1932

Abstract

Zika virus (ZIKV) is an emerging virus from the family that is transmitted to humans by mosquito vectors and represents an important health problem. Infections in pregnant women are of major concern because of potential devastating consequences during pregnancy and have been associated with microcephaly in newborns. ZIKV has a unique ability to use the host machinery to promote viral replication in a tissue-specific manner, resulting in characteristic pathological disorders. Recent studies have proposed that the host ubiquitin system acts as a major determinant of ZIKV tropism by providing the virus with an enhanced ability to enter new cells. In addition, ZIKV has developed mechanisms to evade the host immune response, thereby allowing the establishment of viral persistence and enhancing viral pathogenesis. We discuss recent reports on the mechanisms used by ZIKV to replicate efficiently, and we highlight potential new areas of research for the development of therapeutic approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-034739
2023-01-24
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-034739.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-034739&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sirohi D, Chen Z, Sun L, Klose T, Pierson TC et al. 2016. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352:467–70
    [Google Scholar]
  2. 2.
    Gutierrez-Bugallo G, Piedra LA, Rodriguez M, Bisset JA, Lourenco-de-Oliveira R et al. 2019. Vector-borne transmission and evolution of Zika virus. Nat. Ecol. Evol. 3:561–69
    [Google Scholar]
  3. 3.
    Pletnev AG, Maximova OA, Liu G, Kenney H, Nagata BM et al. 2021. Epididymal epithelium propels early sexual transmission of Zika virus in the absence of interferon signaling. Nat. Commun. 12:2469
    [Google Scholar]
  4. 4.
    Miner JJ. 2017. Congenital Zika virus infection: more than just microcephaly. Sci. Transl. Med. 9:8195
    [Google Scholar]
  5. 5.
    Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46:509–20
    [Google Scholar]
  6. 6.
    Simpson DI. 1964. Zika Virus infection in man. Trans. R. Soc. Trop. Med. Hyg. 58:335–38
    [Google Scholar]
  7. 7.
    Moore DL, Causey OR, Carey DE, Reddy S, Cooke AR et al. 1975. Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann. Trop. Med. Parasitol. 69:49–64
    [Google Scholar]
  8. 8.
    Olson JG, Ksiazek TG, Suhandiman T. 1981. Zika virus, a cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 75:389–93
    [Google Scholar]
  9. 9.
    Petersen LR, Jamieson DJ, Honein MA. 2016. Zika virus. N. Engl. J. Med. 375:294–95
    [Google Scholar]
  10. 10.
    Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL et al. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360:2536–43
    [Google Scholar]
  11. 11.
    Ribeiro IG, Andrade MR, Silva JM, Silva ZM, Costa MAO et al. 2018. Microcephaly in Piauí, Brazil: descriptive study during the Zika virus epidemic, 2015–2016. Epidemiol. Serv. Saúde 27:e20163692
    [Google Scholar]
  12. 12.
    World Health Organ. (WHO) 2022. Countries and territories with current or previous Zika virus transmission Map, WHO Health Emerg. Progr. Geneva: https://cdn.who.int/media/docs/default-source/documents/emergencies/zika/map-of-countries_with_zika_transmission_feb2022.pdf
    [Google Scholar]
  13. 13.
    Inst. Nac. de Salud de Colomb. (INS) 2021. Reporte boletin epidemiologico semana 43 Rep. INS Bogotá, Colombia:
    [Google Scholar]
  14. 14.
    Dir. Gen. Epidemiol. (DGE) 2021. Boletin epidemiológico: sistema nacional de vigilancia epidemológica semana 41. Rep. Secr. de Salud de Méx. Mexico City:
    [Google Scholar]
  15. 15.
    Carod-Artal FJ. 2018. Neurological complications of Zika virus infection. Expert Rev. Anti. Infect. Ther. 16:399–410
    [Google Scholar]
  16. 16.
    Reynolds MR, Jones AM, Petersen EE, Lee EH, Rice ME et al. 2017. Vital signs: update on Zika virus–associated birth defects and evaluation of all U.S. infants with congenital Zika virus exposure—U.S. Zika Pregnancy Registry, 2016. MMWR Morb. Mortal. Wkly. Rep. 66:366–73
    [Google Scholar]
  17. 17.
    Smoots AN, Olson SM, Cragan J, Delaney A, Roth NM et al. 2020. Population-based surveillance for birth defects potentially related to Zika virus infection—22 states and territories, January 2016–June 2017. MMWR Morb. Mortal. Wkly. Rep. 69:67–71
    [Google Scholar]
  18. 18.
    World Health Organ. (WHO) 2018. Zika virus Factsheet, WHO Geneva:
    [Google Scholar]
  19. 19.
    Paixao ES, Cardim LL, Costa MCN, Brickley EB, de Carvalho-Sauer RCO et al. 2022. Mortality from congenital Zika syndrome—nationwide cohort study in Brazil. N. Engl. J. Med. 386:757–67
    [Google Scholar]
  20. 20.
    Caine EA, Scheaffer SM, Arora N, Zaitsev K, Artyomov MN et al. 2019. Interferon lambda protects the female reproductive tract against Zika virus infection. Nat. Commun. 10:280
    [Google Scholar]
  21. 21.
    Casazza RL, Lazear HM, Miner JJ. 2020. Protective and pathogenic effects of interferon signaling during pregnancy. Viral Immunol 33:3–11
    [Google Scholar]
  22. 22.
    Serman TM, Gack MU. 2019. Evasion of innate and intrinsic antiviral pathways by the Zika virus. Viruses 11:970
    [Google Scholar]
  23. 23.
    Estevez-Herrera J, Perez-Yanes S, Cabrera-Rodriguez R, Marquez-Arce D, Trujillo-Gonzalez R et al. 2021. Zika Virus pathogenesis: a battle for immune evasion. Vaccines 9:294
    [Google Scholar]
  24. 24.
    Coldbeck-Shackley RC, Eyre NS, Beard MR. 2020. The molecular interactions of ZIKV and DENV with the type-I IFN response. Vaccines 8:530
    [Google Scholar]
  25. 25.
    Pardy RD, Valbon SF, Richer MJ. 2019. Running interference: interplay between Zika virus and the host interferon response. Cytokine 119:7–15
    [Google Scholar]
  26. 26.
    Choi Y, Bowman JW, Jung JU. 2018. Autophagy during viral infection—a double-edged sword. Nat. Rev. Microbiol. 16:341–54
    [Google Scholar]
  27. 27.
    Deretic V, Saitoh T, Akira S. 2013. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13:722–37
    [Google Scholar]
  28. 28.
    Ke PY. 2021. Autophagy and antiviral defense. IUBMB Life 74:317–38
    [Google Scholar]
  29. 29.
    Munz C. 2009. Enhancing immunity through autophagy. Annu. Rev. Immunol. 27:423–49
    [Google Scholar]
  30. 30.
    Peng H, Liu B, Yves TD, He Y, Wang S et al. 2018. Zika virus induces autophagy in human umbilical vein endothelial cells. Viruses 10:259
    [Google Scholar]
  31. 31.
    Klaitong P, Smith DR. 2021. Roles of non-structural protein 4A in flavivirus infection. Viruses 13:2077
    [Google Scholar]
  32. 32.
    Liang Q, Luo Z, Zeng J, Chen W, Foo SS et al. 2016. Zika Virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–71
    [Google Scholar]
  33. 33.
    Franke TF. 2008. PI3K/Akt: getting it right matters. Oncogene 27:6473–88
    [Google Scholar]
  34. 34.
    Cao B, Parnell LA, Diamond MS, Mysorekar IU. 2017. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J. Exp. Med. 214:2303–13
    [Google Scholar]
  35. 35.
    Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A et al. 2015. Biology of Zika virus infection in human skin cells. J. Virol. 89:8880–96
    [Google Scholar]
  36. 36.
    Han X, Wang J, Yang Y, Qu S, Wan F et al. 2021. Zika virus infection induced apoptosis by modulating the recruitment and activation of pro-apoptotic protein Bax. J. Virol. 95:e01445–20
    [Google Scholar]
  37. 37.
    Tang H, Hammack C, Ogden SC, Wen Z, Qian X et al. 2016. Zika Virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–90
    [Google Scholar]
  38. 38.
    Souza BS, Sampaio GL, Pereira CS, Campos GS, Sardi SI et al. 2016. Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Sci. Rep. 6:39775
    [Google Scholar]
  39. 39.
    Liu J, Li Q, Li X, Qiu Z, Li A et al. 2018. Zika virus envelope protein induces G2/M cell cycle arrest and apoptosis via an intrinsic cell death signaling pathway in neuroendocrine PC12 cells. Int. J. Biol. Sci. 14:1099–108
    [Google Scholar]
  40. 40.
    Guo Z, Li Y, Ding SW. 2019. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19:31–44
    [Google Scholar]
  41. 41.
    Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F et al. 2013. Antiviral RNA interference in mammalian cells. Science 342:235–38
    [Google Scholar]
  42. 42.
    Cullen BR, Cherry S, tenOever BR. 2013. Is RNA interference a physiologically relevant innate antiviral immune response in mammals?. Cell Host Microbe 14:374–78
    [Google Scholar]
  43. 43.
    Ding SW. 2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632–44
    [Google Scholar]
  44. 44.
    Poirier EZ, Buck MD, Chakravarty P, Carvalho J, Frederico B et al. 2021. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373:231–36
    [Google Scholar]
  45. 45.
    Zeng J, Dong S, Luo Z, Xie X, Fu B et al. 2020. The Zika virus capsid disrupts corticogenesis by suppressing Dicer activity and miRNA biogenesis. Cell Stem Cell 27:618–32.e9
    [Google Scholar]
  46. 46.
    Xu YP, Qiu Y, Zhang B, Chen G, Chen Q et al. 2019. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res. 29:265–73
    [Google Scholar]
  47. 47.
    Zeng J, Luo Z, Dong S, Xie X, Liang X et al. 2021. Functional mapping of AGO-associated Zika virus-derived small interfering RNAs in neural stem cells. Front. Cell. Infect. Microbiol. 11:628887
    [Google Scholar]
  48. 48.
    Schoggins JW. 2019. Interferon-stimulated genes: What do they all do?. Annu. Rev. Virol. 6:567–84
    [Google Scholar]
  49. 49.
    Suthar MS, Aguirre S, Fernandez-Sesma A. 2013. Innate immune sensing of flaviviruses. PLOS Pathog 9:e1003541
    [Google Scholar]
  50. 50.
    Valdes Lopez JF, Velilla PA, Urcuqui-Inchima S. 2019. Chikungunya virus and Zika virus, two different viruses examined with a common aim: role of pattern recognition receptors on the inflammatory response. J. Interferon Cytokine Res. 39:507–21
    [Google Scholar]
  51. 51.
    Stetson DB, Medzhitov R. 2006. Type I interferons in host defense. Immunity 25:373–81
    [Google Scholar]
  52. 52.
    Levy DE, IJ Marie, Durbin JE. 2011. Induction and function of type I and III interferon in response to viral infection. Curr. Opin. Virol. 1:476–86
    [Google Scholar]
  53. 53.
    Matsumoto M, Seya T. 2008. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv. Drug. Deliv. Rev. 60:805–12
    [Google Scholar]
  54. 54.
    Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669–82
    [Google Scholar]
  55. 55.
    Loo YM, Gale M Jr. 2011. Immune signaling by RIG-I-like receptors. Immunity 34:680–92
    [Google Scholar]
  56. 56.
    Webb LG, Fernandez-Sesma A. 2022. RNA viruses and the cGAS-STING pathway: reframing our understanding of innate immune sensing. Curr. Opin. Virol. 53:101206
    [Google Scholar]
  57. 57.
    Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2:17037
    [Google Scholar]
  58. 58.
    Zheng Y, Liu Q, Wu Y, Ma L, Zhang Z et al. 2018. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 37:e99347
    [Google Scholar]
  59. 59.
    Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA et al. 2016. Characterization of a novel murine model to study Zika virus. Am. J. Trop. Med. Hyg. 94:1362–69
    [Google Scholar]
  60. 60.
    Xia H, Luo H, Shan C, Muruato AE, Nunes BTD et al. 2018. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9:414
    [Google Scholar]
  61. 61.
    Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS et al. 2016. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–65
    [Google Scholar]
  62. 62.
    Vanwalscappel B, Tada T, Landau NR. 2018. Toll-like receptor agonist R848 blocks Zika virus replication by inducing the antiviral protein viperin. Virology 522:199–208
    [Google Scholar]
  63. 63.
    Bowen JR, Quicke KM, Maddur MS, O'Neal JT, McDonald CE et al. 2017. Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLOS Pathog 13:e1006164
    [Google Scholar]
  64. 64.
    Ma J, Ketkar H, Geng T, Lo E, Wang L et al. 2018. Zika virus non-structural protein 4A blocks the RLR-MAVS signaling. Front. Microbiol. 9:1350
    [Google Scholar]
  65. 65.
    Esser-Nobis K, Aarreberg LD, Roby JA, Fairgrieve MR, Green R, Gale M Jr. 2019. Comparative analysis of African and Asian lineage-derived Zika virus strains reveals differences in activation of and sensitivity to antiviral innate immunity. J. Virol. 93:e00640–19
    [Google Scholar]
  66. 66.
    Hertzog J, Dias Junior AG, Rigby RE, Donald CL, Mayer A et al. 2018. Infection with a Brazilian isolate of Zika virus generates RIG-I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signaling. Eur. J. Immunol. 48:1120–36
    [Google Scholar]
  67. 67.
    Hage A, Bharaj P, van Tol S, Giraldo MI, Gonzalez-Orozco M et al. 2022. The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Rep. 38:10110434
    [Google Scholar]
  68. 68.
    Parisien JP, Lenoir JJ, Alvarado G, Horvath CM. 2022. The human STAT2 coiled-coil domain contains a degron for Zika virus interferon evasion. J. Virol. 96:e0130121
    [Google Scholar]
  69. 69.
    Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L et al. 2016. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19:882–90
    [Google Scholar]
  70. 70.
    Wu Y, Liu Q, Zhou J, Xie W, Chen C et al. 2017. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov 3:17006
    [Google Scholar]
  71. 71.
    Shu J, Ma X, Zhang Y, Zou J, Yuan Z, Yi Z 2021. NS5-independent ablation of STAT2 by Zika virus to antagonize interferon signalling. Emerg. Microbes Infect. 10:1609–25
    [Google Scholar]
  72. 72.
    Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J et al. 2018. An immunocompetent mouse model of Zika virus infection. Cell Host Microbe 23:672–85.e6
    [Google Scholar]
  73. 73.
    Laurent-Rolle M, Morrison J. 2019. The role of NS5 protein in determination of host cell range for yellow fever virus. DNA Cell Biol 38:1414–17
    [Google Scholar]
  74. 74.
    Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JML, Pisanelli G et al. 2014. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16:314–27
    [Google Scholar]
  75. 75.
    Wang B, Thurmond S, Zhou K, Sanchez-Aparicio MT, Fang J et al. 2020. Structural basis for STAT2 suppression by flavivirus NS5. Nat. Struct. Mol. Biol. 27:875–85
    [Google Scholar]
  76. 76.
    Giraldo MI, Vargas-Cuartas O, Gallego-Gomez JC, Shi PY, Padilla-Sanabria L et al. 2018. K48-linked polyubiquitination of dengue virus NS1 protein inhibits its interaction with the viral partner NS4B. Virus Res 246:1–11
    [Google Scholar]
  77. 77.
    Ding Q, Gaska JM, Douam F, Wei L, Kim D et al. 2018. Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. PNAS 115:E6310–18
    [Google Scholar]
  78. 78.
    Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T et al. 2012. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLOS Pathog 8:e1002934
    [Google Scholar]
  79. 79.
    Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL et al. 2012. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLOS Pathog 8:e1002780
    [Google Scholar]
  80. 80.
    Fanunza E, Grandi N, Quartu M, Carletti F, Ermellino L et al. 2021. INMI1 Zika virus NS4B antagonizes the interferon signaling by suppressing STAT1 phosphorylation. Viruses 13:2448
    [Google Scholar]
  81. 81.
    Chan YK, Gack MU. 2016. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat. Immunol. 17:523–30
    [Google Scholar]
  82. 82.
    Riedl W, Acharya D, Lee JH, Liu G, Serman T et al. 2019. Zika virus NS3 mimics a cellular 14-3-3-binding motif to antagonize RIG-I- and MDA5-mediated innate immunity. Cell Host Microbe 26:493–503.e6
    [Google Scholar]
  83. 83.
    Donald CL, Brennan B, Cumberworth SL, Rezelj VV, Clark JJ et al. 2016. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil. PLOS Negl. Trop. Dis. 10:e0005048
    [Google Scholar]
  84. 84.
    Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J et al. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217–21
    [Google Scholar]
  85. 85.
    Winkler CW, Myers LM, Woods TA, Messer RJ, Carmody AB et al. 2017. Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes. J. Immunol. 198:3526–35
    [Google Scholar]
  86. 86.
    Pardy RD, Rajah MM, Condotta SA, Taylor NG, Sagan SM, Richer MJ. 2017. Analysis of the T cell response to Zika virus and identification of a novel CD8+ T cell epitope in immunocompetent mice. PLOS Pathog 13:e1006184
    [Google Scholar]
  87. 87.
    Huang H, Li S, Zhang Y, Han X, Jia B et al. 2017. CD8+ T cell immune response in immunocompetent mice during Zika virus infection. J. Virol. 91:e00900–17
    [Google Scholar]
  88. 88.
    Grifoni A, Pham J, Sidney J, O'Rourke PH, Paul S et al. 2017. Prior dengue virus exposure shapes T cell immunity to Zika virus in humans. J. Virol. 91:e01469–17
    [Google Scholar]
  89. 89.
    Weiskopf D, Angelo MA, Sidney J, Peters B, Shresta S, Sette A. 2014. Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection. J. Virol. 88:11383–94
    [Google Scholar]
  90. 90.
    Weiskopf D, Angelo MA, Grifoni A, O'Rourke PH, Sidney J et al. 2016. HLA-DRB1 alleles are associated with different magnitudes of dengue virus-specific CD4+ T-cell responses. J. Infect. Dis. 214:1117–24
    [Google Scholar]
  91. 91.
    El Sahly HM, Gorchakov R, Lai L, Natrajan MS, Patel SM et al. 2019. Clinical, virologic, and immunologic characteristics of Zika virus infection in a cohort of US patients: prolonged RNA detection in whole blood. Open Forum Infect. Dis. 6:ofy352
    [Google Scholar]
  92. 92.
    Rogers TF, Goodwin EC, Briney B, Sok D, Beutler N et al. 2017. Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors. Sci. Immunol. 2:e6809
    [Google Scholar]
  93. 93.
    Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A et al. 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–26
    [Google Scholar]
  94. 94.
    Van Rompay KKA, Coffey LL, Kapoor T, Gazumyan A, Keesler RI et al. 2020. A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. PNAS 117:7981–89
    [Google Scholar]
  95. 95.
    Wang Y, Lobigs M, Lee E, Mullbacher A 2003. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J. Virol. 77:13323–34
    [Google Scholar]
  96. 96.
    Manangeeswaran M, Ireland DD, Verthelyi D. 2016. Zika (PRVABC59) infection is associated with T cell infiltration and neurodegeneration in CNS of immunocompetent neonatal C57Bl/6 mice. PLOS Pathog 12:e1006004
    [Google Scholar]
  97. 97.
    Jurado KA, Yockey LJ, Wong PW, Lee S, Huttner AJ, Iwasaki A. 2018. Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nat. Microbiol. 3:141–47
    [Google Scholar]
  98. 98.
    Miner JJ, Diamond MS. 2017. Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21:134–42
    [Google Scholar]
  99. 99.
    Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N et al. 2016. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 16:2576–92
    [Google Scholar]
  100. 100.
    Xie S, Zhang H, Liang Z, Yang X, Cao R 2021. AXL, an important host factor for DENV and ZIKV replication. Front. Cell. Infect. Microbiol. 11:575346
    [Google Scholar]
  101. 101.
    Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A et al. 2016. Zika virus infection damages the testes in mice. Nature 540:438–42
    [Google Scholar]
  102. 102.
    Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R et al. 2017. TAM receptors are not required for Zika virus infection in mice. Cell Rep 19:558–68
    [Google Scholar]
  103. 103.
    Coelho FC, Durovni B, Saraceni V, Lemos C, Codeco CT et al. 2016. Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women. Int. J. Infect. Dis. 51:128–32
    [Google Scholar]
  104. 104.
    Fijak M, Meinhardt A. 2006. The testis in immune privilege. Immunol. Rev. 213:66–81
    [Google Scholar]
  105. 105.
    Hedger MP. 2002. Macrophages and the immune responsiveness of the testis. J. Reprod. Immunol. 57:19–34
    [Google Scholar]
  106. 106.
    Kurscheidt FA, Mesquita CSS, Damke G, Damke E, Carvalho A et al. 2019. Persistence and clinical relevance of Zika virus in the male genital tract. Nat. Rev. Urol. 16:211–30
    [Google Scholar]
  107. 107.
    D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B et al. 2016. Evidence of sexual transmission of Zika virus. N. Engl. J. Med. 374:2195–98
    [Google Scholar]
  108. 108.
    Dejucq-Rainsford N, Jegou B. 2004. Viruses in semen and male genital tissues—consequences for the reproductive system and therapeutic perspectives. Curr. Pharm. Des. 10:557–75
    [Google Scholar]
  109. 109.
    Clancy CS, Van Wettere AJ, Siddharthan V, Morrey JD, Julander JG. 2018. Comparative histopathologic lesions of the male reproductive tract during acute infection of Zika virus in AG129 and Ifnar−/− mice. Am. J. Pathol. 188:904–15
    [Google Scholar]
  110. 110.
    Prow NA, Liu L, Nakayama E, Cooper TH, Yan K et al. 2018. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat. Commun. 9:1230
    [Google Scholar]
  111. 111.
    Matusali G, Houzet L, Satie AP, Mahe D, Aubry F et al. 2018. Zika virus infects human testicular tissue and germ cells. J. Clin. Investig. 128:4697–710
    [Google Scholar]
  112. 112.
    Robinson CL, Chong ACN, Ashbrook AW, Jeng G, Jin J et al. 2018. Male germ cells support long-term propagation of Zika virus. Nat. Commun. 9:2090
    [Google Scholar]
  113. 113.
    Salam AP, Horby P. 2018. Isolation of viable Zika virus from spermatozoa. Lancet Infect. Dis. 18:144
    [Google Scholar]
  114. 114.
    Paz-Bailey G, Rosenberg ES, Sharp TM. 2019. Persistence of Zika virus in body fluids—final report. N. Engl. J. Med. 380:198–99
    [Google Scholar]
  115. 115.
    Khan S, Woodruff EM, Trapecar M, Fontaine KA, Ezaki A et al. 2016. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J. Exp. Med. 213:2913–29
    [Google Scholar]
  116. 116.
    Dudley DM, Newman CM, Lalli J, Stewart LM, Koenig MR et al. 2017. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat. Commun. 8:2096
    [Google Scholar]
  117. 117.
    Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL et al. 2016. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166:1247–56.e4
    [Google Scholar]
  118. 118.
    Scott JM, Lebratti TJ, Richner JM, Jiang X, Fernandez E et al. 2018. Cellular and humoral immunity protect against vaginal Zika virus infection in mice. J. Virol. 92:e00038–18
    [Google Scholar]
  119. 119.
    Teixeira FME, Pietrobon AJ, Oliveira LM, Oliveira L, Sato MN. 2020. Maternal-fetal interplay in Zika virus infection and adverse perinatal outcomes. Front. Immunol. 11:175
    [Google Scholar]
  120. 120.
    King NJC, Teixeira MM, Mahalingam S. 2017. Zika virus: mechanisms of infection during pregnancy. Trends Microbiol 25:701–2
    [Google Scholar]
  121. 121.
    Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S et al. 2009. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J. Immunol. 182:5488–97
    [Google Scholar]
  122. 122.
    Lesteberg KE, Fader DS, Beckham JD. 2020. Pregnancy alters innate and adaptive immune responses to Zika virus infection in the reproductive tract. J. Immunol. 205:3107–21
    [Google Scholar]
  123. 123.
    Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J et al. 2016. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight 1:e88461
    [Google Scholar]
  124. 124.
    Weisblum Y, Oiknine-Djian E, Vorontsov OM, Haimov-Kochman R, Zakay-Rones Z et al. 2017. Zika virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. J. Virol. 91:e01905–16
    [Google Scholar]
  125. 125.
    Simoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. 2017. Zika virus infection of Hofbauer cells. Am. J. Reprod. Immunol. 77:12613
    [Google Scholar]
  126. 126.
    Rabelo K, de Souza LJ, Salomao NG, Machado LN, Pereira PG et al. 2020. Zika induces human placental damage and inflammation. Front. Immunol. 11:2146
    [Google Scholar]
  127. 127.
    Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y et al. 2017. Zika virus RNA replication and persistence in brain and placental tissue. Emerg. Infect. Dis. 23:405–14
    [Google Scholar]
  128. 128.
    Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP et al. 2018. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 24:368–74
    [Google Scholar]
  129. 129.
    Gurung S, Reuter N, Preno A, Dubaut J, Nadeau H et al. 2019. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLOS Pathog 15:e1007507
    [Google Scholar]
  130. 130.
    Seferovic M, Sanchez-San Martin C, Tardif SD, Rutherford J, Castro ECC et al. 2018. Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Sci. Rep. 8:6851
    [Google Scholar]
  131. 131.
    Bohm EK, Vangorder-Braid JT, Jaeger AS, Moriarty RV, Baczenas JJ et al. 2021. Zika virus infection of pregnant Ifnar1−/− mice triggers strain-specific differences in fetal outcomes. J. Virol. 95:e0081821
    [Google Scholar]
  132. 132.
    Yockey LJ, Jurado KA, Arora N, Millet A, Rakib T et al. 2018. Type I interferons instigate fetal demise after Zika virus infection. Sci. Immunol. 3:1680
    [Google Scholar]
  133. 133.
    Xu P, Gao J, Shan C, Dunn TJ, Xie X et al. 2021. Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLOS Negl. Trop. Dis. 15:e0009183
    [Google Scholar]
  134. 134.
    Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. 2021. The role of the host ubiquitin system in promoting replication of emergent viruses. Viruses 13:369
    [Google Scholar]
  135. 135.
    Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV. 2016. Dengue virus genome uncoating requires ubiquitination. mBio 7:e00804–16
    [Google Scholar]
  136. 136.
    Wang S, Liu H, Zu X, Liu Y, Chen L et al. 2016. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology 498:116–27
    [Google Scholar]
  137. 137.
    Giraldo MI, Xia H, Aguilera-Aguirre L, Hage A, van Tol S et al. 2020. Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 585:414–19
    [Google Scholar]
  138. 138.
    Choy MM, Sessions OM, Gubler DJ, Ooi EE. 2015. Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway. PLOS Negl. Trop. Dis. 9:e0004227
    [Google Scholar]
  139. 139.
    Choy MM, Zhang SL, Costa VV, Tan HC, Horrevorts S, Ooi EE. 2015. Proteasome inhibition suppresses dengue virus egress in antibody dependent infection. PLOS Negl. Trop. Dis. 9:e0004058
    [Google Scholar]
  140. 140.
    Giraldo MI, Hage A, van Tol S, Rajsbaum R. 2020. TRIM proteins in host defense and viral pathogenesis. Curr. Clin. Microbiol. Rep. 7:101–14
    [Google Scholar]
  141. 141.
    Hage A, Rajsbaum R. 2019. To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system. J. Gen. Virol. 100:1641–62
    [Google Scholar]
  142. 142.
    Lin M, Zhao Z, Yang Z, Meng Q, Tan P et al. 2016. USP38 inhibits type I interferon signaling by editing TBK1 ubiquitination through NLRP4 signalosome. Mol. Cell 64:267–81
    [Google Scholar]
  143. 143.
    Zhao Z, Su Z, Liang P, Liu D, Yang S et al. 2020. USP38 couples histone ubiquitination and methylation via KDM5B to resolve inflammation. Adv. Sci. 7:2002680
    [Google Scholar]
  144. 144.
    Wang Y, Li Q, Hu D, Gao D, Wang W et al. 2021. USP38 inhibits Zika virus infection by removing envelope protein ubiquitination. Viruses 13:2029
    [Google Scholar]
  145. 145.
    DiGiacomo V, Meruelo D. 2016. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol. Rev. Camb. Philos. Soc. 91:288–310
    [Google Scholar]
  146. 146.
    Hu D, Wang Y, Li A, Li Q, Wu C, Shereen MA et al. 2021. LAMR1 restricts Zika virus infection by attenuating the envelope protein ubiquitination. Virulence 12:1795–807
    [Google Scholar]
  147. 147.
    Wang H, Meng H, Li X, Zhu K, Dong K et al. 2017. PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. PNAS 114:11944–49
    [Google Scholar]
  148. 148.
    Luo H, Li G, Wang B, Tian B, Gao J et al. 2020. Peli1 signaling blockade attenuates congenital zika syndrome. PLOS Pathog 16:e1008538
    [Google Scholar]
  149. 149.
    Nambala P, Yu WY, Lo YC, Lin CW, Su WC. 2020. Ubiquitination of Zika virus precursor membrane protein promotes the release of viral proteins. Virus Res 286:198065
    [Google Scholar]
  150. 150.
    van den Boom J, Meyer H. 2018. VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol. Cell 69:182–94
    [Google Scholar]
  151. 151.
    Ramanathan HN, Zhang S, Douam F, Mar KB, Chang J et al. 2020. A sensitive yellow fever virus entry reporter identifies valosin-containing protein (VCP/p97) as an essential host factor for flavivirus uncoating. mBio 11:e00467–20
    [Google Scholar]
  152. 152.
    Wang L, Moreira EA, Kempf G, Miyake Y, Oliveira Esteves BI et al. 2022. Disrupting the HDAC6-ubiquitin interaction impairs infection by influenza and Zika virus and cellular stress pathways. Cell Rep 39:4110736
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-034739
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-034739
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error