1932

Abstract

Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of -acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051122-094016
2024-01-24
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051122-094016.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051122-094016&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ohashi N, Kohno T. 2020. Analgesic effect of acetaminophen: a review of known and novel mechanisms of action. Front. Pharmacol. 11:580289
    [Google Scholar]
  2. 2.
    Dart RC, Bailey E. 2007. Does therapeutic use of acetaminophen cause acute liver failure?. Pharmacotherapy 27:121930
    [Google Scholar]
  3. 3.
    Fisher ES, Curry SC. 2019. Evaluation and treatment of acetaminophen toxicity. Adv. Pharmacol. 85:26372
    [Google Scholar]
  4. 4.
    Bernal W, Wendon J. 2013. Acute liver failure. N. Engl. J. Med. 369:252534
    [Google Scholar]
  5. 5.
    Friðriksdóttir ÞA, Jónsdóttir F, Snook CP, Líndal H, Björnsson ES. 2021. Paracetamol poisoning: a population-based study from Iceland. Scand. J. Gastroenterol. 56:83239
    [Google Scholar]
  6. 6.
    Blieden M, Paramore LC, Shah D, Ben-Joseph R. 2014. A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert. Rev. Clin. Pharmacol. 7:34148
    [Google Scholar]
  7. 7.
    McGill MR, Jaeschke H. 2013. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res. 30:217487
    [Google Scholar]
  8. 8.
    Ramachandran A, Jaeschke H. 2023. Mitochondria in acetaminophen-induced liver injury and recovery: a concise review. Livers 3:21931
    [Google Scholar]
  9. 9.
    Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. 1973. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187:195202
    [Google Scholar]
  10. 10.
    Tonge RP, Kelly EJ, Bruschi SA, Kalhorn T, Eaton DL et al. 1998. Role of CYP1A2 in the hepatotoxicity of acetaminophen: investigations using Cyp1a2 null mice. Toxicol. Appl. Pharmacol. 153:1028
    [Google Scholar]
  11. 11.
    Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. 1996. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J. Biol. Chem. 271:1206367
    [Google Scholar]
  12. 12.
    James LP, Chiew A, Abdel-Rahman SM, Letzig L, Graudins A et al. 2013. Acetaminophen protein adduct formation following low-dose acetaminophen exposure: comparison of immediate-release versus extended-release formulations. Eur. J. Clin. Pharmacol. 69:85157
    [Google Scholar]
  13. 13.
    Curry SC, Padilla-Jones A, Ruha AM, O'Connor AD, Kang AM et al. 2019. The relationship between circulating acetaminophen-protein adduct concentrations and alanine aminotransferase activities in patients with and without acetaminophen overdose and toxicity. J. Med. Toxicol. 15:14355
    [Google Scholar]
  14. 14.
    James LP, Alonso EM, Hynan LS, Hinson JA, Davern TJ et al. 2006. Detection of acetaminophen protein adducts in children with acute liver failure of indeterminate cause. Pediatrics 118:e67681
    [Google Scholar]
  15. 15.
    Hu J, Ramshesh VK, McGill MR, Jaeschke H, Lemasters JJ. 2016. Low dose acetaminophen induces reversible mitochondrial dysfunction associated with transient c-Jun N-terminal kinase activation in mouse liver. Toxicol. Sci. 150:20415
    [Google Scholar]
  16. 16.
    Qian H, Chao X, Williams J, Fulte S, Li T et al. 2021. Autophagy in liver diseases: a review. Mol. Aspects Med. 82:100973
    [Google Scholar]
  17. 17.
    Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. 2012. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 55:22232
    [Google Scholar]
  18. 18.
    Akakpo JY, Jaeschke MW, Etemadi Y, Artigues A, Toerber S et al. 2022. Desorption electrospray ionization mass spectrometry imaging allows spatial localization of changes in acetaminophen metabolism in the liver after intervention with 4-methylpyrazole. J. Am. Soc. Mass Spectrom. 33:2094107
    [Google Scholar]
  19. 19.
    Ni HM, Williams JA, Jaeschke H, Ding WX. 2013. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox. Biol. 1:42732
    [Google Scholar]
  20. 20.
    Ni HM, McGill MR, Chao X, Du K, Williams JA et al. 2016. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J. Hepatol. 65:35462
    [Google Scholar]
  21. 21.
    Umbaugh DS, Nguyen NT, Jaeschke H, Ramachandran A. 2021. Mitochondrial membrane potential drives early change in mitochondrial morphology after acetaminophen exposure. Toxicol. Sci. 180:18695
    [Google Scholar]
  22. 22.
    Williams JA, Ni HM, Haynes A, Manley S, Li Y et al. 2015. Chronic deletion and acute knockdown of Parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J. Biol. Chem. 290:1093446
    [Google Scholar]
  23. 23.
    Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. 2015. Secretory autophagy. Curr. Opin. Cell Biol. 35:10616
    [Google Scholar]
  24. 24.
    Duan L, Ramachandran A, Akakpo JY, Weemhoff JL, Curry SC, Jaeschke H. 2019. Role of extracellular vesicles in release of protein adducts after acetaminophen-induced liver injury in mice and humans. Toxicol. Lett. 301:12532
    [Google Scholar]
  25. 25.
    Heard KJ, Green JL, James LP, Judge BS, Zolot L et al. 2011. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose. BMC Gastroenterol. 11:20
    [Google Scholar]
  26. 26.
    Nguyen NT, Akakpo JY, Weemhoff JL, Ramachandran A, Ding WX, Jaeschke H. 2021. Impaired protein adduct removal following repeat administration of subtoxic doses of acetaminophen enhances liver injury in fed mice. Arch. Toxicol. 95:146373
    [Google Scholar]
  27. 27.
    Simon TG, Van Der Sloot KWJ, Chin SB, Joshi AD, Lochhead P et al. 2018. IRGM gene variants modify the relationship between visceral adipose tissue and NAFLD in patients with Crohn's disease. Inflamm. Bowel Dis. 24:224757
    [Google Scholar]
  28. 28.
    Ramachandran A, Jaeschke H. 2020. A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem. Toxicol. 140:111282
    [Google Scholar]
  29. 29.
    Jaeschke H, Duan L, Nguyen N, Ramachandran A. 2019. Mitochondrial damage and biogenesis in acetaminophen-induced liver injury. Liver Res. 3:15056
    [Google Scholar]
  30. 30.
    Ramachandran A, Jaeschke H. 2018. Acetaminophen toxicity: novel insights into mechanisms and future perspectives. Gene. Expr. 18:1930
    [Google Scholar]
  31. 31.
    Du K, Ramachandran A, McGill MR, Mansouri A, Asselah T et al. 2017. Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem. Toxicol. 108:33950
    [Google Scholar]
  32. 32.
    Nguyen NT, Du K, Akakpo JY, Umbaugh DS, Jaeschke H, Ramachandran A. 2021. Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicol. Lett. 338:2131
    [Google Scholar]
  33. 33.
    Xie Y, Ramachandran A, Breckenridge DG, Liles JT, Lebofsky M et al. 2015. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol. Appl. Pharmacol. 286:19
    [Google Scholar]
  34. 34.
    Zhang J, Min RWM, Le K, Zhou S, Aghajan M et al. 2017. The role of MAP2 kinases and p38 kinase in acute murine liver injury models. Cell Death Dis. 8:e2903
    [Google Scholar]
  35. 35.
    Win S, Than TA, Han D, Petrovic LM, Kaplowitz N. 2011. c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice. J. Biol. Chem. 286:3507178
    [Google Scholar]
  36. 36.
    Shinohara M, Ybanez MD, Win S, Than TA, Jain S et al. 2010. Silencing glycogen synthase kinase-3β inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J. Biol Chem. 285:824455
    [Google Scholar]
  37. 37.
    Arakawa S, Maejima T, Fujimoto K, Yamaguchi T, Yagi M et al. 2012. Resistance to acetaminophen-induced hepatotoxicity in glutathione S-transferase Mu 1-null mice. J. Toxicol. Sci. 37:595605
    [Google Scholar]
  38. 38.
    Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T et al. 2015. 14-3-3 interacts directly with and negatively regulates pro-apoptotic Bax. J. Biol. Chem. 290:6753
    [Google Scholar]
  39. 39.
    Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S et al. 2004. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 23:188999
    [Google Scholar]
  40. 40.
    Bajt ML, Farhood A, Lemasters JJ, Jaeschke H. 2008. Mitochondrial Bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J. Pharmacol. Exp. Ther. 324:814
    [Google Scholar]
  41. 41.
    Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA et al. 2004. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378:37382
    [Google Scholar]
  42. 42.
    Klaassen CD, Reisman SA. 2010. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol. Appl. Pharmacol. 244:5765
    [Google Scholar]
  43. 43.
    Goldring CE, Kitteringham NR, Elsby R, Randle LE, Clement YN et al. 2004. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology 39:126776
    [Google Scholar]
  44. 44.
    Copple IM, Goldring CE, Jenkins RE, Chia AJ, Randle LE et al. 2008. The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2 cell defense system. Hepatology 48:1292301
    [Google Scholar]
  45. 45.
    Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T et al. 2001. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol. Sci. 59:16977
    [Google Scholar]
  46. 46.
    Okawa H, Motohashi H, Kobayashi A, Aburatani H, Kensler TW, Yamamoto M. 2006. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem. Biophys. Res. Commun. 339:7988
    [Google Scholar]
  47. 47.
    Ramachandran A, Lebofsky M, Yan HM, Weinman SA, Jaeschke H. 2015. Hepatitis C virus structural proteins can exacerbate or ameliorate acetaminophen-induced liver injury in mice. Arch. Toxicol. 89:77383
    [Google Scholar]
  48. 48.
    Aleksunes LM, Slitt AL, Maher JM, Augustine LM, Goedken MJ et al. 2008. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol. Appl. Pharmacol. 226:7483
    [Google Scholar]
  49. 49.
    Win S, Than TA, Kaplowitz N. 2023. c-Jun-N terminal kinase-mediated degradation of γ-glutamylcysteine ligase catalytic subunit inhibits GSH recovery after acetaminophen treatment: role in sustaining JNK activation and liver injury. Antioxid. Redox Signal. 38:107181
    [Google Scholar]
  50. 50.
    Win S, Than TA, Min RW, Aghajan M, Kaplowitz N. 2016. c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology 63:19872003
    [Google Scholar]
  51. 51.
    Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H et al. 2014. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J. Biol. Chem. 289:2928596
    [Google Scholar]
  52. 52.
    Westphal D, Dewson G, Czabotar PE, Kluck RM. 2011. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta Mol. Cell Res. 1813:52131
    [Google Scholar]
  53. 53.
    Du K, Ramachandran A, Weemhoff JL, Chavan H, Xie Y et al. 2016. Metformin protects against acetaminophen hepatotoxicity by attenuation of mitochondrial oxidant stress and dysfunction. Toxicol. Sci. 154:21426
    [Google Scholar]
  54. 54.
    Yan HM, Ramachandran A, Bajt ML, Lemasters JJ, Jaeschke H. 2010. The oxygen tension modulates acetaminophen-induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol. Sci. 117:51523
    [Google Scholar]
  55. 55.
    Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. 2011. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol. Appl. Pharmacol. 251:22633
    [Google Scholar]
  56. 56.
    Mirochnitchenko O, Weisbrot-Lefkowitz M, Reuhl K, Chen L, Yang C, Inouye M. 1999. Acetaminophen toxicity. Opposite effects of two forms of glutathione peroxidase. J. Biol. Chem. 274:1034955
    [Google Scholar]
  57. 57.
    Laukkanen MO, Leppanen P, Turunen P, Tuomisto T, Naarala J, Yla-Herttuala S. 2001. EC-SOD gene therapy reduces paracetamol-induced liver damage in mice. J. Gene Med. 3:3215
    [Google Scholar]
  58. 58.
    Du K, Ramachandran A, Weemhoff JL, Woolbright BL, Jaeschke AH et al. 2019. Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Arch. Toxicol. 93:16378
    [Google Scholar]
  59. 59.
    Du K, Farhood A, Jaeschke H. 2017. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch. Toxicol. 91:76173
    [Google Scholar]
  60. 60.
    Duan L, Ramachandran A, Akakpo JY, Woolbright BL, Zhang Y, Jaeschke H. 2020. Mice deficient in pyruvate dehydrogenase kinase 4 are protected against acetaminophen-induced hepatotoxicity. Toxicol. Appl. Pharmacol. 387:114849
    [Google Scholar]
  61. 61.
    Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ et al. 2005. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J. Pharmacol. Exp. Ther. 315:87987
    [Google Scholar]
  62. 62.
    Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H. 2001. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol. Sci. 62:21220
    [Google Scholar]
  63. 63.
    Saito C, Zwingmann C, Jaeschke H. 2010. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51:24654
    [Google Scholar]
  64. 64.
    Agarwal R, MacMillan-Crow LA, Rafferty TM, Saba H, Roberts DW et al. 2011. Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J. Pharmacol. Exp. Ther. 337:11016
    [Google Scholar]
  65. 65.
    Banerjee S, Melnyk SB, Krager KJ, Aykin-Burns N, Letzig LG et al. 2015. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes. Free Radic. Biol. Med. 89:75057
    [Google Scholar]
  66. 66.
    Agarwal R, Hennings L, Rafferty TM, Letzig LG, McCullough S et al. 2012. Acetaminophen-induced hepatotoxicity and protein nitration in neuronal nitric-oxide synthase knockout mice. J. Pharmacol. Exp. Ther. 340:13442
    [Google Scholar]
  67. 67.
    Knight TR, Ho YS, Farhood A, Jaeschke H. 2002. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J. Pharmacol. Exp. Ther. 303:46875
    [Google Scholar]
  68. 68.
    Du K, McGill MR, Xie Y, Bajt ML, Jaeschke H. 2015. Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem. Toxicol. 81:6270
    [Google Scholar]
  69. 69.
    Adelusi OB, Ramachandran A, Lemasters JJ, Jaeschke H. 2022. The role of iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol. Appl. Pharmacol. 445:116043
    [Google Scholar]
  70. 70.
    Kon K, Kim JS, Jaeschke H, Lemasters JJ. 2004. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:117079
    [Google Scholar]
  71. 71.
    Masubuchi Y, Suda C, Horie T. 2005. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J. Hepatol. 42:11016
    [Google Scholar]
  72. 72.
    Ramachandran A, Lebofsky M, Baines CP, Lemasters JJ, Jaeschke H. 2011. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic. Res. 45:15664
    [Google Scholar]
  73. 73.
    Carraro M, Bernardi P. 2023. The mitochondrial permeability transition pore in Ca2+ homeostasis. Cell Calcium 111:102719
    [Google Scholar]
  74. 74.
    Murphy E. 2022. Cyclophilin D regulation of the mitochondrial permeability transition pore. Curr. Opin. Physiol. 25:100486
    [Google Scholar]
  75. 75.
    LoGuidice A, Boelsterli UA. 2011. Acetaminophen overdose-induced liver injury in mice is mediated by peroxynitrite independently of the cyclophilin D-regulated permeability transition. Hepatology 54:96978
    [Google Scholar]
  76. 76.
    Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. 2006. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131:16578
    [Google Scholar]
  77. 77.
    Wancket LM, Meng X, Rogers LK, Liu Y. 2012. Mitogen-activated protein kinase phosphatase (Mkp)-1 protects mice against acetaminophen-induced hepatic injury. Toxicol. Pathol. 40:1095105
    [Google Scholar]
  78. 78.
    Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX, Jaeschke H. 2013. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58:2099108
    [Google Scholar]
  79. 79.
    Dara L, Johnson H, Suda J, Win S, Gaarde W et al. 2015. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology 62:184757
    [Google Scholar]
  80. 80.
    Upadhyay M, Agarwal S. 2020. Ironing the mitochondria: relevance to its dynamics. Mitochondrion 50:8287
    [Google Scholar]
  81. 81.
    Yoon Y, Lee H, Federico M, Sheu SS. 2023. Non-conventional mitochondrial permeability transition: its regulation by mitochondrial dynamics. Biochim. Biophys. Acta Bioenerg. 1864:148914
    [Google Scholar]
  82. 82.
    Garcia-Heredia JM, Diaz-Moreno I, Nieto PM, Orzaez M, Kocanis S et al. 2010. Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation. Biochim. Biophys. Acta Bioenerg. 1797:98193
    [Google Scholar]
  83. 83.
    Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. 2023. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 28:5–673053
    [Google Scholar]
  84. 84.
    Norberg E, Orrenius S, Zhivotovsky B. 2010. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem. Biophys. Res. Commun. 396:95100
    [Google Scholar]
  85. 85.
    Bajt ML, Cover C, Lemasters JJ, Jaeschke H. 2006. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol. Sci. 94:21725
    [Google Scholar]
  86. 86.
    Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA. 2007. AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6:261219
    [Google Scholar]
  87. 87.
    Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A et al. 2011. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol. Sci. 122:598605
    [Google Scholar]
  88. 88.
    Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM et al. 2021. Assessment of the biochemical pathways for acetaminophen toxicity: implications for its carcinogenic hazard potential. Regul. Toxicol. Pharmacol. 120:104859
    [Google Scholar]
  89. 89.
    Iorga A, Dara L. 2019. Cell death in drug-induced liver injury. Adv. Pharmacol. 85:3174
    [Google Scholar]
  90. 90.
    Jaeschke H, Ramachandran A, Chao X, Ding WX. 2019. Emerging and established modes of cell death during acetaminophen-induced liver injury. Arch. Toxicol. 93:3491502
    [Google Scholar]
  91. 91.
    Ramachandran A, Jaeschke H. 2019. Acetaminophen hepatotoxicity. Semin. Liver Dis. 39:22134
    [Google Scholar]
  92. 92.
    Ray SD, Mumaw VR, Raje RR, Fariss MW. 1996. Protection of acetaminophen-induced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. J. Pharmacol. Exp. Ther. 279:147083
    [Google Scholar]
  93. 93.
    Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. 2002. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis?. Toxicol. Sci. 67:32228
    [Google Scholar]
  94. 94.
    Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H. 1999. Inhibition of Fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol. Appl. Pharmacol. 156:17986
    [Google Scholar]
  95. 95.
    McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. 2012. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Investig. 122:157483
    [Google Scholar]
  96. 96.
    Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM et al. 2014. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol. 279:26674
    [Google Scholar]
  97. 97.
    Yang WS, Stockwell BR. 2016. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26:16576
    [Google Scholar]
  98. 98.
    Wendel A, Feuerstein S. 1981. Drug-induced lipid peroxidation in mice—I. Modulation by monooxygenase activity, glutathione and selenium status. Biochem. Pharmacol. 30:251320
    [Google Scholar]
  99. 99.
    Smith CV, Mitchell JR. 1985. Acetaminophen hepatotoxicity in vivo is not accompanied by oxidant stress. Biochem. Biophys. Res. Commun. 133:32936
    [Google Scholar]
  100. 100.
    Knight TR, Fariss MW, Farhood A, Jaeschke H. 2003. Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol. Sci. 76:22936
    [Google Scholar]
  101. 101.
    Kon K, Kim JS, Uchiyama A, Jaeschke H, Lemasters JJ. 2010. Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes. Toxicol. Sci. 117:1018
    [Google Scholar]
  102. 102.
    Hu J, Kholmukhamedov A, Lindsey CC, Beeson CC, Jaeschke H, Lemasters JJ. 2016. Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: protection by starch-desferal and minocycline. Free Radic. . Biol. Med. 97:41826
    [Google Scholar]
  103. 103.
    Hu J, Lemasters JJ. 2020. Suppression of iron mobilization from lysosomes to mitochondria attenuates liver injury after acetaminophen overdose in vivo in mice: protection by minocycline. Toxicol. Appl. Pharmacol. 392:114930
    [Google Scholar]
  104. 104.
    Radi R. 2004. Nitric oxide, oxidants, and protein tyrosine nitration. PNAS 101:40038
    [Google Scholar]
  105. 105.
    Grootjans S, Vanden Berghe T, Vandenabeele P. 2017. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 24:118495
    [Google Scholar]
  106. 106.
    Wang Y, Zhao Y, Wang Z, Sun R, Zou B et al. 2021. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front. Immunol. 12:652782
    [Google Scholar]
  107. 107.
    Shi J, Gao W, Shao F. 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42:24554
    [Google Scholar]
  108. 108.
    Broz P, Pelegrin P, Shao F. 2020. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20:14357
    [Google Scholar]
  109. 109.
    Williams CD, Farhood A, Jaeschke H. 2010. Role of caspase-1 and interleukin-1β in acetaminophen-induced hepatic inflammation and liver injury. Toxicol. Appl. Pharmacol. 247:16978
    [Google Scholar]
  110. 110.
    Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, Jaeschke H. 2022. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol. Lett. 367:5966
    [Google Scholar]
  111. 111.
    Li Z, Wang H, Zhu J, Nan N, Lin Y et al. 2022. Inhibition of TWEAK/Tnfrsf12a axis protects against acute liver failure by suppressing RIPK1-dependent apoptosis. Cell Death Discov. 8:328
    [Google Scholar]
  112. 112.
    Yang C, Sun P, Deng M, Loughran P, Li W et al. 2019. Gasdermin D protects against noninfectious liver injury by regulating apoptosis and necroptosis. Cell Death Dis 10:481
    [Google Scholar]
  113. 113.
    Jaeschke H, Umbaugh DS, Ramachandran A. 2022. Role of pyroptosis in acetaminophen-induced hepatotoxicity. Livers 2:42535
    [Google Scholar]
  114. 114.
    Martin-Murphy BV, Holt MP, Ju C. 2010. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol. Lett. 192:38794
    [Google Scholar]
  115. 115.
    Woolbright BL, Jaeschke H. 2017. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J. Hepatol. 66:83648
    [Google Scholar]
  116. 116.
    Kubes P, Mehal WZ. 2012. Sterile inflammation in the liver. Gastroenterology 143:115872
    [Google Scholar]
  117. 117.
    Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M et al. 2009. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Investig. 119:30514
    [Google Scholar]
  118. 118.
    Minsart C, Liefferinckx C, Lemmers A, Dressen C, Quertinmont E et al. 2020. New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis. Sci. Rep. 10:5557
    [Google Scholar]
  119. 119.
    Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM et al. 2019. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Investig. 130:1802
    [Google Scholar]
  120. 120.
    Kahlenberg JM, Dubyak GR. 2004. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am. J. Physiol. Cell Physiol. 286:C11008
    [Google Scholar]
  121. 121.
    Zhang C, Feng J, Du J, Zhuo Z, Yang S et al. 2018. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell. Mol. Immunol. 15:97382
    [Google Scholar]
  122. 122.
    Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H. 2000. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol. Sci. 54:50916
    [Google Scholar]
  123. 123.
    Singhal R, Ganey PE, Roth RA. 2012. Complement activation in acetaminophen-induced liver injury in mice. J. Pharmacol. Exp. Ther. 341:37785
    [Google Scholar]
  124. 124.
    Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G et al. 2023. Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch. Toxicol. 97:1397412
    [Google Scholar]
  125. 125.
    Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL. 2002. Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology 35:1093103
    [Google Scholar]
  126. 126.
    Jaeschke H. 2006. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G108388
    [Google Scholar]
  127. 127.
    Jaeschke H, Williams CD, Ramachandran A, Bajt ML. 2012. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver. Int. 32:820
    [Google Scholar]
  128. 128.
    Jaeschke H, Ramachandran A. 2020. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem. Toxicol. 138:111240
    [Google Scholar]
  129. 129.
    Bhushan B, Apte U. 2019. Liver regeneration after acetaminophen hepatotoxicity: mechanisms and therapeutic opportunities. Am. J. Pathol. 189:71929
    [Google Scholar]
  130. 130.
    Bhushan B, Walesky C, Manley M, Gallagher T, Borude P et al. 2014. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am. J. Pathol. 184:301325
    [Google Scholar]
  131. 131.
    Ramachandran A, Jaeschke H. 2017. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J. Clin. Transl. Res. 3:15769
    [Google Scholar]
  132. 132.
    Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. 2014. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol. Appl. Pharmacol. 275:12233
    [Google Scholar]
  133. 133.
    Yang W, Tao Y, Wu Y, Zhao X, Ye W et al. 2019. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10:1076
    [Google Scholar]
  134. 134.
    Chauhan A, Sheriff L, Hussain MT, Webb GJ, Patten DA et al. 2020. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat. Commun. 11:1939
    [Google Scholar]
  135. 135.
    Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN et al. 2002. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem. Res. Toxicol. 15:150413
    [Google Scholar]
  136. 136.
    Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin JL et al. 2002. Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35:28998
    [Google Scholar]
  137. 137.
    Holt MP, Cheng L, Ju C. 2008. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J. Leukoc. Biol. 84:141021
    [Google Scholar]
  138. 138.
    Coelho I, Duarte N, Barros A, Macedo MP, Penha-Goncalves C. 2020. Trem-2 promotes emergence of restorative macrophages and endothelial cells during recovery from hepatic tissue damage. Front. Immunol. 11:616044
    [Google Scholar]
  139. 139.
    Nguyen NT, Umbaugh DS, Sanchez-Guerrero G, Ramachandran A, Jaeschke H. 2022. Kupffer cells regulate liver recovery through induction of chemokine receptor CXCR2 on hepatocytes after acetaminophen overdose in mice. Arch. Toxicol. 96:30520
    [Google Scholar]
  140. 140.
    Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O et al. 2014. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 193:34453
    [Google Scholar]
  141. 141.
    Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A et al. 2016. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 64:166782
    [Google Scholar]
  142. 142.
    Graubardt N, Vugman M, Mouhadeb O, Caliari G, Pasmanik-Chor M et al. 2017. Ly6Chi monocytes and their macrophage descendants regulate neutrophil function and clearance in acetaminophen-induced liver injury. Front. Immunol. 8:626
    [Google Scholar]
  143. 143.
    You Q, Holt M, Yin H, Li G, Hu CJ, Ju C. 2013. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem. Pharmacol. 86:83643
    [Google Scholar]
  144. 144.
    Antoniades CG, Quaglia A, Taams LS, Mitry RR, Hussain M et al. 2012. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 56:73546
    [Google Scholar]
  145. 145.
    Bird TG, Muller M, Boulter L, Vincent DF, Ridgway RA et al. 2018. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. Med. 10:eaan1230
    [Google Scholar]
  146. 146.
    Bhushan B, Chavan H, Borude P, Xie Y, Du K et al. 2017. Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice. Toxicol. Sci. 155:36378
    [Google Scholar]
  147. 147.
    Apte U, Singh S, Zeng G, Cieply B, Virji MA et al. 2009. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am. J. Pathol. 175:105665
    [Google Scholar]
  148. 148.
    Kato T, Ito Y, Hosono K, Suzuki T, Tamaki H et al. 2011. Vascular endothelial growth factor receptor-1 signaling promotes liver repair through restoration of liver microvasculature after acetaminophen hepatotoxicity. Toxicol. Sci. 120:21829
    [Google Scholar]
  149. 149.
    Chang W, Song L, Chang X, Ji M, Wang H et al. 2017. Early activated hepatic stellate cell-derived paracrine molecules modulate acute liver injury and regeneration. Lab. Investig. 97:31828
    [Google Scholar]
  150. 150.
    Ben-Moshe S, Veg T, Manco R, Dan S, Papinutti D et al. 2022. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 29:97389.e10
    [Google Scholar]
  151. 151.
    Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. 1973. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 187:21117
    [Google Scholar]
  152. 152.
    Mitchell JR, Thorgeirsson SS, Potter WZ, Jollow DJ, Keiser H. 1974. Acetaminophen-induced hepatic injury: protective role of glutathione in man and rationale for therapy. Clin. Pharmacol. Ther. 16:67684
    [Google Scholar]
  153. 153.
    Piperno E, Berssenbruegge DA. 1976. Reversal of experimental paracetamol toxicosis with N-acetylcysteine. Lancet 2:73839
    [Google Scholar]
  154. 154.
    Rumack BH, Peterson RG. 1978. Acetaminophen overdose: incidence, diagnosis, and management in 416 patients. Pediatrics 62:898903
    [Google Scholar]
  155. 155.
    Prescott LF, Illingworth RN, Critchley JA, Stewart MJ, Adam RD, Proudfoot AT. 1979. Intravenous N-acetylcystine: the treatment of choice for paracetamol poisoning. Br. Med. J. 2:1097100
    [Google Scholar]
  156. 156.
    Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH. 1988. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N. Engl. J. Med. 319:155762
    [Google Scholar]
  157. 157.
    Bebarta VS, Kao L, Froberg B, Clark RF, Lavonas E et al. 2010. A multicenter comparison of the safety of oral versus intravenous acetylcysteine for treatment of acetaminophen overdose. Clin. Toxicol. 48:42430
    [Google Scholar]
  158. 158.
    Akakpo JY, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. 2022. Comparing N-acetylcysteine and 4-methylpyrazole as antidotes for acetaminophen overdose. Arch. Toxicol. 96:45365
    [Google Scholar]
  159. 159.
    Rumack BH, Bateman DN. 2012. Acetaminophen and acetylcysteine dose and duration: past, present and future. Clin. Toxicol. 50:9198
    [Google Scholar]
  160. 160.
    Corcoran GB, Racz WJ, Smith CV, Mitchell JR. 1985. Effects of N-acetylcysteine on acetaminophen covalent binding and hepatic necrosis in mice. J. Pharmacol. Exp. Ther. 232:86472
    [Google Scholar]
  161. 161.
    Corcoran GB, Wong BK. 1986. Role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-L-cysteine in vivo: studies with N-acetyl-D-cysteine in mice. J. Pharmacol. Exp. Ther. 238:5461
    [Google Scholar]
  162. 162.
    Hazai E, Vereczkey L, Monostory K. 2002. Reduction of toxic metabolite formation of acetaminophen. Biochem. Biophys. Res. Commun. 291:108994
    [Google Scholar]
  163. 163.
    Akakpo JY, Ramachandran A, Kandel SE, Ni HM, Kumer SC et al. 2018. 4-Methylpyrazole protects against acetaminophen hepatotoxicity in mice and in primary human hepatocytes. Hum. Exp. Toxicol. 37:131022
    [Google Scholar]
  164. 164.
    Akakpo JY, Ramachandran A, Duan L, Schaich MA, Jaeschke MW et al. 2019. Delayed treatment with 4-methylpyrazole protects against acetaminophen hepatotoxicity in mice by inhibition of c-Jun N-terminal kinase. Toxicol. Sci. 170:5768
    [Google Scholar]
  165. 165.
    Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. 2021. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch. Toxicol. 95:337791
    [Google Scholar]
  166. 166.
    Akakpo JY, Ramachandran A, Orhan H, Curry SC, Rumack BH, Jaeschke H. 2020. 4-Methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicol. Appl. Pharmacol. 409:115317
    [Google Scholar]
  167. 167.
    Slitt AL, Dominick PK, Roberts JC, Cohen SD. 2004. Standard of care may not protect against acetaminophen-induced nephrotoxicity. Basic Clin. Pharmacol. Toxicol. 95:24748
    [Google Scholar]
  168. 168.
    Rasamison R, Besson H, Berleur MP, Schicchi A, Megarbane B. 2020. Analysis of fomepizole safety based on a 16-year post-marketing experience in France. Clin. Toxicol. 58:74247
    [Google Scholar]
  169. 169.
    Kang AM, Padilla-Jones A, Fisher ES, Akakpo JY, Jaeschke H et al. 2020. The effect of 4-methylpyrazole on oxidative metabolism of acetaminophen in human volunteers. J. Med. Toxicol. 16:16976
    [Google Scholar]
  170. 170.
    Filip AB, Mullins ME. 2023. Fomepizole should be used more liberally in paracetamol overdose. Br. J. Clin. Pharmacol. 89:59498
    [Google Scholar]
  171. 171.
    Rizvi F, Everton E, Smith AR, Liu H, Osota E et al. 2021. Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nat. Commun. 12:613
    [Google Scholar]
  172. 172.
    Hu S, Liu S, Bian Y, Poddar M, Singh S et al. 2022. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep. Med. 3:100754
    [Google Scholar]
  173. 173.
    Duan L, Sanchez-Guerrero G, Jaeschke H, Ramachandran A. 2022. Activation of the adenosine A2B receptor even beyond the therapeutic window of N-acetylcysteine accelerates liver recovery after an acetaminophen overdose. Food Chem. Toxicol. 163:112911
    [Google Scholar]
  174. 174.
    Adelusi OB, Eichenbaum G, Sadaff E, Ramachandran A, Jaeschke H. 2023. JNJ-26366821 reduces late injury and accelerates the onset of hepatocyte proliferation and liver recovery after acetaminophen-induced liver injury in mice. Toxicol. Sci. 192:S1382 Abstr. )
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051122-094016
Loading
/content/journals/10.1146/annurev-pathmechdis-051122-094016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error