 115.
    Ma L, Li Y, Peng J, Wu D, Zhao X et al. 2015. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25:24–38
    [Google Scholar]
  116. 116.
    Fan C, Shi X, Zhao K, Wang L, Shi K et al. 2022. Cell migration orchestrates migrasome formation by shaping retraction fibers. J. Cell Biol. 221:4e202109168
    [Google Scholar]
  117. 117.
    Wu D, Xu Y, Ding T, Zu Y, Yang C, Yu L 2017. Pairing of integrins with ECM proteins determines migrasome formation. Cell Res. 27:1397–400
    [Google Scholar]
  118. 118.
    Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. 2013. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. PNAS 110:17380–85
    [Google Scholar]
  119. 119.
    Franzen CA, Blackwell RH, Todorovic V, Greco KA, Foreman KE et al. 2015. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis 4:e163
    [Google Scholar]
  120. 120.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B et al. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18:883–91
    [Google Scholar]
  121. 121.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17:816–26
    [Google Scholar]
  122. 122.
    Qi M, Xia Y, Wu Y, Zhang Z, Wang X et al. 2022. Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat. Commun. 13:897
    [Google Scholar]
  123. 123.
    Li XQ, Zhang R, Lu H, Yue XM, Huang YF. 2022. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res. 82:81560–74
    [Google Scholar]
  124. 124.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature 527:329–35
    [Google Scholar]
  125. 125.
    He M, Crow J, Roth M, Zeng Y, Godwin AK. 2014. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14:3773–80
    [Google Scholar]
  126. 126.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST et al. 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–82
    [Google Scholar]
  127. 127.
    Tucci M, Passarelli A, Mannavola F, Stucci LS, Ascierto PA et al. 2018. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncoimmunology 7:e1387706
    [Google Scholar]
  128. 128.
    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF et al. 2017. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503
    [Google Scholar]
  129. 129.
    Skog J, Würdinger T, van Rijn S, Meijer D, Gainche L et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470–76
    [Google Scholar]
  130. 130.
    Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK et al. 2013. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol. Ther. Nucleic Acids 2:e109
    [Google Scholar]
  131. 131.
    Fang T, Lv H, Lv G, Li T, Wang C et al. 2018. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 9:191
    [Google Scholar]
  132. 132.
    Zhou L, Wang W, Wang F, Yang S, Hu J et al. 2021. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol. Cancer 20:57
    [Google Scholar]
  133. 133.
    Wei S, Peng L, Yang J, Sang H, Jin D et al. 2020. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res. 39:32
    [Google Scholar]
  134. 134.
    Cao LQ, Yang XW, Chen YB, Zhang DW, Jiang XF, Xue P. 2019. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol. Cancer 18:148
    [Google Scholar]
  135. 135.
    Nakano T, Chen IH, Wang CC, Chen PJ, Tseng HP et al. 2019. Circulating exosomal miR-92b: its role for cancer immunoediting and clinical value for prediction of posttransplant hepatocellular carcinoma recurrence. Am. J. Transplant. 19:3250–62
    [Google Scholar]
  136. 136.
    Pang Y, Wang C, Lu L, Wang C, Sun Z, Xiao R 2019. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 130:204–13
    [Google Scholar]
  137. 137.
    Wu W, Yu X, Wu J, Wu T, Fan Y et al. 2021. Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag. Biosens. Bioelectron. 175:112835
    [Google Scholar]
  138. 138.
    Lee JU, Kim WH, Lee HS, Park KH, Sim SJ. 2019. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars. Small 15:e1804968
    [Google Scholar]
  139. 139.
    Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B et al. 2017. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer 16:156
    [Google Scholar]
  140. 140.
    Zhou C, Chen Y, He X, Zheng Z, Xue D. 2020. Functional implication of exosomal miR-217 and miR-23b-3p in the progression of prostate cancer. Onco Targets Ther. 13:11595–606
    [Google Scholar]
  141. 141.
    Liu J, Yoo J, Ho JY, Jung Y, Lee S et al. 2021. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J. Ovarian Res. 14:59
    [Google Scholar]
  142. 142.
    Sun N, Lee YT, Zhang RY, Kao R, Teng PC et al. 2020. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat. Commun. 11:4489
    [Google Scholar]
  143. 143.
    Shen X, Yang Y, Chen Y, Zhou C, Zhao X et al. 2022. Evaluation of EpCAM-specific exosomal lncRNAs as potential diagnostic biomarkers for lung cancer using droplet digital PCR. J. Mol. Med. 100:87–100
    [Google Scholar]
  144. 144.
    Gao J, Zhang H, Wang Z. 2020. A DNA tetrahedron nanoprobe-based fluorescence resonance energy transfer sensing platform for intracellular tumor-related miRNA detection. Analyst 145:3535–42
    [Google Scholar]
  145. 145.
    Zhang Y, Zhang X, Situ B, Wu Y, Luo S et al. 2021. Rapid electrochemical biosensor for sensitive profiling of exosomal microRNA based on multifunctional DNA tetrahedron assisted catalytic hairpin assembly. Biosens. Bioelectron. 183:113205
    [Google Scholar]
  146. 146.
    Krug AK, Enderle D, Karlovich C, Priewasser T, Bentink S et al. 2018. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 29:700–6
    [Google Scholar]
  147. 147.
    Kim Y, Shin S, Kim B, Lee KA 2019. Selecting short length nucleic acids localized in exosomes improves plasma EGFR mutation detection in NSCLC patients. Cancer Cell Int. 19:251
    [Google Scholar]
  148. 148.
    Garcia-Silva S, Benito-Martin A, Sanchez-Redondo S, Hernandez-Barranco A, Ximenez-Embun P et al. 2019. Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation. J. Exp. Med. 216:1061–70
    [Google Scholar]
  149. 149.
    Fineberg HV. 2013. The paradox of disease prevention: celebrated in principle, resisted in practice. JAMA 310:85–90
    [Google Scholar]
  150. 150.
    Kamerkar S, Leng C, Burenkova O, Jang SC, McCoy C et al. 2022. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci. Adv. 8:eabj7002
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-022116
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-022116
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error