1932

Abstract

Human papillomavirus–positive oropharyngeal squamous cell carcinoma (HPV-OPSCC) has one of the most rapidly increasing incidences of any cancer in high-income countries. The most recent (8th) edition of the Union for International Cancer Control/American Joint Committee on Cancer staging system separates HPV-OPSCC from its HPV-negative counterpart to account for the improved prognosis seen in the former. Indeed, owing to its improved prognosis and greater prevalence in younger individuals, numerous ongoing trials are examining the potential for treatment deintensification as a means to improve quality of life while maintaining acceptable survival outcomes. Owing to the distinct biology of HPV-OPSCCs, targeted therapies and immunotherapies have become an area of particular interest. Importantly, OPSCC is often detected at an advanced stage, highlighting the need for diagnostic biomarkers to aid in earlier detection. In this review, we highlight important advances in the epidemiology, pathology, diagnosis, and clinical management of HPV-OPSCC and underscore the need for a progressive understanding of the molecular basis of this disease toward early detection and precision care.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-041424
2023-01-24
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-041424.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-041424&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI et al. 2010. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363:2435
    [Google Scholar]
  2. 2.
    D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C et al. 2007. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 356:194456
    [Google Scholar]
  3. 3.
    Holsinger FC, Ferris RL. 2015. Transoral endoscopic head and neck surgery and its role within the multidisciplinary treatment paradigm of oropharynx cancer: robotics, lasers, and clinical trials. J. Clin. Oncol. 33:328592
    [Google Scholar]
  4. 4.
    O'Sullivan B, Huang SH, Su J, Garden AS, Sturgis EM et al. 2016. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal Cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 17:44051
    [Google Scholar]
  5. 5.
    Francissen CM, van la Parra RF, Mulder AH, Bosch AM, de Roos WK. 2013. Evaluation of the benefit of routine intraoperative frozen section analysis of sentinel lymph nodes in breast cancer. ISRN Oncol. 2013:843793
    [Google Scholar]
  6. 6.
    Weinstein GS, O'Malley BW Jr., Magnuson JS, Carroll WR, Olsen KD et al. 2012. Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 122:17017
    [Google Scholar]
  7. 7.
    Albergotti WG, Jordan J, Anthony K, Abberbock S, Wasserman-Wincko T et al. 2017. A prospective evaluation of short-term dysphagia after transoral robotic surgery for squamous cell carcinoma of the oropharynx. Cancer 123:313240
    [Google Scholar]
  8. 8.
    Haughey BH, Hinni ML, Salassa JR, Hayden RE, Grant DG et al. 2011. Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States multicenter study. Head Neck 33:168394
    [Google Scholar]
  9. 9.
    Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. 2008. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J. Clin. Oncol. 26:377076
    [Google Scholar]
  10. 10.
    Quon H, Forastiere AA. 2013. Controversies in treatment deintensification of human papillomavirus-associated oropharyngeal carcinomas: should we, how should we, and for whom?. J. Clin. Oncol. 31:52022
    [Google Scholar]
  11. 11.
    Yom SS, Torres-Saavedra P, Caudell JJ, Waldron JN, Gillison ML et al. 2019. NRG-HN002: a randomized phase II trial for patients with p16-positive, non-smoking-associated, locoregionally advanced oropharyngeal cancer. Int. J. Radiat. Oncol. Biol. Phys. 105:368485
    [Google Scholar]
  12. 12.
    Cramer JD, Hicks KE, Rademaker AW, Patel UA, Samant S. 2018. Validation of the eighth edition American Joint Committee on Cancer staging system for human papillomavirus-associated oropharyngeal cancer. Head Neck 40:45766
    [Google Scholar]
  13. 13.
    Sharma A, Patel S, Baik FM, Mathison G, Pierce BH et al. 2016. Survival and gastrostomy prevalence in patients with oropharyngeal cancer treated with transoral robotic surgery versus chemoradiotherapy. JAMA Otolaryngol. Head Neck Surg. 142:69197
    [Google Scholar]
  14. 14.
    Chaturvedi AK. 2012. Epidemiology and clinical aspects of HPV in head and neck cancers. Head Neck Pathol. 6:Suppl. 1S1624
    [Google Scholar]
  15. 15.
    Westra WH, Lewis JS Jr. 2017. Update from the 4th edition of the World Health Organization Classification of Head and Neck Tumours: oropharynx. Head Neck Pathol. 11:4147
    [Google Scholar]
  16. 16.
    Gelwan E, Malm IJ, Khararjian A, Fakhry C, Bishop JA, Westra WH. 2017. Nonuniform distribution of high-risk human papillomavirus in squamous cell carcinomas of the oropharynx: rethinking the anatomic boundaries of oral and oropharyngeal carcinoma from an oncologic HPV perspective. Am. J. Surg. Pathol. 41:172228
    [Google Scholar]
  17. 17.
    Kimura M, Nagao T, Saito T, Warnakulasuriya S, Ohto H et al. 2015. Ectopic oral tonsillar tissue: a case series with bilateral and solitary presentations and a review of the literature. Case Rep. Dent. 2015:518917
    [Google Scholar]
  18. 18.
    Abbey K, Kawabata I 1988. Computerized three-dimensional reconstruction of the crypt system of the palatine tonsil. Acta Otolaryngol. Suppl. 454:3942
    [Google Scholar]
  19. 19.
    Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M et al. 2007. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat. Med. 13:85761
    [Google Scholar]
  20. 20.
    McQuone SJ, Eisele DW, Lee DJ, Westra WH, Koch WM. 1998. Occult tonsillar carcinoma in the unknown primary. Laryngoscope 108:160510
    [Google Scholar]
  21. 21.
    Sood AJ, McIlwain W, O'Connell B, Nguyen S, Houlton JJ, Day T. 2014. The association between T-stage and clinical nodal metastasis in HPV-positive oropharyngeal cancer. Am. J. Otolaryngol. 35:46368
    [Google Scholar]
  22. 22.
    Stanley MA, Pett MR, Coleman N 2007. HPV: from infection to cancer. Biochem. Soc. Trans. 35:145660
    [Google Scholar]
  23. 23.
    Stanley M. 2008. Immunobiology of HPV and HPV vaccines. Gynecol. Oncol. 109:S1521
    [Google Scholar]
  24. 24.
    Kanodia S, Fahey LM, Kast WM. 2007. Mechanisms used by human papillomaviruses to escape the host immune response. Curr. Cancer Drug Targets 7:7989
    [Google Scholar]
  25. 25.
    Bodily J, Laimins LA. 2011. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol 19:3339
    [Google Scholar]
  26. 26.
    O'Brien PM, Saveria Campo M. 2002. Evasion of host immunity directed by papillomavirus-encoded proteins. Virus Res. 88:10317
    [Google Scholar]
  27. 27.
    Vu HL, Sikora AG, Fu S, Kao J. 2010. HPV-induced oropharyngeal cancer, immune response and response to therapy. Cancer Lett. 288:14955
    [Google Scholar]
  28. 28.
    Mattox AK, Roelands J, Saal TM, Cheng Y, Rinchai D et al. 2021. Myeloid cells are enriched in tonsillar crypts, providing insight into the viral tropism of human papillomavirus. Am. J. Pathol. 191:177486
    [Google Scholar]
  29. 29.
    Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH et al. 2013. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 73:173341
    [Google Scholar]
  30. 30.
    Pai SI. 2013. Adaptive immune resistance in HPV-associated head and neck squamous cell carcinoma. Oncoimmunology 2:e24065
    [Google Scholar]
  31. 31.
    Syrjanen K, Syrjanen S, Lamberg M, Pyrhonen S, Nuutinen J. 1983. Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int. J. Oral Surg. 12:41824
    [Google Scholar]
  32. 32.
    Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH et al. 2000. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 92:70920
    [Google Scholar]
  33. 33.
    Gillison ML, Shah KV. 2001. Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr. Opin. Oncol. 13:18388
    [Google Scholar]
  34. 34.
    Gillison ML, D'Souza G, Westra W, Sugar E, Xiao W et al. 2008. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J. Natl. Cancer Inst. 100:40720
    [Google Scholar]
  35. 35.
    Mehrad M, Zhao H, Gao G, Wang X, Lewis JS Jr. 2014. Transcriptionally-active human papillomavirus is consistently retained in the distant metastases of primary oropharyngeal carcinomas. Head Neck Pathol. 8:15763
    [Google Scholar]
  36. 36.
    Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L et al. 2014. Characterization of HPV and host genome interactions in primary head and neck cancers. PNAS 111:1554449
    [Google Scholar]
  37. 37.
    Powell SF, Vu L, Spanos WC, Pyeon D. 2021. The key differences between human papillomavirus-positive and -negative head and neck cancers: biological and clinical implications. Cancers 13:5206
    [Google Scholar]
  38. 38.
    Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA et al. 2008. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl. Cancer Inst. 100:26169
    [Google Scholar]
  39. 39.
    Zhou Q, Zhu K, Cheng H. 2011. Ubiquitination in host immune response to human papillomavirus infection. Arch. Dermatol. Res. 303:21730
    [Google Scholar]
  40. 40.
    Allen CT, Lewis JS Jr., El-Mofty SK, Haughey BH, Nussenbaum B. 2010. Human papillomavirus and oropharynx cancer: biology, detection and clinical implications. Laryngoscope 120:175672
    [Google Scholar]
  41. 41.
    Egawa N, Egawa K, Griffin H, Doorbar J. 2015. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 7:386390
    [Google Scholar]
  42. 42.
    Varier I, Keeley BR, Krupar R, Patsias A, Dong J et al. 2016. Clinical characteristics and outcomes of oropharyngeal carcinoma related to high-risk non-human papillomavirus16 viral subtypes. Head Neck 38:133037
    [Google Scholar]
  43. 43.
    Mashiana SS, Navale P, Khandakar B, Sobotka S, Posner MR et al. 2021. Human papillomavirus genotype distribution in head and neck cancer: informing developing strategies for cancer prevention, diagnosis, treatment and surveillance. Oral Oncol. 113:105109
    [Google Scholar]
  44. 44.
    LeConte BA, Szaniszlo P, Fennewald SM, Lou DI, Qiu S et al. 2018. Differences in the viral genome between HPV-positive cervical and oropharyngeal cancer. PLOS ONE 13:e0203403
    [Google Scholar]
  45. 45.
    Bratman SV, Bruce JP, O'Sullivan B, Pugh TJ, Xu W et al. 2016. Human papillomavirus genotype association with survival in head and neck squamous cell carcinoma. JAMA Oncol. 2:82326
    [Google Scholar]
  46. 46.
    Chatfield-Reed K, Gui S, O'Neill WQ, Teknos TN, Pan Q 2020. HPV33+ HNSCC is associated with poor prognosis and has unique genomic and immunologic landscapes. Oral Oncol. 100:104488
    [Google Scholar]
  47. 47.
    Garset-Zamani M, Carlander AF, Jakobsen KK, Friborg J, Kiss K et al. 2022. Impact of specific high-risk human papillomavirus genotypes on survival in oropharyngeal cancer. Int. J. Cancer 150:117483
    [Google Scholar]
  48. 48.
    Siegel R, Naishadham D, Jemal A. 2013. Cancer statistics, 2013. CA Cancer J. Clin. 63:1130
    [Google Scholar]
  49. 49.
    Pignon JP, le Maitre A, Maillard E, Bourhis J et al. 2009. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 92:414
    [Google Scholar]
  50. 50.
    Sturgis EM, Ang KK. 2011. The epidemic of HPV-associated oropharyngeal cancer is here: Is it time to change our treatment paradigms?. J. Natl. Compr. Cancer Netw. 9:66573
    [Google Scholar]
  51. 51.
    Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W et al. 2011. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 29:4294301
    [Google Scholar]
  52. 52.
    Vidal L, Gillison ML. 2008. Human papillomavirus in HNSCC: recognition of a distinct disease type. Hematol. Oncol. Clin. North Am. 22:112542
    [Google Scholar]
  53. 53.
    Gillison ML. 2009. Oropharyngeal cancer: a potential consequence of concomitant HPV and HIV infection. Curr. Opin. Oncol. 21:43944
    [Google Scholar]
  54. 54.
    Rischin D, Young RJ, Fisher R, Fox SB, Le QT et al. 2010. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J. Clin. Oncol. 28:414248
    [Google Scholar]
  55. 55.
    Lassen P, Eriksen JG, Krogdahl A, Therkildsen MH, Ulhoi BP et al. 2011. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6&7 trial. Radiother. Oncol. 100:4955
    [Google Scholar]
  56. 56.
    Ribeiro KB, Levi JE, Pawlita M, Koifman S, Matos E et al. 2011. Low human papillomavirus prevalence in head and neck cancer: results from two large case-control studies in high-incidence regions. Int. J. Epidemiol. 40:489502
    [Google Scholar]
  57. 57.
    Schrank TP, Han Y, Weiss H, Resto VA. 2011. Case-matching analysis of head and neck squamous cell carcinoma in racial and ethnic minorities in the United States—possible role for human papillomavirus in survival disparities. Head Neck 33:4553
    [Google Scholar]
  58. 58.
    Ragin CC, Taioli E. 2007. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int. J. Cancer 121:181320
    [Google Scholar]
  59. 59.
    Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, Overgaard J. 2009. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J. Clin. Oncol. 27:199298
    [Google Scholar]
  60. 60.
    Lavaf A, Genden EM, Cesaretti JA, Packer S, Kao J. 2008. Adjuvant radiotherapy improves overall survival for patients with lymph node-positive head and neck squamous cell carcinoma. Cancer 112:53543
    [Google Scholar]
  61. 61.
    Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL et al. 2004. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 350:194552
    [Google Scholar]
  62. 62.
    Cooper JS, Zhang Q, Pajak TF, Forastiere AA, Jacobs J et al. 2012. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 84:1198205
    [Google Scholar]
  63. 63.
    Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH et al. 2004. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 350:193744
    [Google Scholar]
  64. 64.
    Bernier J, Cooper JS, Pajak TF, van Glabbeke M, Bourhis J et al. 2005. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 27:84350
    [Google Scholar]
  65. 65.
    Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M et al. 2006. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368:84354
    [Google Scholar]
  66. 66.
    Fu KK, Pajak TF, Trotti A, Jones CU, Spencer SA et al. 2000. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int. J. Radiat. Oncol. Biol. Phys. 48:716
    [Google Scholar]
  67. 67.
    Overgaard J, Hansen HS, Specht L, Overgaard M, Grau C et al. 2003. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet 362:93340
    [Google Scholar]
  68. 68.
    Beadle BM, Liao KP, Elting LS, Buchholz TA, Ang KK et al. 2014. Improved survival using intensity-modulated radiation therapy in head and neck cancers: a SEER-Medicare analysis. Cancer 120:70210
    [Google Scholar]
  69. 69.
    Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A et al. 2010. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 76:S39
    [Google Scholar]
  70. 70.
    Rancati T, Schwarz M, Allen AM, Feng F, Popovtzer A et al. 2010. Radiation dose-volume effects in the larynx and pharynx. Int. J. Radiat. Oncol. Biol. Phys. 76:S6469
    [Google Scholar]
  71. 71.
    Kam MK, Leung SF, Zee B, Chau RM, Suen JJ et al. 2007. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J. Clin. Oncol. 25:487379
    [Google Scholar]
  72. 72.
    Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA et al. 2011. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 12:12736
    [Google Scholar]
  73. 73.
    Adelstein DJ, Li Y, Adams GL, Wagner H Jr., Kish JA et al. 2003. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J. Clin. Oncol. 21:9298
    [Google Scholar]
  74. 74.
    Argiris A, Karamouzis MV, Raben D, Ferris RL. 2008. Head and neck cancer. Lancet 371:1695709
    [Google Scholar]
  75. 75.
    Vermorken JB, Kapteijn TS, Hart AA, Pinedo HM. 1983. Ototoxicity of cis-diamminedichloroplatinum (II): influence of dose, schedule and mode of administration. Eur. J. Cancer Clin. Oncol. 19:5358
    [Google Scholar]
  76. 76.
    Chan AT, Leung SF, Ngan RK, Teo PM, Lau WH et al. 2005. Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J. Natl. Cancer Inst. 97:53639
    [Google Scholar]
  77. 77.
    Chiu TJ, Chen CH, Chien CY, Li SH, Tsai HT, Chen YJ. 2011. High ERCC1 expression predicts cisplatin-based chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area. J. Transl. Med. 9:31
    [Google Scholar]
  78. 78.
    Jeremic B, Milicic B, Dagovic A, Vaskovic Z, Tadic L. 2004. Radiation therapy with or without concurrent low-dose daily chemotherapy in locally advanced, nonmetastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. 22:354048
    [Google Scholar]
  79. 79.
    Quon H, Leong T, Haselow R, Leipzig B, Cooper J, Forastiere A. 2011. Phase III study of radiation therapy with or without cis-platinum in patients with unresectable squamous or undifferentiated carcinoma of the head and neck: an intergroup trial of the Eastern Cooperative Oncology Group (E2382). Int. J. Radiat. Oncol. Biol. Phys. 81:71925
    [Google Scholar]
  80. 80.
    Ang KK, Trotti A, Brown BW, Garden AS, Foote RL et al. 2001. Randomized trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 51:57178
    [Google Scholar]
  81. 81.
    Rubin Grandis J, Melhem MF, Gooding WE, Day R, Holst VA et al. 1998. Levels of TGF-α and EGFR protein in head and neck squamous cell carcinoma and patient survival. J. Natl. Cancer Inst. 90:82432
    [Google Scholar]
  82. 82.
    Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM et al. 2006. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354:56778
    [Google Scholar]
  83. 83.
    Calais G, Alfonsi M, Bardet E, Sire C, Germain T et al. 1999. Randomized trial of radiation therapy versus concomitant chemotherapy and radiation therapy for advanced-stage oropharynx carcinoma. J. Natl. Cancer Inst. 91:208186
    [Google Scholar]
  84. 84.
    Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU et al. 2010. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 11:2128
    [Google Scholar]
  85. 85.
    Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R et al. 2007. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 357:1695704
    [Google Scholar]
  86. 86.
    Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E et al. 2007. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N. Engl. J. Med. 357:170515
    [Google Scholar]
  87. 87.
    Loo SW, Geropantas K, Roques TW. 2013. DeCIDE and PARADIGM: nails in the coffin of induction chemotherapy in head and neck squamous cell carcinoma?. Clin. Transl. Oncol. 15:24851
    [Google Scholar]
  88. 88.
    Haddad R, O'Neill A, Rabinowits G, Tishler R, Khuri F et al. 2013. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol. 14:25764
    [Google Scholar]
  89. 89.
    Chung CH, Gillison ML. 2009. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin. Cancer Res. 15:675862
    [Google Scholar]
  90. 90.
    El-Naggar AK, Westra WH. 2012. p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 34:45961
    [Google Scholar]
  91. 91.
    Smeets SJ, Hesselink AT, Speel EJ, Haesevoets A, Snijders PJ et al. 2007. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int. J. Cancer 121:246572
    [Google Scholar]
  92. 92.
    Cohen MA, Basha SR, Reichenbach DK, Robertson E, Sewell DA. 2008. Increased viral load correlates with improved survival in HPV-16-associated tonsil carcinoma patients. Acta Otolaryngol. 128:58389
    [Google Scholar]
  93. 93.
    Ukpo OC, Flanagan JJ, Ma XJ, Luo Y, Thorstad WL, Lewis JS Jr. 2011. High-risk human papillomavirus E6/E7 mRNA detection by a novel in situ hybridization assay strongly correlates with p16 expression and patient outcomes in oropharyngeal squamous cell carcinoma. Am. J. Surg. Pathol. 35:134350
    [Google Scholar]
  94. 94.
    Rietbergen MM, Brakenhoff RH, Bloemena E, Witte BI, Snijders PJ et al. 2013. Human papillomavirus detection and comorbidity: critical issues in selection of patients with oropharyngeal cancer for treatment de-escalation trials. Ann. Oncol. 24:274045
    [Google Scholar]
  95. 95.
    Lewis JS Jr., Beadle B, Bishop JA, Chernock RD, Colasacco C et al. 2018. Human papillomavirus testing in head and neck carcinomas: guideline from the College of American Pathologists. Arch. Pathol. Lab. Med. 142:55997
    [Google Scholar]
  96. 96.
    Begum S, Gillison ML, Nicol TL, Westra WH. 2007. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin. Cancer Res. 13:118691
    [Google Scholar]
  97. 97.
    Zhang MQ, El-Mofty SK, Davila RM 2008. Detection of human papillomavirus-related squamous cell carcinoma cytologically and by in situ hybridization in fine-needle aspiration biopsies of cervical metastasis: a tool for identifying the site of an occult head and neck primary. Cancer 114:11823
    [Google Scholar]
  98. 98.
    El-Salem F, Mansour M, Gitman M, Miles BA, Posner MR et al. 2019. Real-time PCR HPV genotyping in fine needle aspirations of metastatic head and neck squamous cell carcinoma: exposing the limitations of conventional p16 immunostaining. Oral Oncol. 90:7479
    [Google Scholar]
  99. 99.
    Bishop JA, Maleki Z, Valsamakis A, Ogawa T, Chang X et al. 2012. Application of the hybrid capture 2 assay to squamous cell carcinomas of the head and neck: a convenient liquid-phase approach for the reliable determination of human papillomavirus status. Cancer Cytopathol. 120:1825
    [Google Scholar]
  100. 100.
    Cohen N, Gupta M, Doerwald-Munoz L, Jang D, Young JE et al. 2017. Developing a new diagnostic algorithm for human papilloma virus associated oropharyngeal carcinoma: an investigation of HPV DNA assays. J. Otolaryngol. Head Neck Surg. 46:11
    [Google Scholar]
  101. 101.
    Hao Y, Mehrotra M, Lam H, Si Q, Salem F et al. 2021. Liquid phase human papillomavirus genotype analysis of aspirated metastatic head and neck squamous cell carcinoma: Fine needle aspiration supernatant is a rich source of tumor DNA that can increase the diagnostic yield. Diagn. Cytopathol. 49:2530
    [Google Scholar]
  102. 102.
    Chera BS, Kumar S, Beaty BT, Marron D, Jefferys S et al. 2019. Rapid clearance profile of plasma circulating tumor HPV type 16 DNA during chemoradiotherapy correlates with disease control in HPV-associated oropharyngeal cancer. Clin. Cancer Res. 25:468290
    [Google Scholar]
  103. 103.
    Ulz P, Heitzer E, Geigl JB, Speicher MR. 2017. Patient monitoring through liquid biopsies using circulating tumor DNA. Int. J. Cancer 141:88796
    [Google Scholar]
  104. 104.
    Liauw SL, Son CH, Shergill A, Shogan BD. 2021. Circulating tumor-tissue modified HPV DNA analysis for molecular disease monitoring after chemoradiation for anal squamous cell carcinoma: a case report. J. Gastrointest. Oncol. 12:315562
    [Google Scholar]
  105. 105.
    Pai SI, Westra WH. 2009. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu. Rev. Pathol. Mech. Dis. 4:4970
    [Google Scholar]
  106. 106.
    Bishop JA, Ma XJ, Wang H, Luo Y, Illei PB et al. 2012. Detection of transcriptionally active high-risk HPV in patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 mRNA in situ hybridization method. Am. J. Surg. Pathol. 36:12187482
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-041424
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-041424
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error