1932

Abstract

Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031621-024600
2023-01-24
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031621-024600.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031621-024600&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Siegel RL, Miller KD, Fuchs HE, Jemal A. 2022. Cancer statistics, 2022. CA Cancer J. Clin. 72:7–33
    [Google Scholar]
  2. 2.
    Beatty GL, Werba G, Lyssiotis CA, Simeone DM. 2021. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 35:940–62
    [Google Scholar]
  3. 3.
    Aiello NM, Stanger BZ. 2016. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis. Model. Mech. 9:105–14
    [Google Scholar]
  4. 4.
    Landsman L, Nijagal A, Whitchurch TJ, Vanderlaan RL, Zimmer WE et al. 2011. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLOS Biol. 9:e1001143
    [Google Scholar]
  5. 5.
    Grunwald BT, Devisme A, Andrieux G, Vyas F, Aliar K et al. 2021. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184:5577–92.e18
    [Google Scholar]
  6. 6.
    Liudahl SM, Betts CB, Sivagnanam S, Morales-Oyarvide V, da Silva A et al. 2021. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov. 11:2014–31
    [Google Scholar]
  7. 7.
    Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA et al. 2017. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:512–16
    [Google Scholar]
  8. 8.
    Hiraoka N, Ino Y, Yamazaki-Itoh R, Kanai Y, Kosuge T, Shimada K. 2015. Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br. J. Cancer 112:1782–90
    [Google Scholar]
  9. 9.
    Gunderson AJ, Rajamanickam V, Bui C, Bernard B, Pucilowska J et al. 2021. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 10:1900635
    [Google Scholar]
  10. 10.
    Delvecchio FR, Fincham REA, Spear S, Clear A, Roy-Luzarraga M et al. 2021. Pancreatic cancer chemotherapy is potentiated by induction of tertiary lymphoid structures in mice. Cell. Mol. Gastroenterol. Hepatol. 12:1543–65
    [Google Scholar]
  11. 11.
    Schumacher TN, Thommen DS 2022. Tertiary lymphoid structures in cancer. Science 375:eabf9419
    [Google Scholar]
  12. 12.
    Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G et al. 2014. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2:616–31
    [Google Scholar]
  13. 13.
    Yachida S, Jones S, Bozic I, Antal T, Leary R et al. 2010. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–17
    [Google Scholar]
  14. 14.
    Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED et al. 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–13
    [Google Scholar]
  15. 15.
    Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J et al. 2015. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin. Cancer Res. 21:3561–68
    [Google Scholar]
  16. 16.
    Aiello NM, Bajor DL, Norgard RJ, Sahmoud A, Bhagwat N et al. 2016. Metastatic progression is associated with dynamic changes in the local microenvironment. Nat. Commun. 7:12819
    [Google Scholar]
  17. 17.
    Thomas SK, Lee J, Beatty GL 2020. Paracrine and cell autonomous signalling in pancreatic cancer progression and metastasis. eBioMedicine 53:102662
    [Google Scholar]
  18. 18.
    Lee JW, Beatty GL. 2020. Inflammatory networks cultivate cancer cell metastasis to the liver. Cell Cycle 19:642–51
    [Google Scholar]
  19. 19.
    Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ. 1985. Wounding and its role in RSV-mediated tumor formation. Science 230:676–78
    [Google Scholar]
  20. 20.
    Burrack AL, Rollins MR, Spartz EJ, Mesojednik TD, Schmiechen ZC et al. 2021. CD40 agonist overcomes T cell exhaustion induced by chronic myeloid cell IL-27 production in a pancreatic cancer preclinical model. J. Immunol. 206:1372–84
    [Google Scholar]
  21. 21.
    Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF et al. 2016. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 30:355–85
    [Google Scholar]
  22. 22.
    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C et al. 2003. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–50
    [Google Scholar]
  23. 23.
    Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB et al. 2005. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–83
    [Google Scholar]
  24. 24.
    Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L et al. 2007. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302
    [Google Scholar]
  25. 25.
    Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I et al. 2011. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–39
    [Google Scholar]
  26. 26.
    Assi M, Achouri Y, Loriot A, Dauguet N, Dahou H et al. 2021. Dynamic regulation of expression of KRAS and its effectors determines the ability to initiate tumorigenesis in pancreatic acinar cells. Cancer Res. 81:2679–89
    [Google Scholar]
  27. 27.
    Del Poggetto E, Ho IL, Balestrieri C, Yen EY, Zhang S et al. 2021. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373:eabj0486
    [Google Scholar]
  28. 28.
    Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S et al. 2012. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Investig. 122:639–53
    [Google Scholar]
  29. 29.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC et al. 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–70
    [Google Scholar]
  30. 30.
    Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. 2000. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14:2501–14
    [Google Scholar]
  31. 31.
    Sodir NM, Kortlever RM, Barthet VJA, Campos T, Pellegrinet L et al. 2020. MYC instructs and maintains pancreatic adenocarcinoma phenotype. Cancer Discov. 10:588–607
    [Google Scholar]
  32. 32.
    Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM et al. 2017. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66:124–36
    [Google Scholar]
  33. 33.
    Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. 2012. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21:836–47
    [Google Scholar]
  34. 34.
    Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD et al. 2012. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–35
    [Google Scholar]
  35. 35.
    Dawson DW, Hertzer K, Moro A, Donald G, Chang HH et al. 2013. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev. Res. 6:1064–73
    [Google Scholar]
  36. 36.
    Chung KM, Singh J, Lawres L, Dorans KJ, Garcia C et al. 2020. Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell 181:832–47.e18
    [Google Scholar]
  37. 37.
    Incio J, Liu H, Suboj P, Chin SM, Chen IX et al. 2016. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 6:852–69
    [Google Scholar]
  38. 38.
    Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D et al. 2013. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 145:1449–58
    [Google Scholar]
  39. 39.
    Zaytouni T, Tsai PY, Hitchcock DS, DuBois CD, Freinkman E et al. 2017. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat. Commun. 8:242
    [Google Scholar]
  40. 40.
    Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK et al. 2008. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res. 14:5995–6004
    [Google Scholar]
  41. 41.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF et al. 2014. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–47
    [Google Scholar]
  42. 42.
    Lee JJ, Perera RM, Wang H, Wu DC, Liu XS et al. 2014. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. PNAS 111:E3091–100
    [Google Scholar]
  43. 43.
    Chen Y, Kim J, Yang S, Wang H, Wu CJ et al. 2021. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39:548–65.e6
    [Google Scholar]
  44. 44.
    Janakiram NB, Mohammed A, Bryant T, Ritchie R, Stratton N et al. 2017. Loss of natural killer T cells promotes pancreatic cancer in LSL-KrasG12D/+ mice. Immunology 152:36–51
    [Google Scholar]
  45. 45.
    Zhang Y, Lazarus J, Steele NG, Yan W, Lee HJ et al. 2020. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 10:422–39
    [Google Scholar]
  46. 46.
    Kalluri R. 2016. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16:582–98
    [Google Scholar]
  47. 47.
    Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK et al. 2021. Cross-tissue organization of the fibroblast lineage. Nature 593:575–79
    [Google Scholar]
  48. 48.
    Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D et al. 2009. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–61
    [Google Scholar]
  49. 49.
    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR 2012. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–29
    [Google Scholar]
  50. 50.
    Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N et al. 2013. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62:112–20
    [Google Scholar]
  51. 51.
    Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W et al. 2015. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75:544–53
    [Google Scholar]
  52. 52.
    Sullivan MR, Danai LV, Lewis CA, Chan SH, Gui DY et al. 2019. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8:e44235
    [Google Scholar]
  53. 53.
    Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479–83
    [Google Scholar]
  54. 54.
    Sherman MH, Yu RT, Tseng TW, Sousa CM, Liu S et al. 2017. Stromal cues regulate the pancreatic cancer epigenome and metabolome. PNAS 114:1129–34
    [Google Scholar]
  55. 55.
    Zhao H, Yang L, Baddour J, Achreja A, Bernard V et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5:e10250
    [Google Scholar]
  56. 56.
    Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M et al. 2019. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9:617–27
    [Google Scholar]
  57. 57.
    Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A et al. 2021. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11:446–79
    [Google Scholar]
  58. 58.
    Zhang Y, Recouvreux MV, Jung M, Galenkamp KMO, Li Y et al. 2021. Macropinocytosis in cancer-associated fibroblasts is dependent on CaMKK2/ARHGEF2 signaling and functions to support tumor and stromal cell fitness. Cancer Discov. 11:1808–25
    [Google Scholar]
  59. 59.
    Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A et al. 2013. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. PNAS 110:20212–17
    [Google Scholar]
  60. 60.
    Morita T, Kodama Y, Shiokawa M, Kuriyama K, Marui S et al. 2020. CXCR4 in tumor epithelial cells mediates desmoplastic reaction in pancreatic ductal adenocarcinoma. Cancer Res. 80:4058–70
    [Google Scholar]
  61. 61.
    Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS et al. 2017. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214:579–96
    [Google Scholar]
  62. 62.
    Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET et al. 2019. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–23
    [Google Scholar]
  63. 63.
    Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J et al. 2020. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10:232–53
    [Google Scholar]
  64. 64.
    Hosein AN, Huang H, Wang Z, Parmar K, Du W et al. 2019. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5:e129212
    [Google Scholar]
  65. 65.
    Biffi G, Oni TE, Spielman B, Hao Y, Elyada E et al. 2019. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301
    [Google Scholar]
  66. 66.
    Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D et al. 2021. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27:2023–37
    [Google Scholar]
  67. 67.
    Mathew E, Zhang Y, Holtz AM, Kane KT, Song JY et al. 2014. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by Hedgehog signaling. Cell Rep. 9:484–94
    [Google Scholar]
  68. 68.
    Vennin C, Melenec P, Rouet R, Nobis M, Cazet AS et al. 2019. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10:3637
    [Google Scholar]
  69. 69.
    Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M et al. 2016. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov. 6:886–99
    [Google Scholar]
  70. 70.
    Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK et al. 2020. Differential contribution of pancreatic fibroblast subsets to the pancreatic cancer stroma. Cell. Mol. Gastroenterol. Hepatol. 10:581–99
    [Google Scholar]
  71. 71.
    Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D et al. 2022. Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12:484–501
    [Google Scholar]
  72. 72.
    Kai F, Drain AP, Weaver VM. 2019. The extracellular matrix modulates the metastatic journey. Dev. Cell 49:332–46
    [Google Scholar]
  73. 73.
    Tian C, Clauser KR, Ohlund D, Rickelt S, Huang Y et al. 2019. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. PNAS 116:19609–18
    [Google Scholar]
  74. 74.
    Tian C, Huang Y, Clauser KR, Rickelt S, Lau AN et al. 2021. Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nat. Commun. 12:2328
    [Google Scholar]
  75. 75.
    Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A et al. 2021. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Investig. 131:e146987
    [Google Scholar]
  76. 76.
    Tian C, Ohlund D, Rickelt S, Lidstrom T, Huang Y et al. 2020. Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Res. 80:1461–74
    [Google Scholar]
  77. 77.
    Laklai H, Miroshnikova YA, Pickup MW, Collisson EA, Kim GE et al. 2016. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22:497–505
    [Google Scholar]
  78. 78.
    Van Cutsem E, Tempero MA, Sigal D, Oh DY, Fazio N et al. 2020. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38:3185–94
    [Google Scholar]
  79. 79.
    Kim PK, Halbrook CJ, Kerk SA, Radyk M, Wisner S et al. 2021. Hyaluronic acid fuels pancreatic cancer cell growth. eLife 10:e62645
    [Google Scholar]
  80. 80.
    Blair AB, Kim VM, Muth ST, Saung MT, Lokker N et al. 2019. Dissecting the stromal signaling and regulation of myeloid cells and memory effector T cells in pancreatic cancer. Clin. Cancer Res. 25:5351–63
    [Google Scholar]
  81. 81.
    Martin JD, Seano G, Jain RK. 2019. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81:505–34
    [Google Scholar]
  82. 82.
    Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D et al. 2010. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28:3617–22
    [Google Scholar]
  83. 83.
    Katsuta E, Qi Q, Peng X, Hochwald SN, Yan L, Takabe K 2019. Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci. Rep. 9:1310
    [Google Scholar]
  84. 84.
    Rankin EB, Giaccia AJ. 2008. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15:678–85
    [Google Scholar]
  85. 85.
    Keith B, Johnson RS, Simon MC. 2011. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12:9–22
    [Google Scholar]
  86. 86.
    Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC et al. 2016. Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov. 6:256–69
    [Google Scholar]
  87. 87.
    Fink DM, Steele MM, Hollingsworth MA. 2016. The lymphatic system and pancreatic cancer. Cancer Lett. 381:217–36
    [Google Scholar]
  88. 88.
    Shen CN, Goh KS, Huang CR, Chiang TC, Lee CY et al. 2019. Lymphatic vessel remodeling and invasion in pancreatic cancer progression. eBioMedicine 47:98–113
    [Google Scholar]
  89. 89.
    Zhao B, Cui K, Wang CL, Wang AL, Zhang B et al. 2011. The chemotactic interaction between CCL21 and its receptor, CCR7, facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J. Hepatobiliary Pancreat. Sci. 18:821–28
    [Google Scholar]
  90. 90.
    Guo J, Lou W, Ji Y, Zhang S 2013. Effect of CCR7, CXCR4 and VEGF-C on the lymph node metastasis of human pancreatic ductal adenocarcinoma. Oncol. Lett. 5:1572–78
    [Google Scholar]
  91. 91.
    Sperveslage J, Frank S, Heneweer C, Egberts J, Schniewind B et al. 2012. Lack of CCR7 expression is rate limiting for lymphatic spread of pancreatic ductal adenocarcinoma. Int. J. Cancer 131:E371–81
    [Google Scholar]
  92. 92.
    Wehler T, Wolfert F, Schimanski CC, Gockel I, Herr W et al. 2006. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol. Rep. 16:1159–64
    [Google Scholar]
  93. 93.
    Cui K, Zhao W, Wang C, Wang A, Zhang B et al. 2011. The CXCR4-CXCL12 pathway facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J. Surg. Res. 171:143–50
    [Google Scholar]
  94. 94.
    Ahren B. 2000. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410
    [Google Scholar]
  95. 95.
    Borden P, Houtz J, Leach SD, Kuruvilla R. 2013. Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep. 4:287–301
    [Google Scholar]
  96. 96.
    Stopczynski RE, Normolle DP, Hartman DJ, Ying H, DeBerry JJ et al. 2014. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res. 74:1718–27
    [Google Scholar]
  97. 97.
    Bapat AA, Hostetter G, Von Hoff DD, Han H 2011. Perineural invasion and associated pain in pancreatic cancer. Nat. Rev. Cancer 11:695–707
    [Google Scholar]
  98. 98.
    Belfiori G, Crippa S, Francesca A, Pagnanelli M, Tamburrino D et al. 2021. Long-term survivors after upfront resection for pancreatic ductal adenocarcinoma: an actual 5-year analysis of disease-specific and post-recurrence survival. Ann. Surg. Oncol. 28:8249–60
    [Google Scholar]
  99. 99.
    Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K et al. 2017. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res. 77:1868–79
    [Google Scholar]
  100. 100.
    Saloman JL, Singhi AD, Hartman DJ, Normolle DP, Albers KM, Davis BM. 2018. Systemic depletion of nerve growth factor inhibits disease progression in a genetically engineered model of pancreatic ductal adenocarcinoma. Pancreas 47:856–63
    [Google Scholar]
  101. 101.
    Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y et al. 2018. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33:75–90.e7
    [Google Scholar]
  102. 102.
    Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC et al. 2016. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. PNAS 113:3078–83
    [Google Scholar]
  103. 103.
    Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B et al. 2020. Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183:1202–18.e25
    [Google Scholar]
  104. 104.
    Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z et al. 2018. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 8:1458–73
    [Google Scholar]
  105. 105.
    Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M et al. 2019. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178:795–806.e12
    [Google Scholar]
  106. 106.
    Steele NG, Carpenter ES, Kemp SB, Sirihorachai V, The S et al. 2020. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1:1097–112
    [Google Scholar]
  107. 107.
    Keenan BP, Saenger Y, Kafrouni MI, Leubner A, Lauer P et al. 2014. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology 146:1784–94.e6
    [Google Scholar]
  108. 108.
    Zhang Y, Yan W, Mathew E, Bednar F, Wan S et al. 2014. CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol. Res. 2:423–35
    [Google Scholar]
  109. 109.
    Ko AH, Jordan AC, Tooker E, Lacey SF, Chang RB et al. 2020. Dual targeting of mesothelin and CD19 with chimeric antigen receptor-modified T cells in patients with metastatic pancreatic cancer. Mol. Ther. 28:2367–78
    [Google Scholar]
  110. 110.
    Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M et al. 2016. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6:247–55
    [Google Scholar]
  111. 111.
    Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI et al. 2016. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 6:270–85
    [Google Scholar]
  112. 112.
    Vayrynen SA, Zhang J, Yuan C, Vayrynen JP, Dias Costa A et al. 2021. Composition, spatial characteristics, and prognostic significance of myeloid cell infiltration in pancreatic cancer. Clin. Cancer Res. 27:1069–81
    [Google Scholar]
  113. 113.
    Long KB, Gladney WL, Tooker GM, Graham K, Fraietta JA, Beatty GL. 2016. IFNγ and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov. 6:400–13
    [Google Scholar]
  114. 114.
    Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR et al. 2011. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–16
    [Google Scholar]
  115. 115.
    Long KB, Collier AI, Beatty GL. 2019. Macrophages: key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol. Immunol. 110:3–12
    [Google Scholar]
  116. 116.
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  117. 117.
    Lin JH, Huffman AP, Wattenberg MM, Walter DM, Carpenter EL et al. 2020. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217:e20190673
    [Google Scholar]
  118. 118.
    Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA et al. 2020. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37:289–307.e9
    [Google Scholar]
  119. 119.
    Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19:1423–37
    [Google Scholar]
  120. 120.
    Lambert AW, Pattabiraman DR, Weinberg RA. 2017. Emerging biological principles of metastasis. Cell 168:670–91
    [Google Scholar]
  121. 121.
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM et al. 2012. EMT and dissemination precede pancreatic tumor formation. Cell 148:349–61
    [Google Scholar]
  122. 122.
    Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN et al. 2014. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146:647–51
    [Google Scholar]
  123. 123.
    Chiou SH, Risca VI, Wang GX, Yang D, Gruner BM et al. 2017. BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer. Cancer Discov. 7:1184–99
    [Google Scholar]
  124. 124.
    Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA et al. 2019. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567:249–52
    [Google Scholar]
  125. 125.
    Stone ML, Beatty GL. 2019. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer. Pharmacol. Ther. 201:202–13
    [Google Scholar]
  126. 126.
    Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM et al. 2021. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184:5031–52.e26
    [Google Scholar]
  127. 127.
    White E. 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12:401–10
    [Google Scholar]
  128. 128.
    Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M et al. 2020. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581:100–5
    [Google Scholar]
  129. 129.
    Hutton C, Heider F, Blanco-Gomez A, Banyard A, Kononov A et al. 2021. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39:1227–44.e20
    [Google Scholar]
  130. 130.
    Cattel L, Airoldi M, Delprino L, Passera R, Milla P, Pedani F. 2006. Pharmacokinetic evaluation of gemcitabine and 2′,2′-difluorodeoxycytidine-5′-triphosphate after prolonged infusion in patients affected by different solid tumors. Ann. Oncol. 17:Suppl. 5v142–47
    [Google Scholar]
  131. 131.
    Beatty GL, Gladney WL. 2015. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21:687–92
    [Google Scholar]
  132. 132.
    Schumacher TN, Schreiber RD. 2015. Neoantigens in cancer immunotherapy. Science 348:69–74
    [Google Scholar]
  133. 133.
    Beatty GL, Li Y, Long KB. 2017. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev. Anticancer Ther. 17:175–86
    [Google Scholar]
  134. 134.
    Bengsch F, Knoblock DM, Liu A, McAllister F, Beatty GL. 2017. CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol. Immunother. 66:1609–17
    [Google Scholar]
  135. 135.
    Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL et al. 2017. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28:Suppl. 12xii44–55
    [Google Scholar]
  136. 136.
    Beatty GL, Winograd R, Evans RA, Long KB, Luque SL et al. 2015. Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6Clow F4/80+ extratumoral macrophages. Gastroenterology 149:201–10
    [Google Scholar]
  137. 137.
    Joyce JA, Fearon DT. 2015. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80
    [Google Scholar]
  138. 138.
    Wattenberg MM, Herrera VM, Giannone MA, Gladney WL, Carpenter EL, Beatty GL. 2021. Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients. JCI Insight 6:e145389
    [Google Scholar]
  139. 139.
    Xu J, Sai H, Li Y, Jordan AC, McGettigan SE et al. 2019. Peripheral blood T-cell fitness is diminished in patients with pancreatic carcinoma but can be improved with homeostatic cytokines. Cell. Mol. Gastroenterol. Hepatol. 8:656–58.e6
    [Google Scholar]
  140. 140.
    Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V et al. 2015. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl. Cancer Inst. 107:dju413
    [Google Scholar]
  141. 141.
    Li J, Byrne KT, Yan F, Yamazoe T, Chen Z et al. 2018. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49:178–93.e7
    [Google Scholar]
  142. 142.
    Wainberg Z, Piha-Paul S, Luke J, Kim E, Thompson J et al. 2017. First-in-human phase 1 dose escalation and expansion of a novel combination, anti–CSF-1 receptor (cabiralizumab) plus anti–PD-1 (nivolumab), in patients with advanced solid tumors. Proceedings of the 32nd SITC Annual Meeting, National Harbor, MD, USA, November 8–12, 2017 Abstract O4 Milwaukee, WI: Soc. Immunother. Cancer
    [Google Scholar]
  143. 143.
    Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM et al. 2016. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22:851–60
    [Google Scholar]
  144. 144.
    Stromnes IM, Schmitt TM, Hulbert A, Brockenbrough JS, Nguyen H et al. 2015. T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell 28:638–52
    [Google Scholar]
  145. 145.
    Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD et al. 2019. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci. Transl. Med. 11:eaau9240
    [Google Scholar]
  146. 146.
    Su H, Yang F, Fu R, Li X, French R et al. 2021. Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell 39:678–93.e11
    [Google Scholar]
  147. 147.
    Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S et al. 2019. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25:628–40
    [Google Scholar]
  148. 148.
    Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M et al. 2019. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25:620–27
    [Google Scholar]
  149. 149.
    Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW et al. 2017. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 23:137–48
    [Google Scholar]
  150. 150.
    Vijayan D, Young A, Teng MWL, Smyth MJ. 2017. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17:709–24
    [Google Scholar]
  151. 151.
    King RJ, Shukla SK, He C, Vernucci E, Thakur R et al. 2022. CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene 41:971–82
    [Google Scholar]
  152. 152.
    Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ et al. 2018. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67:1112–23
    [Google Scholar]
  153. 153.
    Jiang H, Liu X, Knolhoff BL, Hegde S, Lee KB et al. 2020. Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion. Gut 69:122–32
    [Google Scholar]
  154. 154.
    Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T et al. 2019. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381:317–27
    [Google Scholar]
  155. 155.
    Reiss KA, Mick R, O'Hara MH, Teitelbaum U, Karasic TB et al. 2021. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. J. Clin. Oncol. 39:2497–505
    [Google Scholar]
  156. 156.
    Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A et al. 2020. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38:1–10
    [Google Scholar]
  157. 157.
    O'Kane GM, Grunwald BT, Jang GH, Masoomian M, Picardo S et al. 2020. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin. Cancer Res. 26:4901–10
    [Google Scholar]
  158. 158.
    Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M et al. 2011. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17:500–3
    [Google Scholar]
  159. 159.
    Balachandran VP, Beatty GL, Dougan SK. 2019. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156:2056–72
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031621-024600
Loading
/content/journals/10.1146/annurev-pathmechdis-031621-024600
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error