1932

Abstract

Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-024831
2023-01-24
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-024831.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-024831&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Trefts E, Gannon M, Wasserman DH. 2017. The liver. Curr. Biol. 27:R1147–51
    [Google Scholar]
  2. 2.
    Han HS, Kang G, Kim JS, Choi BH, Koo SH. 2016. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 48:e218
    [Google Scholar]
  3. 3.
    Petersen MC, Vatner DF, Shulman GI. 2017. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13:572–87
    [Google Scholar]
  4. 4.
    Häussinger D, Lamers WH, Moorman AF. 1992. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93
    [Google Scholar]
  5. 5.
    Hou Y, Hu S, Li X, He W, Wu G. 2020. Amino acid metabolism in the liver: nutritional and physiological significance. Adv. Exp. Med. Biol. 1265:21–37
    [Google Scholar]
  6. 6.
    Nguyen P, Leray V, Diez M, Serisier S, Le Bloc'h J et al. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92:272–83
    [Google Scholar]
  7. 7.
    Meynard D, Babitt JL, Lin HY. 2014. The liver: conductor of systemic iron balance. Blood 123:168–76
    [Google Scholar]
  8. 8.
    Strnad P, Tacke F, Koch A, Trautwein C. 2017. Liver—guardian, modifier and target of sepsis. Nat. Rev. Gastroenterol. Hepatol. 14:55–66
    [Google Scholar]
  9. 9.
    Saxena R, Theise ND, Crawford JM. 1999. Microanatomy of the human liver—exploring the hidden interfaces. Hepatology 30:1339–46
    [Google Scholar]
  10. 10.
    Noël R. 1922. Recherches histo-physiologiques sur la cellule hépatique des mammifères Diss., Univ. de Paris Masson, Paris:
    [Google Scholar]
  11. 11.
    Deane HW. 1944. A cytological study of the diurnal cycle of the liver of the mouse in relation to storage and secretion. Anat. Rec. 88:39–65
    [Google Scholar]
  12. 12.
    Gebhardt R. 1992. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53:275–354
    [Google Scholar]
  13. 13.
    Jungermann K, Katz N. 1982. Functional hepatocellular heterogeneity. Hepatology 2:385S–95S
    [Google Scholar]
  14. 14.
    Jungermann K, Keitzmann T. 1996. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr. 16:179–203
    [Google Scholar]
  15. 15.
    Braeuning A, Ittrich C, Köhle C, Hailfinger S, Bonin M et al. 2006. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 273:5051–61
    [Google Scholar]
  16. 16.
    Brosch M, Kattler K, Herrmann A, von Schönfels W, Nordström K et al. 2018. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9:4150
    [Google Scholar]
  17. 17.
    Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D et al. 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–56
    [Google Scholar]
  18. 18.
    Droin C, Kholtei JE, Bahar Halpern K, Hurni C, Rozenberg M et al. 2021. Space-time logic of liver gene expression at sub-lobular scale. Nat. Metab. 3:43–58
    [Google Scholar]
  19. 19.
    Andrews TS, Atif J, Liu JC, Perciani CT, Ma XZ et al. 2021. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6:4821–40
    [Google Scholar]
  20. 20.
    Hildebrandt F, Andersson A, Saarenpää S, Larsson L, Van Hul N et al. 2021. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12:7046
    [Google Scholar]
  21. 21.
    Sun T, Annunziato S, Bergling S, Sheng C, Orsini V et al. 2021. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 28:1822–37.e10
    [Google Scholar]
  22. 22.
    Gougelet A, Torre C, Veber P, Sartor C, Bachelot L et al. 2014. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59:2344–57
    [Google Scholar]
  23. 23.
    Ben-Moshe S, Itzkovitz S. 2019. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16:395–410
    [Google Scholar]
  24. 24.
    Truksa J, Lee P, Beutler E. 2007. The role of STAT, AP-1, E-box and TIEG motifs in the regulation of hepcidin by IL-6 and BMP-9: lessons from human HAMP and murine Hamp1 and Hamp2 gene promoters. Blood Cells Mol. Dis. 39:255–62
    [Google Scholar]
  25. 25.
    Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY et al. 2020. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26:27–33.e4
    [Google Scholar]
  26. 26.
    He L, Pu W, Liu X, Zhang Z, Han M et al. 2021. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371:eabc4346
    [Google Scholar]
  27. 27.
    Wei Y, Wang YG, Jia Y, Li L, Yoon J et al. 2021. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371:eabb1625
    [Google Scholar]
  28. 28.
    Kietzmann T. 2017. Metabolic zonation of the liver: the oxygen gradient revisited. Redox. Biol. 11:622–30
    [Google Scholar]
  29. 29.
    Colnot S, Perret C. 2011. Liver zonation. Molecular Pathology of Liver Diseases SPS Monga 7–16 Boston: Springer
    [Google Scholar]
  30. 30.
    Dibner C, Schibler U, Albrecht U 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72:517–49
    [Google Scholar]
  31. 31.
    Mermet J, Yeung J, Naef F. 2017. Systems chronobiology: global analysis of gene regulation in a 24-hour periodic world. Cold Spring Harb. Perspect. Biol. 9:3a028720
    [Google Scholar]
  32. 32.
    Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S et al. 2009. Harmonics of circadian gene transcription in mammals. PLOS Genet. 5:e1000442
    [Google Scholar]
  33. 33.
    Zhu B, Zhang Q, Pan Y, Mace EM, York B et al. 2017. A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms. Cell Metab. 25:1305–19.e9
    [Google Scholar]
  34. 34.
    Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. 2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4:1165
    [Google Scholar]
  35. 35.
    Kumar Jha P, Challet E, Kalsbeek A 2015. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol. Cell. Endocrinol. 418:Part 174–88
    [Google Scholar]
  36. 36.
    Stephan FK, Zucker I. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. PNAS 69:1583–86
    [Google Scholar]
  37. 37.
    Moore RY, Eichler VB. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42:201–6
    [Google Scholar]
  38. 38.
    Adori C, Daraio T, Kuiper R, Barde S, Horvathova L et al. 2021. Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging. Sci. Adv. 7:30eabg5733
    [Google Scholar]
  39. 39.
    Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M et al. 2003. Adrenergic regulation of clock gene expression in mouse liver. PNAS 100:6795–800
    [Google Scholar]
  40. 40.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–61
    [Google Scholar]
  41. 41.
    Stephan FK, Swann JM, Sisk CL. 1979. Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav. Neural Biol. 25:346–63
    [Google Scholar]
  42. 42.
    Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U 2001. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20:7128–36
    [Google Scholar]
  43. 43.
    Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A et al. 2016. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30:909–24
    [Google Scholar]
  44. 44.
    Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. 2007. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLOS Biol. 5:e34
    [Google Scholar]
  45. 45.
    Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. 2009. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. PNAS 106:21453–58
    [Google Scholar]
  46. 46.
    Weger BD, Gobet C, David FPA, Atger F, Martin E et al. 2021. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. PNAS 118:3e2015803118
    [Google Scholar]
  47. 47.
    Chavan R, Feillet C, Costa SS, Delorme JE, Okabe T et al. 2016. Liver-derived ketone bodies are necessary for food anticipation. Nat. Commun. 7:10580
    [Google Scholar]
  48. 48.
    Martini T, Ripperger JA, Chavan R, Stumpe M, Netzahualcoyotzi C et al. 2021. The hepatic monocarboxylate transporter 1 (MCT1) contributes to the regulation of food anticipation in mice. Front. Physiol. 12:665476
    [Google Scholar]
  49. 49.
    Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12:1574–83
    [Google Scholar]
  50. 50.
    Buhr ED, Yoo SH, Takahashi JS. 2010. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–85
    [Google Scholar]
  51. 51.
    Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U. 2008. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev. 22:331–45
    [Google Scholar]
  52. 52.
    Katz N, Teutsch HF, Jungermann K, Sasse D. 1977. Heterogeneous reciprocal localization of fructose-1,6-bisphosphatase and of glucokinase in microdissected periportal and perivenous rat liver tissue. FEBS Lett. 83:272–76
    [Google Scholar]
  53. 53.
    Sasse D. 1975. Dynamics of liver glycogen: the topochemistry of glycogen synthesis, glycogen content and glycogenolysis under the experimental conditions of glycogen accumulation and depletion. Histochemistry 45:237–54
    [Google Scholar]
  54. 54.
    Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK. 2014. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 96:121–29
    [Google Scholar]
  55. 55.
    Jungermann K, Kietzmann T. 1997. Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver. Kidney Int. 51:402–12
    [Google Scholar]
  56. 56.
    Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S et al. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLOS Biol. 2:e377
    [Google Scholar]
  57. 57.
    Panda S, Antoch MP, Miller BH, Su AI, Schook AB et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–20
    [Google Scholar]
  58. 58.
    Lamia KA, Storch KF, Weitz CJ. 2008. Physiological significance of a peripheral tissue circadian clock. PNAS 105:15172–77
    [Google Scholar]
  59. 59.
    Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S et al. 2015. Zonation of hepatic fatty acid metabolism—the diversity of its regulation and the benefit of modeling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:641–56
    [Google Scholar]
  60. 60.
    Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. 2010. Bile acids as regulators of hepatic lipid and glucose metabolism. Digestive Dis. 28:220–24
    [Google Scholar]
  61. 61.
    Ugele B, Kempen H, Gebhardt R, Meijer P, Burger H, Princen H. 1991. Heterogeneity of rat liver parenchyma in cholesterol 7α-hydroxylase and bile acid synthesis. Biochem. J. 276:73–77
    [Google Scholar]
  62. 62.
    Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M et al. 2014. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 19:319–30
    [Google Scholar]
  63. 63.
    Plakogiannis R, Cohen H. 2007. Optimal low-density lipoprotein cholesterol lowering—morning versus evening statin administration. Ann. Pharmacother. 41:106–10
    [Google Scholar]
  64. 64.
    Saito Y, Yoshida S, Nakaya N, Hata Y, Goto Y. 1991. Comparison between morning and evening doses of simvastatin in hyperlipidemic subjects. A double-blind comparative study. Arterioscler. Thromb. 11:816–26
    [Google Scholar]
  65. 65.
    Zmrzljak UP, Rozman D. 2012. Circadian regulation of the hepatic endobiotic and xenobiotic detoxification pathways: the time matters. Chem. Res. Toxicol. 25:811–24
    [Google Scholar]
  66. 66.
    Martini T, Stojan J, Rozman D, Prosenc Zmrzljak U. 2017. Interaction of PER2 with the constitutive androstane receptor possibly links circadian rhythms to metabolism. Acta Chim. Slov. 64:571–76
    [Google Scholar]
  67. 67.
    Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U 2010. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24:345–57
    [Google Scholar]
  68. 68.
    Yang X, Downes M, Yu RT, Bookout AL, He W et al. 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–10
    [Google Scholar]
  69. 69.
    Gooley JJ, Chua EC. 2014. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J. Genet. Genom. 41:231–50
    [Google Scholar]
  70. 70.
    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G et al. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–45
    [Google Scholar]
  71. 71.
    Zanger UM, Schwab M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138:103–41
    [Google Scholar]
  72. 72.
    Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J et al. 2019. Medicine in the fourth dimension. Cell Metab. 30:238–50
    [Google Scholar]
  73. 73.
    Gachon F, Firsov D. 2011. The role of circadian timing system on drug metabolism and detoxification. Expert Opin. Drug Metab. Toxicol. 7:147–58
    [Google Scholar]
  74. 74.
    Gachon F. 2007. Physiological function of PARbZip circadian clock-controlled transcription factors. Ann. Med. 39:562–71
    [Google Scholar]
  75. 75.
    Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. 2006. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 4:25–36
    [Google Scholar]
  76. 76.
    Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–28
    [Google Scholar]
  77. 77.
    Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J et al. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–40
    [Google Scholar]
  78. 78.
    Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–54
    [Google Scholar]
  79. 79.
    Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL et al. 2008. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22:1753–57
    [Google Scholar]
  80. 80.
    Imai S. 2010.. “ Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim. Biophys. Acta Proteins Proteom. 1804:1584–90
    [Google Scholar]
  81. 81.
    Alfieri A, Malito E, Orru R, Fraaije MW, Mattevi A. 2008. Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase. PNAS 105:6572–77
    [Google Scholar]
  82. 82.
    Eswaramoorthy S, Bonanno JB, Burley SK, Swaminathan S. 2006. Mechanism of action of a flavin-containing monooxygenase. PNAS 103:9832–37
    [Google Scholar]
  83. 83.
    Quistorff B, Grunnet N. 1987. Dual-digitonin-pulse perfusion. Concurrent sampling of periportal and perivenous cytosol of rat liver for determination of metabolites and enzyme activities. Biochem. J. 243:87–95
    [Google Scholar]
  84. 84.
    Tosh D, Alberti GM, Agius L. 1988. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem. J. 256:197–204
    [Google Scholar]
  85. 85.
    Manella G, Asher G. 2016. The circadian nature of mitochondrial biology. Front. Endocrinol. 7:162
    [Google Scholar]
  86. 86.
    Häussinger D, Schliess F. 2007. Glutamine metabolism and signaling in the liver. Front. Biosci. 12:371–91
    [Google Scholar]
  87. 87.
    Lin R, Mo Y, Zha H, Qu Z, Xie P et al. 2017. CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis. Mol. Cell 68:198–209.e6
    [Google Scholar]
  88. 88.
    Russell JO, Monga SP. 2018. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu. Rev. Pathol. Mech. Dis. 13:351–78
    [Google Scholar]
  89. 89.
    Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, Diegel CR et al. 2014. β-Catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation. ! Hepatology 60:964–76
    [Google Scholar]
  90. 90.
    Sun T, Pikiolek M, Orsini V, Bergling S, Holwerda S et al. 2020. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 26:97–107.e6
    [Google Scholar]
  91. 91.
    Ma R, Martinez-Ramirez AS, Borders TL, Gao F, Sosa-Pineda B. 2020. Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts. eLife 9:e46206
    [Google Scholar]
  92. 92.
    Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. 2018. Endothelial Wnts regulate β-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. Hepatol. Commun. 2:845–60
    [Google Scholar]
  93. 93.
    Rocha AS, Vidal V, Mertz M, Kendall TJ, Charlet A et al. 2015. The angiocrine factor Rspondin3 is a key determinant of liver zonation. Cell Rep. 13:1757–64
    [Google Scholar]
  94. 94.
    Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS et al. 2006. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell 10:759–70
    [Google Scholar]
  95. 95.
    Park YK, Park B, Lee S, Choi K, Moon Y, Park H. 2013. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J. Biol. Chem. 288:26311–22
    [Google Scholar]
  96. 96.
    Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M et al. 2016. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18:467–79
    [Google Scholar]
  97. 97.
    Matz-Soja M, Aleithe S, Marbach E, Bottger J, Arnold K et al. 2014. Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels. Cell Commun. Signal. 12:11
    [Google Scholar]
  98. 98.
    Braeuning A, Menzel M, Kleinschnitz EM, Harada N, Tamai Y et al. 2007. Serum components and activated Ha-ras antagonize expression of perivenous marker genes stimulated by β-catenin signaling in mouse hepatocytes. FEBS J. 274:4766–77
    [Google Scholar]
  99. 99.
    Cheng X, Kim SY, Okamoto H, Xin Y, Yancopoulos GD et al. 2018. Glucagon contributes to liver zonation. PNAS 115:E4111–19
    [Google Scholar]
  100. 100.
    Sekine S, Ogawa R, McManus MT, Kanai Y, Hebrok M. 2009. Dicer is required for proper liver zonation. J. Pathol. 219:365–72
    [Google Scholar]
  101. 101.
    Cox AG, Hwang KL, Brown KK, Evason K, Beltz S et al. 2016. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 18:886–96
    [Google Scholar]
  102. 102.
    Planas-Paz L, Sun T, Pikiolek M, Cochran NR, Bergling S et al. 2019. YAP, but not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25:39–53.e10
    [Google Scholar]
  103. 103.
    Verboven E, Moya IM, Sansores-Garcia L, Xie J, Hillen H et al. 2021. Regeneration defects in Yap and Taz mutant mouse livers are caused by bile duct disruption and cholestasis. Gastroenterology 160:847–62
    [Google Scholar]
  104. 104.
    Fitamant J, Kottakis F, Benhamouche S, Tian HS, Chuvin N et al. 2015. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep. 10:1692–707
    [Google Scholar]
  105. 105.
    Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68
    [Google Scholar]
  106. 106.
    Menet JS, Pescatore S, Rosbash M. 2014. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28:8–13
    [Google Scholar]
  107. 107.
    Ripperger JA, Schibler U. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369–74
    [Google Scholar]
  108. 108.
    Ueshima T, Kawamoto T, Honda KK, Noshiro M, Fujimoto K et al. 2012. Identification of a new clock-related element EL-box involved in circadian regulation by BMAL1/CLOCK and HES1. Gene 510:118–25
    [Google Scholar]
  109. 109.
    Koike N, Yoo SH, Huang HC, Kumar V, Lee C et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–54
    [Google Scholar]
  110. 110.
    Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 2011. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLOS Biol. 9:e1000595
    [Google Scholar]
  111. 111.
    Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC et al. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83
    [Google Scholar]
  112. 112.
    Anzulovich A, Mir A, Brewer M, Ferreyra G, Vinson C, Baler R. 2006. Elovl3: a model gene to dissect homeostatic links between the circadian clock and nutritional status. J. Lipid Res. 47:2690–700
    [Google Scholar]
  113. 113.
    Solt LA, Kojetin DJ, Burris TP. 2011. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3:623–38
    [Google Scholar]
  114. 114.
    Guillaumond F, Dardente H, Giguere V, Cermakian N. 2005. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20:391–403
    [Google Scholar]
  115. 115.
    Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D et al. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–60
    [Google Scholar]
  116. 116.
    Chung S, Son GH, Kim K. 2011. Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim. Biophys. Acta Mol. Basis Dis. 1812:581–91
    [Google Scholar]
  117. 117.
    Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D et al. 2006. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4:163–73
    [Google Scholar]
  118. 118.
    Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O et al. 2018. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 19:12e46255
    [Google Scholar]
  119. 119.
    Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH et al. 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–56
    [Google Scholar]
  120. 120.
    Christoffels VM, Grange T, Kaestner KH, Cole TJ, Darlington GJ et al. 1998. Glucocorticoid receptor, C/EBP, HNF3, and protein kinase A coordinately activate the glucocorticoid response unit of the carbamoylphosphate synthetase I gene. Mol. Cell. Biol. 18:6305–15
    [Google Scholar]
  121. 121.
    Grygiel-Gorniak B. 2014. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr. J. 13:17
    [Google Scholar]
  122. 122.
    Liu C, Li S, Liu T, Borjigin J, Lin JD. 2007. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447:477–81
    [Google Scholar]
  123. 123.
    Gerber A, Esnault C, Aubert G, Treisman R, Pralong F, Schibler U 2013. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152:492–503
    [Google Scholar]
  124. 124.
    Kobayashi M, Morinibu A, Koyasu S, Goto Y, Hiraoka M, Harada H. 2017. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes. FEBS J. 284:3804–16
    [Google Scholar]
  125. 125.
    Manella G, Aviram R, Bolshette N, Muvkadi S, Golik M et al. 2020. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. PNAS 117:779–86
    [Google Scholar]
  126. 126.
    Wang J, Symul L, Yeung J, Gobet C, Sobel J et al. 2018. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver. PNAS 115:E1916–25
    [Google Scholar]
  127. 127.
    El-Athman R, Fuhr L, Relogio A. 2018. A systems-level analysis reveals circadian regulation of splicing in colorectal cancer. EBioMedicine 33:68–81
    [Google Scholar]
  128. 128.
    Preussner M, Wilhelmi I, Schultz AS, Finkernagel F, Michel M et al. 2014. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol. Cell 54:651–62
    [Google Scholar]
  129. 129.
    Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F et al. 2014. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. PNAS 111:167–72
    [Google Scholar]
  130. 130.
    Luck S, Thurley K, Thaben PF, Westermark PO. 2014. Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell Rep. 9:741–51
    [Google Scholar]
  131. 131.
    Atger F, Gobet C, Marquis J, Martin E, Wang J et al. 2015. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. PNAS 112:E6579–88
    [Google Scholar]
  132. 132.
    Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139–48
    [Google Scholar]
  133. 133.
    Robles MS, Humphrey SJ, Mann M. 2017. Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25:118–27
    [Google Scholar]
  134. 134.
    Cho H, Zhao X, Hatori M, Yu RT, Barish GD et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–27
    [Google Scholar]
  135. 135.
    Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F et al. 2012. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLOS Biol. 10:e1001442
    [Google Scholar]
  136. 136.
    Sobel JA, Krier I, Andersin T, Raghav S, Canella D et al. 2017. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. PLOS Biol. 15:e2001069
    [Google Scholar]
  137. 137.
    Mermet J, Yeung J, Hurni C, Mauvoisin D, Gustafson K et al. 2018. Clock-dependent chromatin topology modulates circadian transcription and behavior. Genes Dev. 32:347–58
    [Google Scholar]
  138. 138.
    Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML 2003. Urea cycle disorders overview. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle, WA: University of Washington updated June 22, 2017 )
    [Google Scholar]
  139. 139.
    Spodenkiewicz M, Diez-Fernandez C, Rufenacht V, Gemperle-Britschgi C, Haberle J. 2016. Minireview on glutamine synthetase deficiency, an ultra-rare inborn error of amino acid biosynthesis. Biology 5:440
    [Google Scholar]
  140. 140.
    Wang X, Danese D, Brown T, Baldwin J, Sajeev G et al. 2021. Primary hyperoxaluria type 1 disease manifestations and healthcare utilization: a multi-country, online, chart review study. Front. Med. 8:703305
    [Google Scholar]
  141. 141.
    van der Ploeg AT, Reuser AJ 2008. Pompe's disease. Lancet 372:1342–53
    [Google Scholar]
  142. 142.
    Newton JL, Jones DEJ. 2012. Managing systemic symptoms in chronic liver disease. J. Hepatol. 56:S46–55
    [Google Scholar]
  143. 143.
    Brunt EM. 2010. Pathology of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7:195–203
    [Google Scholar]
  144. 144.
    Schwarz J-M, Linfoot P, Dare D, Aghajanian K. 2003. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77:43–50
    [Google Scholar]
  145. 145.
    Jakubowicz D, Barnea M, Wainstein J, Froy O. 2013. High caloric intake at breakfast versus dinner differentially influences weight loss of overweight and obese women. Obesity 21:2504–12
    [Google Scholar]
  146. 146.
    Maury E, Ramsey KM, Bass J. 2010. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ. Res. 106:447–62
    [Google Scholar]
  147. 147.
    Meng H, Gonzales NM, Lonard DM, Putluri N, Zhu B et al. 2020. XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis. Nat. Commun. 11:6215
    [Google Scholar]
  148. 148.
    Annunziato S, Sun T, Tchorz JS. 2022. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 76:3888–99
    [Google Scholar]
  149. 149.
    Panday R, Monckton CP, Khetani SR. 2022. The role of liver zonation in physiology, regeneration, and disease. Semin. Liver Dis. 42:1–16
    [Google Scholar]
  150. 150.
    Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S et al. 2007. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52
    [Google Scholar]
  151. 151.
    Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP et al. 2009. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69:7385–92
    [Google Scholar]
  152. 152.
    Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M et al. 2019. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25:2116–26
    [Google Scholar]
  153. 153.
    Ruiz de Galarreta M, Bresnahan E, Molina-Sanchez P, Lindblad KE, Maier B et al. 2019. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9:1124–41
    [Google Scholar]
  154. 154.
    Adebayo Michael AO, Ko S, Tao J, Moghe A, Yang H et al. 2019. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. Cell Metab. 29:1135–50.e6
    [Google Scholar]
  155. 155.
    Avila MA, Dufour JF, Gerbes AL, Zoulim F, Bataller R et al. 2020. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut 69:764–80
    [Google Scholar]
  156. 156.
    Doody EE, Groebner JL, Walker JR, Frizol BM, Tuma DJ et al. 2017. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 313:G558–69
    [Google Scholar]
  157. 157.
    Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. 2017. Primary sclerosing cholangitis—a comprehensive review. J. Hepatol. 67:1298–323
    [Google Scholar]
  158. 158.
    Trauner M, Meier PJ, Boyer JL. 1998. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339:1217–27
    [Google Scholar]
  159. 159.
    Li W, Yang L, He Q, Hu C, Zhu L et al. 2019. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 25:54–68.e5
    [Google Scholar]
  160. 160.
    Anundi I, Lahteenmaki T, Rundgren M, Moldeus P, Lindros KO. 1993. Zonation of acetaminophen metabolism and cytochrome P450 2E1-mediated toxicity studied in isolated periportal and perivenous hepatocytes. Biochem. Pharmacol. 45:1251–59
    [Google Scholar]
  161. 161.
    DeBruyne JP, Weaver DR, Dallmann R. 2014. The hepatic circadian clock modulates xenobiotic metabolism in mice. J. Biol. Rhythms 29:277–87
    [Google Scholar]
  162. 162.
    van den Broek MA, Olde Damink SW, Dejong CH, Lang H, Malago M et al. 2008. Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment. Liver Int. 28:767–80
    [Google Scholar]
  163. 163.
    Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA, Servillo G 2016. Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J. Biol. Chem. 291:23318–29
    [Google Scholar]
  164. 164.
    Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P. 1996. Transcriptional control of circadian hormone synthesis via the CREM feedback loop. PNAS 93:14140–45
    [Google Scholar]
  165. 165.
    Servillo G, Della Fazia MA, Sassone-Corsi P 1998. Transcription factor CREM coordinates the timing of hepatocyte proliferation in the regenerating liver. Genes Dev. 12:3639–43
    [Google Scholar]
  166. 166.
    Lin Y, Lin L, Gao L, Wang S, Wu B 2020. Rev-erbα regulates hepatic ischemia-reperfusion injury in mice. Biochem. Biophys. Res. Commun. 529:916–21
    [Google Scholar]
  167. 167.
    Montaigne D, Marechal X, Modine T, Coisne A, Mouton S et al. 2018. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet 391:59–69
    [Google Scholar]
  168. 168.
    Innominato PF, Roche VP, Palesh OG, Ulusakarya A, Spiegel D, Levi FA. 2014. The circadian timing system in clinical oncology. Ann. Med. 46:191–207
    [Google Scholar]
  169. 169.
    Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. 2010. Circadian timing in cancer treatments. Annu. Rev. Pharmacol. Toxicol. 50:377–421
    [Google Scholar]
  170. 170.
    Karaboue A, Collon T, Pavese I, Bodiguel V, Cucherousset J et al. 2022. Time-dependent efficacy of checkpoint inhibitor nivolumab: results from a pilot study in patients with metastatic non-small-cell lung cancer. Cancers 14:4896
    [Google Scholar]
  171. 171.
    Miller S, Hirota T. 2020. Pharmacological interventions to circadian clocks and their molecular bases. J. Mol. Biol. 432:3498–514
    [Google Scholar]
  172. 172.
    Rahman S, Wittine K, Sedic M, Markova-Car EP. 2020. Small molecules targeting biological clock; a novel prospective for anti-cancer drugs. Molecules 25:214937
    [Google Scholar]
  173. 173.
    Iurisci I, Filipski E, Reinhardt J, Bach S, Gianella-Borradori A et al. 2006. Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor. Cancer Res. 66:10720–28
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-024831
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-024831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error