1932

Abstract

As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell–mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-042754
2024-01-24
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-031521-042754.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-042754&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C et al. 2013. Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol. 87:14779092
    [Google Scholar]
  2. 2.
    Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:20196776
    [Google Scholar]
  3. 3.
    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:779827073
    [Google Scholar]
  4. 4.
    Röltgen K, Boyd SD. 2021. Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell Host Microbe 29:7106375
    [Google Scholar]
  5. 5.
    Sette A, Crotty S. 2021. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184:486180
    [Google Scholar]
  6. 6.
    Jackson CB, Farzan M, Chen B, Choe H. 2022. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23:1320
    [Google Scholar]
  7. 7.
    Feng S, Phillips DJ, White T, Sayal H, Aley PK et al. 2021. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 27:11203240
    [Google Scholar]
  8. 8.
    Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M et al. 2020. Seasonal coronavirus protective immunity is short-lasting. Nat. Med. 26:11169193
    [Google Scholar]
  9. 9.
    Röltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA et al. 2020. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol. 5:54eabe0240
    [Google Scholar]
  10. 10.
    Grandjean L, Saso A, Torres Ortiz A, Lam T, Hatcher J et al. 2022. Long-term persistence of spike protein antibody and predictive modeling of antibody dynamics after infection with severe acute respiratory syndrome coronavirus 2. Clin. Infect. Dis. 74:7122029
    [Google Scholar]
  11. 11.
    Barnes CO, Jette CA, Abernathy ME, Dam K-MA, Esswein SR et al. 2020. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588:783968287
    [Google Scholar]
  12. 12.
    Yuan M, Liu H, Wu NC, Lee C-CD, Zhu X et al. 2020. Structural basis of a shared antibody response to SARS-CoV-2. Science 369:6507111923
    [Google Scholar]
  13. 13.
    Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P et al. 2021. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184:82183200.e22
    [Google Scholar]
  14. 14.
    Walker AS, Vihta K-D, Gethings O, Pritchard E, Jones J et al. 2021. Tracking the emergence of SARS-CoV-2 alpha variant in the United Kingdom. N. Engl. J. Med. 385:27258285
    [Google Scholar]
  15. 15.
    Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V et al. 2021. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592:785443843
    [Google Scholar]
  16. 16.
    Naveca FG, Nascimento V, de Souza VC, Corado A de L, Nascimento F et al. 2021. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 27:7123038
    [Google Scholar]
  17. 17.
    Cao Y, Wang J, Jian F, Xiao T, Song W et al. 2022. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602:789865763
    [Google Scholar]
  18. 18.
    Hassan MA-K, Aliyu S. 2022. Delayed access to COVID-19 vaccines: a perspective on low-income countries in Africa. Int. J. Health Serv. 52:332329
    [Google Scholar]
  19. 19.
    Pilkington V, Keestra SM, Hill A. 2022. Global COVID-19 vaccine inequity: failures in the first year of distribution and potential solutions for the future. Front. Public Health 10:821117
    [Google Scholar]
  20. 20.
    Dashdorj NJ, Wirz OF, Röltgen K, Haraguchi E, Buzzanco AS et al. 2021. Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host Microbe 29:12173843.e4
    [Google Scholar]
  21. 21.
    Zhang Z, Mateus J, Coelho CH, Dan JM, Moderbacher CR et al. 2022. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185:14243451.e17
    [Google Scholar]
  22. 22.
    Netea MG, Domínguez-Andrés J, van de Veerdonk FL, van Crevel R, Pulendran B, van der Meer JWM. 2022. Natural resistance against infections: focus on COVID-19. Trends Immunol. 43:210616
    [Google Scholar]
  23. 23.
    Cele S, Karim F, Lustig G, San JE, Hermanus T et al. 2022. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30:215462.e5
    [Google Scholar]
  24. 24.
    Chaguza C, Hahn AM, Petrone ME, Zhou S, Ferguson D et al. 2023. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Rep. Med. 4:2100943
    [Google Scholar]
  25. 25.
    Truong TT, Ryutov A, Pandey U, Yee R, Goldberg L et al. 2021. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: a consecutive case series. EBioMedicine 67:103355
    [Google Scholar]
  26. 26.
    Purpura LJ, Chang M, Annavajhala MK, Mohri H, Liu L et al. 2022. Prolonged severe acute respiratory syndrome coronavirus 2 persistence, attenuated immunologic response, and viral evolution in a solid organ transplant patient. Am. J. Transplant. 22:264953
    [Google Scholar]
  27. 27.
    Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T et al. 2022. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602:789865456
    [Google Scholar]
  28. 28.
    Carreño JM, Alshammary H, Tcheou J, Singh G, Raskin AJ et al. 2022. Activity of convalescent and vaccine serum against SARS-CoV-2 omicron. Nature 602:789868288
    [Google Scholar]
  29. 29.
    Rössler A, Riepler L, Bante D, von Laer D, Kimpel J. 2022. SARS-CoV-2 omicron variant neutralization in serum from vaccinated and convalescent persons. N. Engl. J. Med. 386:7698700
    [Google Scholar]
  30. 30.
    Khan K, Karim F, Cele S, Reedoy K, San JE et al. 2022. Omicron infection enhances delta antibody immunity in vaccinated persons. Nature 607:791835659
    [Google Scholar]
  31. 31.
    Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK et al. 2022. Broadly neutralizing antibodies overcome SARS-CoV-2 omicron antigenic shift. Nature 602:789866470
    [Google Scholar]
  32. 32.
    Goel RR, Painter MM, Lundgreen KA, Apostolidis SA, Baxter AE et al. 2022. Efficient recall of omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 185:11187587.e8
    [Google Scholar]
  33. 33.
    Tubiana J, Xiang Y, Fan L, Wolfson HJ, Chen K et al. 2022. Reduced B cell antigenicity of omicron lowers host serologic response. Cell Rep. 41:3111512
    [Google Scholar]
  34. 34.
    Rössler A, Knabl L, von Laer D, Kimpel J. 2022. Neutralization profile after recovery from SARS-CoV-2 omicron infection. N. Engl. J. Med. 386:18176466
    [Google Scholar]
  35. 35.
    Chalkias S, Harper C, Vrbicky K, Walsh SR, Essink B et al. 2022. A bivalent omicron-containing booster vaccine against Covid-19. N. Engl. J. Med. 387:14127991
    [Google Scholar]
  36. 36.
    Collie S, Champion J, Moultrie H, Bekker L-G, Gray G. 2022. Effectiveness of BNT162b2 vaccine against omicron variant in South Africa. N. Engl. J. Med. 386:549496
    [Google Scholar]
  37. 37.
    Altarawneh HN, Chemaitelly H, Ayoub HH, Tang P, Hasan MR et al. 2022. Effects of previous infection and vaccination on symptomatic omicron infections. N. Engl. J. Med. 387:12134
    [Google Scholar]
  38. 38.
    Powell AA, Kirsebom F, Stowe J, Ramsay ME, Lopez-Bernal J et al. 2023. Protection against symptomatic infection with delta (B.1.617.2) and omicron (B.1.1.529) BA.1 and BA.2 SARS-CoV-2 variants after previous infection and vaccination in adolescents in England, August, 2021–March, 2022: a national, observational, test-negative, case-control study. Lancet Infect. Dis. 23:443544
    [Google Scholar]
  39. 39.
    Touret F, Giraud E, Bourret J, Donati F, Tran-Rajau J et al. 2023. Enhanced neutralization escape to therapeutic monoclonal antibodies by SARS-CoV-2 omicron sub-lineages. iScience 26:4106413
    [Google Scholar]
  40. 40.
    Plotkin SA. 2010. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17:7105565
    [Google Scholar]
  41. 41.
    Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D et al. 2022. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 375:65764350
    [Google Scholar]
  42. 42.
    Fong Y, McDermott AB, Benkeser D, Roels S, Stieh DJ et al. 2022. Immune correlates analysis of the ENSEMBLE single Ad26.COV2.S dose vaccine efficacy clinical trial. Nat. Microbiol. 7:1219962010
    [Google Scholar]
  43. 43.
    Fong Y, Huang Y, Benkeser D, Carpp LN, Áñez G et al. 2023. Immune correlates analysis of the PREVENT-19 COVID-19 vaccine efficacy clinical trial. Nat. Commun. 14:1331
    [Google Scholar]
  44. 44.
    Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK et al. 2021. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27:7120511
    [Google Scholar]
  45. 45.
    Earle KA, Ambrosino DM, Fiore-Gartland A, Goldblatt D, Gilbert PB et al. 2021. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 39:32442328
    [Google Scholar]
  46. 46.
    Atti A, Insalata F, Carr EJ, Otter AD, Castillo-Olivares J et al. 2022. Antibody correlates of protection from SARS-CoV-2 reinfection prior to vaccination: a nested case-control within the SIREN study. J. Infect. 85:554556
    [Google Scholar]
  47. 47.
    Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK et al. 2022. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe 3:1e5261
    [Google Scholar]
  48. 48.
    Dimeglio C, Migueres M, Bouzid N, Chapuy-Regaud S, Gernigon C et al. 2022. Antibody titers and protection against omicron (BA.1 and BA.2) SARS-CoV-2 infection. Vaccines 10:91548
    [Google Scholar]
  49. 49.
    Kristiansen PA, Page M, Bernasconi V, Mattiuzzo G, Dull P et al. 2021. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 397:10282134748
    [Google Scholar]
  50. 50.
    Atyeo C, Fischinger S, Zohar T, Slein MD, Burke J et al. 2020. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity 53:352432.e4
    [Google Scholar]
  51. 51.
    Zohar T, Loos C, Fischinger S, Atyeo C, Wang C et al. 2020. Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell 183:6150819.e12
    [Google Scholar]
  52. 52.
    Merad M, Subramanian A, Wang TT. 2021. An aberrant inflammatory response in severe COVID-19. Cell Host Microbe 29:7104347
    [Google Scholar]
  53. 53.
    Chakraborty S, Gonzalez J, Edwards K, Mallajosyula V, Buzzanco AS et al. 2021. Proinflammatory IgG Fc structures in patients with severe COVID-19. Nat. Immunol. 22:16773
    [Google Scholar]
  54. 54.
    Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J et al. 2021. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371:6532eabc8378
    [Google Scholar]
  55. 55.
    Chakraborty S, Gonzalez JC, Sievers BL, Mallajosyula V, Chakraborty S et al. Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Sci. Transl. Med. 14:635eabm7853
    [Google Scholar]
  56. 56.
    Buhre JS, Pongracz T, Künsting I, Lixenfeld AS, Wang W et al. 2023. mRNA vaccines against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine. Front. Immunol. 13:1020844
    [Google Scholar]
  57. 57.
    Irrgang P, Gerling J, Kocher K, Lapuente D, Steininger P et al. 2023. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci. Immunol. 8:79eade2798
    [Google Scholar]
  58. 58.
    Pillai S. 2023. Is it bad, is it good, or is IgG4 just misunderstood?. Sci. Immunol. 8:81eadg7327
    [Google Scholar]
  59. 59.
    Anderson EM, Goodwin EC, Verma A, Arevalo CP, Bolton MJ et al. 2021. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184:7185864.e10
    [Google Scholar]
  60. 60.
    Galipeau Y, Siragam V, Laroche G, Marion E, Greig M et al. 2021. Relative ratios of human seasonal coronavirus antibodies predict the efficiency of cross-neutralization of SARS-CoV-2 spike binding to ACE2. eBioMedicine 74:103700
    [Google Scholar]
  61. 61.
    Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M et al. 2022. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185:6102540.e14
    [Google Scholar]
  62. 62.
    Sokal A, Chappert P, Barba-Spaeth G, Roeser A, Fourati S et al. 2021. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 184:5120113.e14
    [Google Scholar]
  63. 63.
    Ortega N, Ribes M, Vidal M, Rubio R, Aguilar R et al. 2021. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat. Commun. 12:14740
    [Google Scholar]
  64. 64.
    Lavell AHA, Sikkens JJ, Edridge AWD, van der Straten K, Sechan F et al. 2022. Recent infection with HCoV-OC43 may be associated with protection against SARS-CoV-2 infection. iScience 25:10105105
    [Google Scholar]
  65. 65.
    Lin C-Y, Wolf J, Brice DC, Sun Y, Locke M et al. 2022. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe 30:18396.e4
    [Google Scholar]
  66. 66.
    Sagar M, Reifler K, Rossi M, Miller NS, Sinha P et al. 2021. Recent endemic coronavirus infection is associated with less-severe COVID-19. J. Clin. Investig. 131:1e143380
    [Google Scholar]
  67. 67.
    Gombar S, Bergquist T, Pejaver V, Hammarlund NE, Murugesan K et al. 2021. SARS-CoV-2 infection and COVID-19 severity in individuals with prior seasonal coronavirus infection. Diagn. Microbiol. Infect. Dis. 100:2115338
    [Google Scholar]
  68. 68.
    Gostic KM, Ambrose M, Worobey M, Lloyd-Smith JO. 2016. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354:631372226
    [Google Scholar]
  69. 69.
    Chemaitelly H, Ayoub HH, Tang P, Hasan MR, Coyle P et al. 2022. Immune imprinting and protection against repeat reinfection with SARS-CoV-2. N. Engl. J. Med. 387:18171618
    [Google Scholar]
  70. 70.
    Tan CY, Chiew CJ, Pang D, Lee VJ, Ong B et al. 2023. Protective immunity of SARS-CoV-2 infection and vaccines against medically attended symptomatic omicron BA.4, BA.5, and XBB reinfections in Singapore: a national cohort study. Lancet Infect. Dis. 23:7799805
    [Google Scholar]
  71. 71.
    Reynolds CJ, Pade C, Gibbons JM, Otter AD, Lin K-M et al. 2022. Immune boosting by B.1.1.529 (omicron) depends on previous SARS-CoV-2 exposure. Science 377:6603eabq1841
    [Google Scholar]
  72. 72.
    Quandt J, Muik A, Salisch N, Lui BG, Lutz S et al. 2022. Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Sci. Immunol. 7:75eabq2427
    [Google Scholar]
  73. 73.
    Cao Y, Jian F, Wang J, Yu Y, Song W et al. 2023. Imprinted SARS-CoV-2 humoral immunity induces convergent omicron RBD evolution. Nature 614:794852129
    [Google Scholar]
  74. 74.
    Park Y-J, Pinto D, Walls AC, Liu Z, De Marco A et al. 2022. Imprinted antibody responses against SARS-CoV-2 omicron sublineages. Science 378:662061927
    [Google Scholar]
  75. 75.
    Alsoussi WB, Malladi SK, Zhou JQ, Liu Z, Ying B et al. 2023. SARS-CoV-2 omicron boosting induces de novo B cell response in humans. Nature 617:59298
    [Google Scholar]
  76. 76.
    Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S et al. 2021. Evolution of antibody immunity to SARS-CoV-2. Nature 591:785163944
    [Google Scholar]
  77. 77.
    Sakharkar M, Rappazzo CG, Wieland-Alter WF, Hsieh C-L, Wrapp D et al. 2021. Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Sci. Immunol. 6:56eabg6916
    [Google Scholar]
  78. 78.
    Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng W et al. 2021. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374:6572abm0829
    [Google Scholar]
  79. 79.
    Nielsen SCA, Yang F, Jackson KJL, Hoh RA, Röltgen K et al. 2020. Human B cell clonal expansion and convergent antibody responses to SARS-CoV-2. Cell Host Microbe 28:451625.e5
    [Google Scholar]
  80. 80.
    Muecksch F, Weisblum Y, Barnes CO, Schmidt F, Schaefer-Babajew D et al. 2021. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity 54:8185368.e7
    [Google Scholar]
  81. 81.
    Moriyama S, Adachi Y, Sato T, Tonouchi K, Sun L et al. 2021. Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity 54:8184152.e4
    [Google Scholar]
  82. 82.
    Sokal A, Barba-Spaeth G, Fernández I, Broketa M, Azzaoui I et al. 2021. mRNA vaccination of naive and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants. Immunity 54:122893907.e5
    [Google Scholar]
  83. 83.
    Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C et al. 2021. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 595:786742631
    [Google Scholar]
  84. 84.
    Havenar-Daughton C, Newton IG, Zare SY, Reiss SM, Schwan B et al. 2020. Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations. J. Immunol. Methods 479:112746
    [Google Scholar]
  85. 85.
    Lederer K, Bettini E, Parvathaneni K, Painter MM, Agarwal D et al. 2022. Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell 185:6100824.e15
    [Google Scholar]
  86. 86.
    Kim W, Zhou JQ, Horvath SC, Schmitz AJ, Sturtz AJ et al. 2022. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 604:790414145
    [Google Scholar]
  87. 87.
    Amanna IJ, Carlson NE, Slifka MK. 2007. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357:19190315
    [Google Scholar]
  88. 88.
    Kaneko N, Kuo H-H, Boucau J, Farmer JR, Allard-Chamard H et al. 2020. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183:114357.e13
    [Google Scholar]
  89. 89.
    Ellebedy AH, Jackson KJL, Kissick HT, Nakaya HI, Davis CW et al. 2016. Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat. Immunol. 17:10122634
    [Google Scholar]
  90. 90.
    Lau D, Lan LY-L, Andrews SF, Henry C, Rojas KT et al. 2017. Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci. Immunol. 2:7eaai8153
    [Google Scholar]
  91. 91.
    Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS et al. 2020. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21:12150616
    [Google Scholar]
  92. 92.
    Ciabattini A, Pastore G, Fiorino F, Polvere J, Lucchesi S et al. 2021. Evidence of SARS-CoV-2-specific memory B cells six months after vaccination with the BNT162b2 mRNA vaccine. Front. Immunol. 12:740708
    [Google Scholar]
  93. 93.
    Kardava L, Rachmaninoff N, Lau WW, Buckner CM, Trihemasava K et al. 2022. Early human B cell signatures of the primary antibody response to mRNA vaccination. PNAS 119:28e2204607119
    [Google Scholar]
  94. 94.
    Callow KA, Parry HF, Sergeant M, Tyrrell DA. 1990. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 105:243546
    [Google Scholar]
  95. 95.
    Morens DM, Taubenberger JK, Fauci AS. 2023. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 31:114657
    [Google Scholar]
  96. 96.
    Trypsteen W, Van Cleemput J, van Snippenberg W, Gerlo S, Vandekerckhove L. 2020. On the whereabouts of SARS-CoV-2 in the human body: a systematic review. PLOS Pathog. 16:10e1009037
    [Google Scholar]
  97. 97.
    Andersson MI, Arancibia-Carcamo CV, Auckland K, Baillie JK, Barnes E et al. 2020. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res. 5:181
    [Google Scholar]
  98. 98.
    Saá P, Fink RV, Bakkour S, Jin J, Simmons G et al. 2022. Frequent detection but lack of infectivity of SARS-CoV-2 RNA in presymptomatic, infected blood donor plasma. J. Clin. Investig. 132:17e159876
    [Google Scholar]
  99. 99.
    Yewdell JW. 2021. Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLOS Pathogens 17:4e1009509
    [Google Scholar]
  100. 100.
    Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Viant C et al. 2021. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13:577eabf1555
    [Google Scholar]
  101. 101.
    Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B et al. 2020. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 5:52eabe5511
    [Google Scholar]
  102. 102.
    Klingler J, Lambert GS, Itri V, Liu S, Bandres JC et al. 2021. Detection of antibody responses against SARS-CoV-2 in plasma and saliva from vaccinated and infected individuals. Front. Immunol. 12:759688
    [Google Scholar]
  103. 103.
    Alkharaan H, Bayati S, Hellström C, Aleman S, Olsson A et al. 2021. Persisting salivary IgG against SARS-CoV-2 at 9 months after mild COVID-19: a complementary approach to population surveys. J. Infect. Dis. 224:340714
    [Google Scholar]
  104. 104.
    Liew F, Talwar S, Cross A, Willett BJ, Scott S et al. 2023. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. eBioMedicine 87:104402
    [Google Scholar]
  105. 105.
    Ravichandran S, Grubbs G, Tang J, Lee Y, Huang C et al. 2021. Systemic and mucosal immune profiling in asymptomatic and symptomatic SARS-CoV-2-infected individuals reveal unlinked immune signatures. Sci. Adv. 7:42eabi6533
    [Google Scholar]
  106. 106.
    Butler SE, Crowley AR, Natarajan H, Xu S, Weiner JA et al. 2020. Distinct features and functions of systemic and mucosal humoral immunity among SARS-CoV-2 convalescent individuals. Front. Immunol. 11:618685
    [Google Scholar]
  107. 107.
    Fröberg J, Gillard J, Philipsen R, Lanke K, Rust J et al. 2021. SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms. Nat. Commun. 12:15621
    [Google Scholar]
  108. 108.
    Tang J, Zeng C, Cox TM, Li C, Son YM et al. 2022. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci. Immunol. 7:76eadd4853
    [Google Scholar]
  109. 109.
    Sheikh-Mohamed S, Isho B, Chao GYC, Zuo M, Cohen C et al. 2022. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol. 15:5799808
    [Google Scholar]
  110. 110.
    Stolovich-Rain M, Kumari S, Friedman A, Kirillov S, Socol Y et al. 2023. Intramuscular mRNA BNT162b2 vaccine against SARS-CoV-2 induces neutralizing salivary IgA. Front. Immunol. 13:933347
    [Google Scholar]
  111. 111.
    Brüssow H. 2023. Do we need nasal vaccines against COVID 19 to suppress the transmission of infections?. Microb. Biotechnol. 16:1314
    [Google Scholar]
  112. 112.
    Mao T, Israelow B, Peña-Hernández MA, Suberi A, Zhou L et al. 2022. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378:6622eabo2523
    [Google Scholar]
  113. 113.
    Walker BD, Yu XG. 2013. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 13:748798
    [Google Scholar]
  114. 114.
    Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS et al. 2017. Resistance to malaria through structural variation of red blood cell invasion receptors. Science 356:6343eaam6393
    [Google Scholar]
  115. 115.
    Bekkering S, Domínguez-Andrés J, Joosten LAB, Riksen NP, Netea MG. 2021. Trained immunity: reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 39:66793
    [Google Scholar]
  116. 116.
    Lewis HC, Ware H, Whelan M, Subissi L, Li Z et al. 2022. SARS-CoV-2 infection in Africa: a systematic review and meta-analysis of standardised seroprevalence studies, from January 2020 to December 2021. BMJ Global Health 7:8e008793
    [Google Scholar]
  117. 117.
    Bertagnolio S, Thwin SS, Silva R, Nagarajan S, Jassat W et al. 2022. Clinical features of, and risk factors for, severe or fatal COVID-19 among people living with HIV admitted to hospital: analysis of data from the WHO Global Clinical Platform of COVID-19. Lancet HIV 9:7e48695
    [Google Scholar]
  118. 118.
    Casco N, Jorge AL, Palmero DJ, Alffenaar J-W, Denholm J et al. TB/COVID-19 Global Study Group). 2022. Tuberculosis and COVID-19 co-infection: description of the global cohort. Eur. Respir. J. 59:32102538
    [Google Scholar]
  119. 119.
    Owusu M, Annan A, Corman VM, Larbi R, Anti P et al. 2014. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLOS ONE 9:7e99782
    [Google Scholar]
  120. 120.
    Nyaguthii DM, Otieno GP, Kombe IK, Koech D, Mutunga M et al. 2021. Infection patterns of endemic human coronaviruses in rural households in coastal Kenya. Wellcome Open Res. 6:27
    [Google Scholar]
  121. 121.
    Faye MN, Barry MA, Jallow MM, Wade SF, Mendy MP et al. 2022. Epidemiology of non-SARS-CoV2 human coronaviruses (HCoVs) in people presenting with influenza-like illness (ILI) or severe acute respiratory infections (SARI) in Senegal from 2012 to 2020. Viruses 15:120
    [Google Scholar]
  122. 122.
    Yadouleton A, Sander A-L, Moreira-Soto A, Tchibozo C, Hounkanrin G et al. 2021. Limited specificity of serologic tests for SARS-CoV-2 antibody detection, Benin. Emerg. Infect. Dis. 27:123337
    [Google Scholar]
  123. 123.
    Gasasira AF, Dorsey G, Kamya MR, Havlir D, Kiggundu M et al. 2006. False-positive results of enzyme immunoassays for human immunodeficiency virus in patients with uncomplicated malaria. J. Clin. Microbiol. 44:8302124
    [Google Scholar]
  124. 124.
    Pedersen J, Koumakpayi IH, Babuadze G, Baz M, Ndiaye O et al. 2022. Cross-reactive immunity against SARS-CoV-2 N protein in Central and West Africa precedes the COVID-19 pandemic. Sci. Rep. 12:112962
    [Google Scholar]
  125. 125.
    Emmerich P, Murawski C, Ehmen C, von Possel R, Pekarek N et al. 2021. Limited specificity of commercially available SARS-CoV-2 IgG ELISAs in serum samples of African origin. Trop. Med. Int. Health 26:662131
    [Google Scholar]
  126. 126.
    Monto AS, DeJonge PM, Callear AP, Bazzi LA, Capriola SB et al. 2020. Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan. J. Infect. Dis. 222:1916
    [Google Scholar]
  127. 127.
    Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R et al. 2020. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370:6522133943
    [Google Scholar]
  128. 128.
    Dowell AC, Butler MS, Jinks E, Tut G, Lancaster T et al. 2022. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat. Immunol. 23:14049
    [Google Scholar]
  129. 129.
    Yang F, Nielsen SCA, Hoh RA, Röltgen K, Wirz OF et al. 2021. Shared B cell memory to coronaviruses and other pathogens varies in human age groups and tissues. Science 372:654373841
    [Google Scholar]
  130. 130.
    Payne AB, Gilani Z, Godfred-Cato S, Belay ED, Feldstein LR et al. 2021. Incidence of multisystem inflammatory syndrome in children among US persons infected with SARS-CoV-2. JAMA Netw. Open 4:6e2116420
    [Google Scholar]
  131. 131.
    Weisberg SP, Connors TJ, Zhu Y, Baldwin MR, Lin W-H et al. 2021. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol. 22:12531
    [Google Scholar]
  132. 132.
    Bartsch YC, St Denis KJ, Kaplonek P, Kang J, Lam EC et al. 2022. SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children. Sci. Transl. Med. 14:672eabn9237
    [Google Scholar]
  133. 133.
    Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D et al. 2014. Diversity and clonal selection in the human T-cell repertoire. PNAS 111:361313944
    [Google Scholar]
  134. 134.
    Newman J, Thakur N, Peacock TP, Bialy D, Elrefaey AME et al. 2022. Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat. Microbiol. 7:8118088
    [Google Scholar]
  135. 135.
    Romero-Olmedo AJ, Schulz AR, Hochstätter S, Das Gupta D, Virta I et al. 2022. Induction of robust cellular and humoral immunity against SARS-CoV-2 after a third dose of BNT162b2 vaccine in previously unresponsive older adults. Nat. Microbiol. 7:219599
    [Google Scholar]
  136. 136.
    Wang L, Wang W, Xu R, Berger NA. 2022. SARS-CoV-2 primary and breakthrough infections in patients with cancer: implications for patient care. Best Pract. Res. Clin. Haematol. 35:3101384
    [Google Scholar]
  137. 137.
    Freeman V, Hughes S, Carle C, Campbell D, Egger S et al. 2022. Are patients with cancer at higher risk of COVID-19-related death? A systematic review and critical appraisal of the early evidence. J. Cancer Policy 33:100340
    [Google Scholar]
  138. 138.
    Rolfo C, Meshulami N, Russo A, Krammer F, García-Sastre A et al. 2022. Lung cancer and severe acute respiratory syndrome coronavirus 2 infection: identifying important knowledge gaps for investigation. J. Thorac. Oncol. 17:221427
    [Google Scholar]
  139. 139.
    Mack PC, Gomez JE, Rodilla AM, Carreño JM, Hsu C-Y et al. 2022. Longitudinal COVID-19-vaccination-induced antibody responses and omicron neutralization in patients with lung cancer. Cancer Cell 40:657577
    [Google Scholar]
  140. 140.
    Conway R, Grimshaw AA, Konig MF, Putman M, Duarte-García A et al. 2022. SARS-CoV-2 infection and COVID-19 outcomes in rheumatic diseases: a systematic literature review and meta-analysis. Arthritis Rheumatol. 74:576675
    [Google Scholar]
  141. 141.
    Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. 2022. COVID-19 in people with rheumatic diseases: risks, outcomes, treatment considerations. Nat. Rev. Rheumatol. 18:4191204
    [Google Scholar]
  142. 142.
    Davis HE, McCorkell L, Vogel JM, Topol EJ. 2023. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21:313346
    [Google Scholar]
  143. 143.
    Su Y, Yuan D, Chen DG, Ng RH, Wang K et al. 2022. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185:588195.e20
    [Google Scholar]
  144. 144.
    Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S et al. 2021. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLOS ONE 16:9e0257016
    [Google Scholar]
  145. 145.
    Wallukat G, Hohberger B, Wenzel K, Fürst J, Schulze-Rothe S et al. 2021. Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID-19 symptoms. J. Transl. Autoimmun. 4:100100
    [Google Scholar]
  146. 146.
    Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M et al. 2023. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 24:460411
    [Google Scholar]
  147. 147.
    Klein J, Wood J, Jaycox J, Lu P, Dhodapkar RM et al. 2022. Distinguishing features of long COVID identified through immune profiling. medRxiv 2022.08.09.22278592. https://doi.org/10.1101/2022.08.09.22278592
    [Crossref]
  148. 148.
    Collins F, Adam S, Colvis C, Desrosiers E, Draghia-Akli R et al. 2023. The NIH-led research response to COVID-19. Science 379:663144144
    [Google Scholar]
  149. 149.
    Casadevall A, Dragotakes Q, Johnson PW, Senefeld JW, Klassen SA et al. 2021. Convalescent plasma use in the USA was inversely correlated with COVID-19 mortality. eLife 10:e69866
    [Google Scholar]
  150. 150.
    Natarajan H, Crowley AR, Butler SE, Xu S, Weiner JA et al. 2021. Markers of polyfunctional SARS-CoV-2 antibodies in convalescent plasma. mBio 12:2e00765-21
    [Google Scholar]
  151. 151.
    Senefeld JW, Johnson PW, Kunze KL, Bloch EM, van Helmond N et al. 2021. Access to and safety of COVID-19 convalescent plasma in the United States Expanded Access Program: a national registry study. PLOS Med. 18:12e1003872
    [Google Scholar]
  152. 152.
    Focosi D, Franchini M, Pirofski L-A, Burnouf T, Paneth N et al. 2022. COVID-19 convalescent plasma and clinical trials: understanding conflicting outcomes. Clin. Microbiol. Rev. 35:3e0020021
    [Google Scholar]
  153. 153.
    Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA et al. 2023. Mortality rates among hospitalized patients with COVID-19 treated with convalescent plasma. A systematic review and meta-analysis. medRxiv 2023.01.11.23284347. https://doi.org/10.1101/2023.01.11.23284347
  154. 154.
    Libster R, Pérez Marc G, Wappner D, Coviello S, Bianchi A et al. 2021. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N. Engl. J. Med. 384:761018
    [Google Scholar]
  155. 155.
    Sullivan DJ, Gebo KA, Shoham S, Bloch EM, Lau B et al. 2022. Early outpatient treatment for Covid-19 with convalescent plasma. N. Engl. J. Med. 386:18170011
    [Google Scholar]
  156. 156.
    Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M et al. 2023. COVID-19 convalescent plasma for the treatment of immunocompromised patients: a systematic review and meta-analysis. JAMA Netw. Open 6:1e2250647
    [Google Scholar]
  157. 157.
    Brilliant L, Smolinski M, Danzig L, Lipkin WI. 2022. Inevitable outbreaks. How to stop an age of spillovers from becoming an age of pandemics. Foreign Affairs Dec. 20. https://www.foreignaffairs.com/world/inevitable-outbreaks-spillovers-pandemics
    [Google Scholar]
  158. 158.
    Mina MJ, Metcalf CJE, McDermott AB, Douek DC, Farrar J, Grenfell BT. 2020. A Global Immunological Observatory to meet a time of pandemics. eLife 9:e58989
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-042754
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-042754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error