1932

Abstract

In the 160 years since Rudolf Virchow first postulated that neoplasia arises by the same law that regulates embryonic development, scientists have come to recognize the striking overlap between the molecular and cellular programs used by cancers and embryos. Advances in cancer biology and molecular techniques have further highlighted the similarities between carcinogenesis and embryogenesis, where cellular growth, differentiation, motility, and intercellular cross talk are mediated by common drivers and regulatory networks. This review highlights the many connections linking cancer biology and developmental biology to provide a deeper understanding of how a tissue's developmental history may both enable and constrain cancer cell evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031621-025610
2024-01-24
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-031621-025610.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031621-025610&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aiello NM, Stanger BZ. 2016. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis. Model. Mech. 9:10514
    [Google Scholar]
  2. 2.
    Sell S. 2010. On the stem cell origin of cancer. Am. J. Pathol. 176:258494
    [Google Scholar]
  3. 3.
    Wahl GM, Spike BT. 2017. Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer 3:14
    [Google Scholar]
  4. 4.
    Triolo VA. 1964. Nineteenth century foundations of cancer research. Origins of experimental research. Cancer Res. 24:427
    [Google Scholar]
  5. 5.
    Triolo VA. 1965. Nineteenth century foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res. 25:75106
    [Google Scholar]
  6. 6.
    Burleigh AR. 2008. Of germ cells, trophoblasts, and cancer stem cells. Integr. Cancer Ther. 7:27681
    [Google Scholar]
  7. 7.
    Pantel K, Brakenhoff RH. 2004. Dissecting the metastatic cascade. Nat. Rev. Cancer 4:44856
    [Google Scholar]
  8. 8.
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:64674
    [Google Scholar]
  9. 9.
    Hanahan D. 2022. Hallmarks of cancer: new dimensions. Cancer Discov. 12:3146
    [Google Scholar]
  10. 10.
    Thompson DAW. 1942. On Growth and Form: A New Edition Cambridge, UK: Cambridge Univ. Press
  11. 11.
    Penzo-Mendez AI, Stanger BZ. 2015. Organ-size regulation in mammals. Cold Spring Harb. Perspect. Biol. 7:a019240
    [Google Scholar]
  12. 12.
    Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:2328
    [Google Scholar]
  13. 13.
    Baker NE. 2020. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21:68397
    [Google Scholar]
  14. 14.
    Johnston LA. 2009. Competitive interactions between cells: death, growth, and geography. Science 324:167982
    [Google Scholar]
  15. 15.
    Penzo-Mendez AI, Stanger BZ. 2014. Cell competition in vertebrate organ size regulation. Wiley Interdiscip. Rev. Dev. Biol. 3:41927
    [Google Scholar]
  16. 16.
    Moreno E. 2008. Is cell competition relevant to cancer?. Nat. Rev. Cancer 8:14147
    [Google Scholar]
  17. 17.
    van Neerven SM, Vermeulen L. 2023. Cell competition in development, homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 24:22136
    [Google Scholar]
  18. 18.
    Nguyen L, Van Hoeck A, Cuppen E. 2022. Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features. Nat. Commun. 13:4013
    [Google Scholar]
  19. 19.
    Prior IA, Hood FE, Hartley JL. 2020. The frequency of Ras mutations in cancer. Cancer Res. 80:296974
    [Google Scholar]
  20. 20.
    Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH. 2019. Cancer-associated mutation and beyond: the emerging biology of isocitrate dehydrogenases in human disease. Sci. Adv. 5:eaaw4543
    [Google Scholar]
  21. 21.
    Aster JC, Pear WS, Blacklow SC. 2017. The varied roles of Notch in cancer. Annu. Rev. Pathol. Mech. Dis. 12:24575
    [Google Scholar]
  22. 22.
    Palaga T, Miele L, Golde TE, Osborne BA. 2003. TCR-mediated Notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171:301924
    [Google Scholar]
  23. 23.
    Watt FM, Estrach S, Ambler CA. 2008. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr. Opin. Cell Biol. 20:17179
    [Google Scholar]
  24. 24.
    Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E et al. 1997. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11:246881
    [Google Scholar]
  25. 25.
    Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K et al. 1997. K-Ras is essential for the development of the mouse embryo. Oncogene 15:115159
    [Google Scholar]
  26. 26.
    Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ et al. 2018. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:291304.e6
    [Google Scholar]
  27. 27.
    Mayers JR, Vander Heiden MG. 2017. Nature and nurture: what determines tumor metabolic phenotypes?. Cancer Res. 77:313134
    [Google Scholar]
  28. 28.
    Mintz B, Illmensee K. 1975. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. PNAS 72:358589
    [Google Scholar]
  29. 29.
    Stevens LC. 1964. Experimental production of testicular teratomas in mice. PNAS 52:65461
    [Google Scholar]
  30. 30.
    Stevens LC. 1981. Experimental production of testicular teratomas in the mouse. Int. J. Androl. 4:Suppl. s45459
    [Google Scholar]
  31. 31.
    Eaves CJ. 2015. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125:260513
    [Google Scholar]
  32. 32.
    Orkin SH, Zon LI. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:63144
    [Google Scholar]
  33. 33.
    Cheshier SH, Morrison SJ, Liao X, Weissman IL. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. PNAS 96:312025
    [Google Scholar]
  34. 34.
    Bernitz JM, Kim HS, MacArthur B, Sieburg H, Moore K. 2016. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167:1296309.e10
    [Google Scholar]
  35. 35.
    Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W et al. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:111829
    [Google Scholar]
  36. 36.
    Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV et al. 2021. Somatic mutation landscapes at single-molecule resolution. Nature 593:40510
    [Google Scholar]
  37. 37.
    Brand M, Morrissey E. 2020. Single-cell fate decisions of bipotential hematopoietic progenitors. Curr. Opin. Hematol. 27:23240
    [Google Scholar]
  38. 38.
    Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR et al. 2020. Absolute quantification of transcription factors reveals principles of gene regulation in erythropoiesis. Mol. Cell 78:96074.e11
    [Google Scholar]
  39. 39.
    Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM. 2012. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell 10:18397
    [Google Scholar]
  40. 40.
    Giraddi RR, Chung CY, Heinz RE, Balcioglu O, Novotny M et al. 2018. Single-cell transcriptomes distinguish stem cell state changes and lineage specification programs in early mammary gland development. Cell Rep. 24:165366.e7
    [Google Scholar]
  41. 41.
    Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. 2017. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169:48396.e13
    [Google Scholar]
  42. 42.
    Clevers H, Watt FM. 2018. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87:101527
    [Google Scholar]
  43. 43.
    Howland KK, Brock A. 2023. Cellular barcoding tracks heterogeneous clones through selective pressures and phenotypic transitions. Trends Cancer 9:591601
    [Google Scholar]
  44. 44.
    Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T et al. 2015. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518:54246
    [Google Scholar]
  45. 45.
    Sun J, Ramos A, Chapman B, Johnnidis JB, Le L et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514:32227
    [Google Scholar]
  46. 46.
    Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R et al. 2018. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554:10611
    [Google Scholar]
  47. 47.
    Yamamoto R, Wilkinson AC, Nakauchi H. 2018. Changing concepts in hematopoietic stem cells. Science 362:89596
    [Google Scholar]
  48. 48.
    Morris RJ, Liu Y, Marles L, Yang Z, Trempus C et al. 2004. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22:41117
    [Google Scholar]
  49. 49.
    Anstine LJ, Keri R. 2019. A new view of the mammary epithelial hierarchy and its implications for breast cancer initiation and metastasis. J. Cancer Metastasis Treat. 5:50
    [Google Scholar]
  50. 50.
    Lloyd-Lewis B, Harris OB, Watson CJ, Davis FM. 2017. Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol. 27:55667
    [Google Scholar]
  51. 51.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH et al. 2006. Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 66:933944
    [Google Scholar]
  52. 52.
    Kreso A, Dick JE. 2014. Evolution of the cancer stem cell model. Cell Stem Cell 14:27591
    [Google Scholar]
  53. 53.
    Fialkow PJ, Gartler SM, Yoshida A. 1967. Clonal origin of chronic myelocytic leukemia in man. PNAS 58:146871
    [Google Scholar]
  54. 54.
    Nowell PC, Hungerford DA. 1960. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 25:85109
    [Google Scholar]
  55. 55.
    Greaves MF, Verbi W, Reeves BR, Hoffbrand AV, Drysdale HC et al. 1979.. “ Pre-B” phenotypes in blast crisis of Ph1 positive CML: evidence for a pluripotential stem cell “target. .” Leuk. Res. 3:18191
    [Google Scholar]
  56. 56.
    Martin PJ, Najfeld V, Hansen JA, Penfold GK, Jacobson RJ, Fialkow PJ. 1980. Involvement of the B-lymphoid system in chronic myelogenous leukaemia. Nature 287:4950
    [Google Scholar]
  57. 57.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ. 2012. Cancer stem cells: an evolving concept. Nat. Rev. Cancer 12:13343
    [Google Scholar]
  58. 58.
    Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K et al. 2005. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105:32434
    [Google Scholar]
  59. 59.
    Li S, Ilaria RL Jr., Million RP, Daley GQ, Van Etten RA. 1999. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189:1399412
    [Google Scholar]
  60. 60.
    Clarkson B, Fried J, Strife A, Sakai Y, Ota K, Okita T. 1970. Studies of cellular proliferation in human leukemia. 3. Behavior of leukemic cells in three adults with acute leukemia given continuous infusions of 3H-thymidine for 8 or 10 days. Cancer 25:123760
    [Google Scholar]
  61. 61.
    Gavosto F, Pileri A, Gabutti V, Masera P. 1967. Cell population kinetics in human acute leukaemia. Eur. J. Cancer 1965 3:3017
    [Google Scholar]
  62. 62.
    Clarkson BD, Fried J, Chou TC, Strife A, Ferguson R et al. 1977. Duration of the dormant state in an established cell line of human hematopoietic cells. Cancer Res. 37:450622
    [Google Scholar]
  63. 63.
    Bonnet D, Dick JE. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3:73037
    [Google Scholar]
  64. 64.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T et al. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:64548
    [Google Scholar]
  65. 65.
    Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL et al. 2012. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4:149ra18
    [Google Scholar]
  66. 66.
    Welch JS, Ley TJ, Link DC, Miller CA, Larson DE et al. 2012. The origin and evolution of mutations in acute myeloid leukemia. Cell 150:26478
    [Google Scholar]
  67. 67.
    Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK. 2010. CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res. 70:462433
    [Google Scholar]
  68. 68.
    Wuidart A, Ousset M, Rulands S, Simons BD, Van Keymeulen A, Blanpain C. 2016. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 30:126177
    [Google Scholar]
  69. 69.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H et al. 2009. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:60811
    [Google Scholar]
  70. 70.
    Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH et al. 2012. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:73035
    [Google Scholar]
  71. 71.
    Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. 2012. Defining the mode of tumour growth by clonal analysis. Nature 488:52730
    [Google Scholar]
  72. 72.
    Wang ZA, Shen MM. 2015. Comparative lineage tracing reveals cellular preferences for prostate cancer initiation. Mol. Cell. Oncol. 2:e985548
    [Google Scholar]
  73. 73.
    Sumbly V, Landry I. 2022. Understanding pancreatic cancer stem cells and their role in carcinogenesis: a narrative review. Stem Cell Investig. 9:1
    [Google Scholar]
  74. 74.
    Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H et al. 2017. Stem cell lineage infidelity drives wound repair and cancer. Cell 169:63650.e14
    [Google Scholar]
  75. 75.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 2003. Prospective identification of tumorigenic breast cancer cells. PNAS 100:398388
    [Google Scholar]
  76. 76.
    Luo M, Brooks M, Wicha MS. 2015. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr. Pharm. Des. 21:130110
    [Google Scholar]
  77. 77.
    Shuang ZY, Wu WC, Xu J, Lin G, Liu YC et al. 2014. Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 354:32028
    [Google Scholar]
  78. 78.
    Sowa T, Menju T, Sonobe M, Nakanishi T, Shikuma K et al. 2015. Association between epithelial-mesenchymal transition and cancer stemness and their effect on the prognosis of lung adenocarcinoma. Cancer Med. 4:185362
    [Google Scholar]
  79. 79.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK et al. 2006. Generation of a functional mammary gland from a single stem cell. Nature 439:8488
    [Google Scholar]
  80. 80.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F et al. 2006. Purification and unique properties of mammary epithelial stem cells. Nature 439:99397
    [Google Scholar]
  81. 81.
    Rios AC, Fu NY, Lindeman GJ, Visvader JE. 2014. In situ identification of bipotent stem cells in the mammary gland. Nature 506:32227
    [Google Scholar]
  82. 82.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G et al. 2011. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:18993
    [Google Scholar]
  83. 83.
    Chung CY, Ma Z, Dravis C, Preissl S, Poirion O et al. 2019. Single-cell chromatin analysis of mammary gland development reveals cell-state transcriptional regulators and lineage relationships. Cell Rep. 29:495510.e6
    [Google Scholar]
  84. 84.
    Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M et al. 2020. Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 584:60813
    [Google Scholar]
  85. 85.
    Seldin L, Macara IG. 2020. DNA damage promotes epithelial hyperplasia and fate mis-specification via fibroblast inflammasome activation. Dev. Cell 55:55873.e6
    [Google Scholar]
  86. 86.
    van der Flier LG, Clevers H. 2009. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71:24160
    [Google Scholar]
  87. 87.
    Yan KS, Chia LA, Li X, Ootani A, Su J et al. 2012. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. PNAS 109:46671
    [Google Scholar]
  88. 88.
    Sangiorgi E, Capecchi MR. 2008. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40:91520
    [Google Scholar]
  89. 89.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:10037
    [Google Scholar]
  90. 90.
    Asfaha S, Hayakawa Y, Muley A, Stokes S, Graham TA et al. 2015. Krt19+/Lgr5 cells are radioresistant cancer-initiating stem cells in the colon and intestine. Cell Stem Cell 16:62738
    [Google Scholar]
  91. 91.
    Tian H, Biehs B, Warming S, Leong KG, Rangell L et al. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:25559
    [Google Scholar]
  92. 92.
    Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA et al. 2018. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559:10913
    [Google Scholar]
  93. 93.
    Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP et al. 2018. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22:3549.e7
    [Google Scholar]
  94. 94.
    Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV et al. 2011. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:51124
    [Google Scholar]
  95. 95.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M et al. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445:11115
    [Google Scholar]
  96. 96.
    Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME et al. 2011. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29:112027
    [Google Scholar]
  97. 97.
    Cunha GR, Hom YK. 1996. Role of mesenchymal-epithelial interactions in mammary gland development. J. Mammary Gland Biol. Neoplasia 1:2135
    [Google Scholar]
  98. 98.
    Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. 1999. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59:500211
    [Google Scholar]
  99. 99.
    Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS et al. 2010. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:51023
    [Google Scholar]
  100. 100.
    Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. 2007. Tumor growth need not be driven by rare cancer stem cells. Science 317:337
    [Google Scholar]
  101. 101.
    Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H et al. 2010. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:40317
    [Google Scholar]
  102. 102.
    Degos L, Dombret H, Chomienne C, Daniel MT, Miclea JM et al. 1995. All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 85:264353
    [Google Scholar]
  103. 103.
    Krah NM, De La O J-P, Swift GH, Hoang CQ, Willet SG et al. 2015. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. eLife 4:e07125
    [Google Scholar]
  104. 104.
    Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN et al. 2014. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513:11014
    [Google Scholar]
  105. 105.
    de Thé H. 2018. Differentiation therapy revisited. Nat. Rev. Cancer 18:11727
    [Google Scholar]
  106. 106.
    Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E et al. 2002. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:1024
    [Google Scholar]
  107. 107.
    Machida Y, Nakagawa M, Matsunaga H, Yamaguchi M, Ogawara Y et al. 2020. A potent blood-brain barrier-permeable mutant IDH1 inhibitor suppresses the growth of glioblastoma with iDH1 mutation in a patient-derived orthotopic xenograft model. Mol. Cancer Ther. 19:37583
    [Google Scholar]
  108. 108.
    Hay ED. 1995. An overview of epithelio-mesenchymal transformation. Acta Anat. 154:820
    [Google Scholar]
  109. 109.
    Chaffer CL, San Juan BP, Lim E, Weinberg RA. 2016. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35:64554
    [Google Scholar]
  110. 110.
    Yuan S, Norgard RJ, Stanger BZ. 2019. Cellular plasticity in cancer. Cancer Discov. 9:83751
    [Google Scholar]
  111. 111.
    Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H et al. 2012. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:70924
    [Google Scholar]
  112. 112.
    Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J 2012. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:72536
    [Google Scholar]
  113. 113.
    Singh A, Settleman J. 2010. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:474151
    [Google Scholar]
  114. 114.
    Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M et al. 2011. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17:5003
    [Google Scholar]
  115. 115.
    Genovese G, Carugo A, Tepper J, Robinson FS, Li L et al. 2017. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature 542:36266
    [Google Scholar]
  116. 116.
    Nieto MA, Huang RY, Jackson RA, Thiery JP. 2016. EMT: 2016. Cell 166:2145
    [Google Scholar]
  117. 117.
    Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J et al. 2018. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45:68195.e4
    [Google Scholar]
  118. 118.
    Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK. 2020. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30:76476
    [Google Scholar]
  119. 119.
    Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B et al. 2021. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39:115062.e9
    [Google Scholar]
  120. 120.
    Pitarresi JR, Stanger BZ. 2023. Cellular origins and lineage plasticity in cancer. Cold Spring Harb. Perspect. Med. In press. https://doi.org/10.1101/cshperspect.a041389
    [Crossref] [Google Scholar]
  121. 121.
    Bach K, Pensa S, Zarocsinceva M, Kania K, Stockis J et al. 2021. Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. Nat. Commun. 12:1502
    [Google Scholar]
  122. 122.
    Koren S, Reavie L, Couto JP, De Silva D, Stadler MB et al. 2015. PIK3CAH1047R induces multipotency and multi-lineage mammary tumours. Nature 525:11418
    [Google Scholar]
  123. 123.
    Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S et al. 2015. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525:11923
    [Google Scholar]
  124. 124.
    Langille E, Al-Zahrani KN, Ma Z, Liang M, Uuskula-Reimand L et al. 2022. Loss of epigenetic regulation disrupts lineage integrity, induces aberrant alveogenesis, and promotes breast cancer. Cancer Discov. 12:293053
    [Google Scholar]
  125. 125.
    Giroux V, Rustgi AK. 2017. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer 17:594604
    [Google Scholar]
  126. 126.
    Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM et al. 2023. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 380:eadd5327
    [Google Scholar]
  127. 127.
    Meszoely IM, Means AL, Scoggins CR, Leach SD. 2001. Developmental aspects of early pancreatic cancer. Cancer J. 7:24250
    [Google Scholar]
  128. 128.
    Leedham SJ, Wright NA. 2008. Expansion of a mutated clone: from stem cell to tumour. J. Clin. Pathol. 61:16471
    [Google Scholar]
  129. 129.
    Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI et al. 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:2538
    [Google Scholar]
  130. 130.
    Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T et al. 2015. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat. Med. 21:6270
    [Google Scholar]
  131. 131.
    Yang D, Jones MG, Naranjo S, Rideout WM 3rd, Min KHJ et al. 2022. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185:190523.e25
    [Google Scholar]
  132. 132.
    Shaurova T, Zhang L, Goodrich DW, Hershberger PA. 2020. Understanding lineage plasticity as a path to targeted therapy failure in EGFR-mutant non-small cell lung cancer. Front. Genet. 11:281
    [Google Scholar]
  133. 133.
    Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL et al. 2015. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6:6377
    [Google Scholar]
  134. 134.
    Quintanal-Villalonga A, Chan JM, Yu HA, Pe'er D, Sawyers CL et al. 2020. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17:36071
    [Google Scholar]
  135. 135.
    Valkenburg KC, de Groot AE, Pienta KJ. 2018. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15:36681
    [Google Scholar]
  136. 136.
    Li J, Stanger BZ. 2019. The tumor as organizer model. Science 363:103839
    [Google Scholar]
  137. 137.
    Schreiber RD, Old LJ, Smyth MJ. 2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:156570
    [Google Scholar]
  138. 138.
    Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J et al. 1996. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J. Clin. Investig. 98:163341
    [Google Scholar]
  139. 139.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF et al. 2018. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24:54150
    [Google Scholar]
  140. 140.
    Theunissen JW, de Sauvage FJ. 2009. Paracrine Hedgehog signaling in cancer. Cancer Res. 69:600710
    [Google Scholar]
  141. 141.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF et al. 2014. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:73547
    [Google Scholar]
  142. 142.
    Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD et al. 2012. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:82235
    [Google Scholar]
  143. 143.
    Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. 2012. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21:83647
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031621-025610
Loading
/content/journals/10.1146/annurev-pathmechdis-031621-025610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error