1932

Abstract

Oxygen (O) is essential for cellular metabolism and biochemical reactions. When the demand for O exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051122-094743
2024-01-24
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051122-094743.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051122-094743&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. 2011. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15:123953
    [Google Scholar]
  2. 2.
    Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:544754
    [Google Scholar]
  3. 3.
    Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr. 2002. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1:23746
    [Google Scholar]
  4. 4.
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:4354
    [Google Scholar]
  5. 5.
    Wicks EE, Semenza GL. 2022. Hypoxia-inducible factors: cancer progression and clinical translation. J. Clin. Investig. 132:e159839
    [Google Scholar]
  6. 6.
    Wang GL, Jiang BH, Rue EA, Semenza GL. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 92:551014
    [Google Scholar]
  7. 7.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:46872
    [Google Scholar]
  8. 8.
    Mahon PC, Hirota K, Semenza GL. 2001. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15:267586
    [Google Scholar]
  9. 9.
    Bruick RK, McKnight SL. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:133740
    [Google Scholar]
  10. 10.
    Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J. 2003. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 278:3077280
    [Google Scholar]
  11. 11.
    Yang M, Su H, Soga T, Kranc KR, Pollard PJ. 2014. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia 2:12742
    [Google Scholar]
  12. 12.
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG et al. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:7785
    [Google Scholar]
  13. 13.
    Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ. 2009. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9:15264
    [Google Scholar]
  14. 14.
    Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA et al. 2000. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275:2513038
    [Google Scholar]
  15. 15.
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS et al. 2008. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:80711
    [Google Scholar]
  16. 16.
    Land SC, Tee AR. 2007. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J. Biol. Chem. 282:2053443
    [Google Scholar]
  17. 17.
    Keith B, Johnson RS, Simon MC. 2011. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12:922
    [Google Scholar]
  18. 18.
    Steiner CA, Cartwright IM, Taylor CT, Colgan SP. 2022. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am. J. Physiol. Cell Physiol. 323:C86678
    [Google Scholar]
  19. 19.
    Kietzmann T. 2019. Liver zonation in health and disease: hypoxia and hypoxia-inducible transcription factors as concert masters. Int. J. Mol. Sci. 20:2347
    [Google Scholar]
  20. 20.
    Beumer J, Clevers H. 2021. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22:3953
    [Google Scholar]
  21. 21.
    Cunningham RP, Porat-Shliom N. 2021. Liver zonation—revisiting old questions with new technologies. Front. Physiol. 12:732929
    [Google Scholar]
  22. 22.
    Ramakrishnan SK, Zhang H, Takahashi S, Centofanti B, Periyasamy S et al. 2016. HIF2α is an essential molecular brake for postprandial hepatic glucagon response independent of insulin signaling. Cell Metab. 23:50516
    [Google Scholar]
  23. 23.
    Taylor CT, Scholz CC. 2022. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 18:57387
    [Google Scholar]
  24. 24.
    Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F et al. 2003. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat. Genet. 35:33140
    [Google Scholar]
  25. 25.
    Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM et al. 2013. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 145:83141
    [Google Scholar]
  26. 26.
    Saeidi N, Meoli L, Nestoridi E, Gupta NK, Kvas S et al. 2013. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 341:40610
    [Google Scholar]
  27. 27.
    Evers SS, Shao Y, Ramakrishnan SK, Shin JH, Bozadjieva-Kramer N et al. 2022. Gut HIF2α signaling is increased after VSG, and gut activation of HIF2α decreases weight, improves glucose, and increases GLP-1 secretion. Cell Rep. 38:110270
    [Google Scholar]
  28. 28.
    Xie C, Yagai T, Luo Y, Liang X, Chen T et al. 2017. Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis. Nat. Med. 23:1298308
    [Google Scholar]
  29. 29.
    Rodriguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J et al. 2017. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543:42427
    [Google Scholar]
  30. 30.
    Ramakrishnan SK, Shah YM. 2017. A central role for hypoxia-inducible factor (HIF)-2α in hepatic glucose homeostasis. Nutr. Healthy Aging 4:20716
    [Google Scholar]
  31. 31.
    Tajima T, Goda N, Fujiki N, Hishiki T, Nishiyama Y et al. 2009. HIF-1α is necessary to support gluconeogenesis during liver regeneration. Biochem. Biophys. Res. Commun. 387:78994
    [Google Scholar]
  32. 32.
    Lee YS, Riopel M, Cabrales P, Bandyopadhyay GK. 2019. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci. Adv. 5:eaaw4176
    [Google Scholar]
  33. 33.
    Wei K, Piecewicz SM, McGinnis LM, Taniguchi CM, Wiegand SJ et al. 2013. A liver Hif-2α-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat. Med. 19:133137
    [Google Scholar]
  34. 34.
    Taniguchi CM, Finger EC, Krieg AJ, Wu C, Diep AN et al. 2013. Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat. Med. 19:132530
    [Google Scholar]
  35. 35.
    Rankin EB, Biju MP, Liu Q, Unger TL, Rha J et al. 2007. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Investig. 117:106877
    [Google Scholar]
  36. 36.
    Alnaeeli M, Raaka BM, Gavrilova O, Teng R, Chanturiya T, Noguchi CT. 2014. Erythropoietin signaling: a novel regulator of white adipose tissue inflammation during diet-induced obesity. Diabetes 63:241531
    [Google Scholar]
  37. 37.
    McClain DA, Abuelgasim KA, Nouraie M, Salomon-Andonie J, Niu X et al. 2013. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism. J. Mol. Med. 91:5967
    [Google Scholar]
  38. 38.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J et al. 2011. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:38084
    [Google Scholar]
  39. 39.
    Mesarwi OA, Shin MK, Bevans-Fonti S, Schlesinger C, Shaw J, Polotsky VY. 2016. Hepatocyte hypoxia inducible factor-1 mediates the development of liver fibrosis in a mouse model of nonalcoholic fatty liver disease. PLOS ONE 11:e0168572
    [Google Scholar]
  40. 40.
    Rankin EB, Rha J, Selak MA, Unger TL, Keith B et al. 2009. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 29:452738
    [Google Scholar]
  41. 41.
    Hanahan D. 2022. Hallmarks of cancer: new dimensions. Cancer Discov. 12:3146
    [Google Scholar]
  42. 42.
    Hirota K. 2019. An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic. Biol. Med. 133:11829
    [Google Scholar]
  43. 43.
    Shah YM, Xie L. 2014. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 146:63042
    [Google Scholar]
  44. 44.
    Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. 2009. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Investig. 119:115966
    [Google Scholar]
  45. 45.
    Mastrogiannaki M, Matak P, Mathieu JR, Delga S, Mayeux P et al. 2012. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 97:82734
    [Google Scholar]
  46. 46.
    Schwartz AJ, Das NK, Ramakrishnan SK, Jain C, Jurkovic MT et al. 2019. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J. Clin. Investig. 129:33648
    [Google Scholar]
  47. 47.
    Odenwald MA, Turner JR. 2017. The intestinal epithelial barrier: a therapeutic target?. Nat. Rev. Gastroenterol. Hepatol. 14:921
    [Google Scholar]
  48. 48.
    Zhou C, Li L, Li T, Sun L, Yin J et al. 2020. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α. J. Mol. Med. 98:1189202
    [Google Scholar]
  49. 49.
    Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J et al. 2002. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Investig. 110:9931002
    [Google Scholar]
  50. 50.
    Goggins BJ, Minahan K, Sherwin S, Soh WS, Pryor J et al. 2021. Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of α-integrin expression and function. Am. J. Physiol. Gastrointest. Liver Physiol. 320:G42038
    [Google Scholar]
  51. 51.
    Xie L, Xue X, Taylor M, Ramakrishnan SK, Nagaoka K et al. 2014. Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol. Cell. Biol. 34:301323
    [Google Scholar]
  52. 52.
    Ma S, Yeom J, Lim YH. 2022. Specific activation of hypoxia-inducible factor-2α by propionate metabolism via a β-oxidation-like pathway stimulates MUC2 production in intestinal goblet cells. Biomed. Pharmacother. 155:113672
    [Google Scholar]
  53. 53.
    Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP. 2006. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J. Cell. Biochem. 99:161627
    [Google Scholar]
  54. 54.
    Hernandez C, Santamatilde E, McCreath KJ, Cervera AM, Diez I et al. 2009. Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. Br. J. Pharmacol. 156:26272
    [Google Scholar]
  55. 55.
    Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF et al. 2013. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. 6:111018
    [Google Scholar]
  56. 56.
    Qing Z, Huang H, Yang S, Lin J, Zeng Z et al. 2021. Hypoxia maintains the fenestration of liver sinusoidal endothelial cells and promotes their proliferation through the SENP1/HIF-1α/VEGF signaling axis. Biochem. Biophys. Res. Commun. 540:4250
    [Google Scholar]
  57. 57.
    Graham DB, Xavier RJ. 2020. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578:52739
    [Google Scholar]
  58. 58.
    Santiago P, Braga-Neto MB, Loftus EV. 2022. Novel therapies for patients with inflammatory bowel disease. Gastroenterol. Hepatol. 18:45365
    [Google Scholar]
  59. 59.
    Zhang P, Wang W, Mao M, Gao R, Shi W, Li D et al. 2021. Similarities and differences: a comparative review of the molecular mechanisms and effectors of NAFLD and AFLD. Front. Physiol. 12:710285
    [Google Scholar]
  60. 60.
    Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. 2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 114:1098106
    [Google Scholar]
  61. 61.
    Schutzhold V, Gravemeyer J, Bicker A, Hager T, Padberg C et al. 2022. Knockout of factor-inhibiting HIF (Hif1an) in colon epithelium attenuates chronic colitis but does not reduce colorectal cancer in mice. J. Immunol. 208:128091
    [Google Scholar]
  62. 62.
    Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I et al. 2017. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun. 8:98
    [Google Scholar]
  63. 63.
    Xue X, Bredell BX, Anderson ER, Martin A, Mays C et al. 2017. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. PNAS 114:E960817
    [Google Scholar]
  64. 64.
    Shah YM, Ito S, Morimura K, Chen C, Yim SH et al. 2008. Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterology 134:203648.e3
    [Google Scholar]
  65. 65.
    Solanki S, Devenport SN, Ramakrishnan SK, Shah YM. 2019. Temporal induction of intestinal epithelial hypoxia-inducible factor-2α is sufficient to drive colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 317:G98107
    [Google Scholar]
  66. 66.
    Birkl D, Quiros M, Garcia-Hernandez V, Zhou DW, Brazil JC et al. 2019. TNFα promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal. Immunol. 12:90918
    [Google Scholar]
  67. 67.
    Tambuwala MM, Cummins EP, Lenihan CR, Kiss J, Stauch M et al. 2010. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139:2093101
    [Google Scholar]
  68. 68.
    Xie Y, Yuan T, Qin Y, Weng Z, Fang J. 2018. Prolyl hydroxylase 2 is dispensable for homeostasis of intestinal epithelium in mice. Acta Biochim. Biophys. Sin. 50:54046
    [Google Scholar]
  69. 69.
    Chen Y, Zhang HS, Fong GH, Xi QL, Wu GH et al. 2015. PHD3 stabilizes the tight junction protein occludin and protects intestinal epithelial barrier function. J. Biol. Chem. 290:2058089
    [Google Scholar]
  70. 70.
    Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP. 2008. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:14555
    [Google Scholar]
  71. 71.
    Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ et al. 2008. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:15665
    [Google Scholar]
  72. 72.
    Danese S, Levesque BG, Feagan BG, Jucov A, Bhandari BR et al. 2022. Randomised clinical trial: a phase 1b study of GB004, an oral HIF-1α stabiliser, for treatment of ulcerative colitis. Aliment. Pharmacol. Ther. 55:40111
    [Google Scholar]
  73. 73.
    Sun L, Li T, Tang H, Yu K, Ma Y et al. 2019. Intestinal epithelial cells-derived hypoxia-inducible factor-1α is essential for the homeostasis of intestinal intraepithelial lymphocytes. Front. Immunol. 10:806
    [Google Scholar]
  74. 74.
    Seike K, Kiledal A, Fujiwara H, Henig I, Burgos da Silva M et al. 2023. Ambient oxygen levels regulate intestinal dysbiosis and GVHD severity after allogeneic stem cell transplantation. Immunity 56:35368.e6
    [Google Scholar]
  75. 75.
    Qu A, Taylor M, Xue X, Matsubara T, Metzger D et al. 2011. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54:47283
    [Google Scholar]
  76. 76.
    Mooli RGR, Rodriguez J, Takahashi S, Solanki S, Gonzalez FJ et al. 2021. Hypoxia via ERK signaling inhibits hepatic PPARα to promote fatty liver. Cell. Mol. Gastroenterol. Hepatol. 12:58597
    [Google Scholar]
  77. 77.
    Arai T, Tanaka M, Goda N. 2018. HIF-1-dependent lipin1 induction prevents excessive lipid accumulation in choline-deficient diet-induced fatty liver. Sci. Rep. 8:14230
    [Google Scholar]
  78. 78.
    Nath B, Levin I, Csak T, Petrasek J, Mueller C et al. 2011. Hepatocyte-specific hypoxia-inducible factor-1α is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology 53:152637
    [Google Scholar]
  79. 79.
    Ouyang X, Han SN, Zhang JY, Dioletis E, Nemeth BT et al. 2018. Digoxin suppresses pyruvate kinase M2-promoted HIF-1α transactivation in steatohepatitis. Cell Metab. 27:33950.e3
    [Google Scholar]
  80. 80.
    Tilg H, Adolph TE, Trauner M. 2022. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34:170018
    [Google Scholar]
  81. 81.
    Mooli RGR, Mukhi D, Pasupulati AK, Evers SS, Sipula IJ et al. 2022. Intestinal HIF-2α regulates GLP-1 secretion via lipid sensing in L-cells. Cell. Mol. Gastroenterol. Hepatol. 13:105772
    [Google Scholar]
  82. 82.
    Shao T, Zhao C, Li F, Gu Z, Liu L et al. 2018. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J. Hepatol. 69:88695
    [Google Scholar]
  83. 83.
    Thomas JP, Modos D, Rushbrook SM, Powell N, Korcsmaros T. 2022. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13:829525
    [Google Scholar]
  84. 84.
    Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4:293305
    [Google Scholar]
  85. 85.
    Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M et al. 2020. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27:65970.e5
    [Google Scholar]
  86. 86.
    Wu Q, Liang X, Wang K, Lin J, Wang X et al. 2021. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab. 33:19882003.e7
    [Google Scholar]
  87. 87.
    Ramakrishnan SK, Taylor M, Qu A, Ahn SH, Suresh MV et al. 2014. Loss of von Hippel-Lindau protein (VHL) increases systemic cholesterol levels through targeting hypoxia-inducible factor 2α and regulation of bile acid homeostasis. Mol. Cell. Biol. 34:120820
    [Google Scholar]
  88. 88.
    Xie C, Gao X, Sun D, Zhang Y, Krausz KW et al. 2018. Metabolic profiling of the novel hypoxia-inducible factor 2α inhibitor PT2385 in vivo and in vitro. Drug Metab. Dispos. 46:33645
    [Google Scholar]
  89. 89.
    Sorrentino G, Perino A, Yildiz E, El Alam G, Bou Sleiman M et al. 2020. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159:95668.e8
    [Google Scholar]
  90. 90.
    Higashiyama M, Hokari R, Hozumi H, Kurihara C, Ueda T et al. 2012. HIF-1 in T cells ameliorated dextran sodium sulfate-induced murine colitis. J. Leukoc. Biol. 91:9019
    [Google Scholar]
  91. 91.
    Lee JH, Elly C, Park Y, Liu YC. 2015. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity 42:106274
    [Google Scholar]
  92. 92.
    Hsu TS, Lin YL, Wang YA, Mo ST, Chi PY et al. 2020. HIF-2α is indispensable for regulatory T cell function. Nat. Commun. 11:5005
    [Google Scholar]
  93. 93.
    Backer V, Cheung FY, Siveke JT, Fandrey J, Winning S. 2017. Knockdown of myeloid cell hypoxia-inducible factor-1α ameliorates the acute pathology in DSS-induced colitis. PLOS ONE 12:e0190074
    [Google Scholar]
  94. 94.
    Van Welden S, De Vos M, Wielockx B, Tavernier SJ, Dullaers M et al. 2017. Haematopoietic prolyl hydroxylase-1 deficiency promotes M2 macrophage polarization and is both necessary and sufficient to protect against experimental colitis. J. Pathol. 241:54758
    [Google Scholar]
  95. 95.
    Kerber EL, Padberg C, Koll N, Schuetzhold V, Fandrey J, Winning S. 2020. The importance of hypoxia-inducible factors (HIF-1 and HIF-2) for the pathophysiology of inflammatory bowel disease. Int. J. Mol. Sci. 21:8551
    [Google Scholar]
  96. 96.
    Walmsley SR, Chilvers ER, Thompson AA, Vaughan K, Marriott HM et al. 2011. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J. Clin. Investig. 121:105363
    [Google Scholar]
  97. 97.
    Fluck K, Breves G, Fandrey J, Winning S. 2016. Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol. 9:37990
    [Google Scholar]
  98. 98.
    Qian T, Hong J, Wang L, Wang Z, Lu Z et al. 2019. Regulation of CD11b by HIF-1α and the STAT3 signaling pathway contributes to the immunosuppressive function of B cells in inflammatory bowel disease. Mol. Immunol. 111:16271
    [Google Scholar]
  99. 99.
    Suzuki T, Minagawa S, Yamazaki T, Arai T, Kanai M et al. 2018. Loss of hypoxia inducible factor-1α aggravates γδ T-cell-mediated inflammation during acetaminophen-induced liver injury. Hepatol. Commun. 2:57181
    [Google Scholar]
  100. 100.
    Kim JH, Han JW, Choi YJ, Rha MS, Koh JY et al. 2020. Functions of human liver CD69+CD103CD8+ T cells depend on HIF-2α activity in healthy and pathologic livers. J. Hepatol. 72:117081
    [Google Scholar]
  101. 101.
    Wang X, de Carvalho Ribeiro M, Iracheta-Vellve A, Lowe P, Ambade A et al. 2019. Macrophage-specific hypoxia-inducible factor-1α contributes to impaired autophagic flux in nonalcoholic steatohepatitis. Hepatology 69:54563
    [Google Scholar]
  102. 102.
    Copple BL, Kaska S, Wentling C. 2012. Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J. Pharmacol. Exp. Ther. 341:30716
    [Google Scholar]
  103. 103.
    Gao RY, Wang M, Liu Q, Feng D, Wen Y et al. 2020. Hypoxia-inducible factor-2α reprograms liver macrophages to protect against acute liver injury through the production of interleukin-6. Hepatology 71:210517
    [Google Scholar]
  104. 104.
    Barnhoorn MC, Hakuno SK, Bruckner RS, Rogler G, Hawinkels L, Scharl M. 2020. Stromal cells in the pathogenesis of inflammatory bowel disease. J. Crohns Colitis 14:9951009
    [Google Scholar]
  105. 105.
    Gomez-Ferrer M, Amaro-Prellezo E, Dorronsoro A, Sanchez-Sanchez R, Vicente A et al. 2021. HIF-overexpression and pro-inflammatory priming in human mesenchymal stromal cells improves the healing properties of extracellular vesicles in experimental Crohn's disease. Int. J. Mol. Sci. 22:11269
    [Google Scholar]
  106. 106.
    Ying J, You Q, Wang Z, Hu Z. 2022. Hypoxic preconditioning promotes the immunosuppressive effects of mesenchymal stem cells in mice with colitis. Res. Vet. Sci. 144:15763
    [Google Scholar]
  107. 107.
    Copple BL, Bai S, Burgoon LD, Moon JO. 2011. Hypoxia-inducible factor-1α regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int. 31:23044
    [Google Scholar]
  108. 108.
    Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF et al. 2020. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70:14564
    [Google Scholar]
  109. 109.
    Fearon ER. 2011. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. Mech. Dis. 6:479507
    [Google Scholar]
  110. 110.
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71:20949
    [Google Scholar]
  111. 111.
    Luo XY, Wu KM, He XX. 2021. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. J. Exp. Clin. Cancer Res. 40:172
    [Google Scholar]
  112. 112.
    Xue X, Taylor M, Anderson E, Hao C, Qu A et al. 2012. Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 72:228593
    [Google Scholar]
  113. 113.
    Foglia B, Sutti S, Cannito S, Rosso C, Maggiora M et al. 2022. Hepatocyte-specific deletion of HIF2α prevents NASH-related liver carcinogenesis by decreasing cancer cell proliferation. Cell. Mol. Gastroenterol. Hepatol. 13:45982
    [Google Scholar]
  114. 114.
    Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L et al. 2016. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24:44761
    [Google Scholar]
  115. 115.
    Xue X, Ramakrishnan SK, Shah YM. 2014. Activation of HIF-1α does not increase intestinal tumorigenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G18795
    [Google Scholar]
  116. 116.
    Chen J, Chen J, Huang J, Li Z, Gong Y et al. 2019. HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging 11:1083960
    [Google Scholar]
  117. 117.
    Choi H, Chun YS, Kim TY, Park JW. 2010. HIF-2α enhances β-catenin/TCF-driven transcription by interacting with β-catenin. Cancer Res. 70:1010111
    [Google Scholar]
  118. 118.
    Garcia Garcia CJ, Acevedo Diaz AC, Kumari N, Govindaraju S, de la Cruz Bonilla M et al. 2021. HIF2 regulates intestinal Wnt5a expression. Front. Oncol. 11:769385
    [Google Scholar]
  119. 119.
    Kaidi A, Williams AC, Paraskeva C. 2007. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat. Cell Biol. 9:21017
    [Google Scholar]
  120. 120.
    Franovic A, Holterman CE, Payette J, Lee S. 2009. Human cancers converge at the HIF-2α oncogenic axis. PNAS 106:2130611
    [Google Scholar]
  121. 121.
    Xu W, Zhou W, Cheng M, Wang J, Liu Z et al. 2017. Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocellular carcinoma. Sci. Rep. 7:40446
    [Google Scholar]
  122. 122.
    Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:63337
    [Google Scholar]
  123. 123.
    Zhang MS, Cui JD, Lee D, Yuen VW, Chiu DK et al. 2022. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat. Commun. 13:954
    [Google Scholar]
  124. 124.
    Xia L, Mo P, Huang W, Zhang L, Wang Y et al. 2012. The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis 33:225059
    [Google Scholar]
  125. 125.
    Xu Z, Liu E, Peng C, Li Y, He Z et al. 2012. Role of hypoxia-inducible-1α in hepatocellular carcinoma cells using a Tet-on inducible system to regulate its expression in vitro. Oncol. Rep. 27:57378
    [Google Scholar]
  126. 126.
    Chu Q, Gu X, Zheng Q, Zhu H. 2022. Regulatory mechanism of HIF-1α and its role in liver diseases: a narrative review. Ann. Transl. Med. 10:109
    [Google Scholar]
  127. 127.
    He C, Sun XP, Qiao H, Jiang X, Wang D et al. 2012. Downregulating hypoxia-inducible factor-2α improves the efficacy of doxorubicin in the treatment of hepatocellular carcinoma. Cancer Sci. 103:52834
    [Google Scholar]
  128. 128.
    Dong XF, Liu TQ, Zhi XT, Zou J, Zhong JT et al. 2018. COX-2/PGE2 axis regulates HIF2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin. Cancer Res. 24:320416
    [Google Scholar]
  129. 129.
    Sun HX, Xu Y, Yang XR, Wang WM, Bai H et al. 2013. Hypoxia inducible factor 2 alpha inhibits hepatocellular carcinoma growth through the transcription factor dimerization partner 3/E2F transcription factor 1-dependent apoptotic pathway. Hepatology 57:108897
    [Google Scholar]
  130. 130.
    Yoshimura H, Dhar DK, Kohno H, Kubota H, Fujii T et al. 2004. Prognostic impact of hypoxia-inducible factors 1α and 2α in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin. Cancer Res. 10:855460
    [Google Scholar]
  131. 131.
    Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V et al. 2014. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 371:160918
    [Google Scholar]
  132. 132.
    Liu LP, Ho RL, Chen GG, Lai PB. 2012. Sorafenib inhibits hypoxia-inducible factor-1α synthesis: implications for antiangiogenic activity in hepatocellular carcinoma. Clin. Cancer Res. 18:566271
    [Google Scholar]
  133. 133.
    Zhang L, Huang G, Li X, Zhang Y, Jiang Y et al. 2013. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma. BMC Cancer 13:108
    [Google Scholar]
  134. 134.
    Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. 2020. Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front. Oncol. 10:476
    [Google Scholar]
  135. 135.
    Schwartz AJ, Goyert JW, Solanki S, Kerk SA, Chen B et al. 2021. Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial function in colorectal cancer epithelial cells. Nat. Metab. 3:96982
    [Google Scholar]
  136. 136.
    Recalcati S, Correnti M, Gammella E, Raggi C, Invernizzi P, Cairo G. 2019. Iron metabolism in liver cancer stem cells. Front. Oncol. 9:149
    [Google Scholar]
  137. 137.
    Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA et al. 2008. Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J. Natl. Cancer Inst. 100:9961002
    [Google Scholar]
  138. 138.
    Kato J, Miyanishi K, Kobune M, Nakamura T, Takada K et al. 2007. Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C. J. Gastroenterol. 42:83036
    [Google Scholar]
  139. 139.
    Yamasaki T, Terai S, Sakaida I. 2011. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med. 365:57678
    [Google Scholar]
  140. 140.
    Guo Q, Li L, Hou S, Yuan Z, Li C et al. 2021. The role of iron in cancer progression. Front. Oncol. 11:778492
    [Google Scholar]
  141. 141.
    Wang CY, Knutson MD. 2013. Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice. Hepatology 58:78898
    [Google Scholar]
  142. 142.
    Shen Y, Li X, Zhao B, Xue Y, Wang S et al. 2018. Iron metabolism gene expression and prognostic features of hepatocellular carcinoma. J. Cell. Biochem. 119:9178204
    [Google Scholar]
  143. 143.
    Liu Q, Davidoff O, Niss K, Haase VH. 2012. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J. Clin. Investig. 122:463544
    [Google Scholar]
  144. 144.
    Wang J, Liu W, Li JC, Li M, Li B, Zhu R. 2021. Hepcidin downregulation correlates with disease aggressiveness and immune infiltration in liver cancers. Front. Oncol. 11:714756
    [Google Scholar]
  145. 145.
    Yan H, Talty R, Johnson CH. 2023. Targeting ferroptosis to treat colorectal cancer. Trends Cell Biol. 33:18588
    [Google Scholar]
  146. 146.
    Singhal R, Mitta SR, Das NK, Kerk SA, Sajjakulnukit P et al. 2021. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron. J. Clin. Investig. 131:e143691
    [Google Scholar]
  147. 147.
    Conche C, Finkelmeier F, Pesic M, Nicolas AM, Bottger TW et al. 2023. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut 72:177482
    [Google Scholar]
  148. 148.
    Xue X, Shah YM. 2013. Hypoxia-inducible factor-2α is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 34:16369
    [Google Scholar]
  149. 149.
    Morello E, Sutti S, Foglia B, Novo E, Cannito S et al. 2018. Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein. Hepatology 67:2196214
    [Google Scholar]
  150. 150.
    Kwon HC, Kim SH, Oh SY, Lee S, Kwon KA et al. 2010. Clinicopathological significance of nuclear factor-kappa B, HIF-1 alpha, and vascular endothelial growth factor expression in stage III colorectal cancer. Cancer Sci. 101:155761
    [Google Scholar]
  151. 151.
    Triner D, Xue X, Schwartz AJ, Jung I, Colacino JA, Shah YM. 2017. Epithelial hypoxia-inducible factor 2α facilitates the progression of colon tumors through recruiting neutrophils. Mol. Cell. Biol. 37:e00481-16
    [Google Scholar]
  152. 152.
    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM et al. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:55963
    [Google Scholar]
  153. 153.
    Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q et al. 2018. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology 67:187289
    [Google Scholar]
  154. 154.
    Cheu JW, Chiu DK, Kwan KK, Yang C, Yuen VW et al. 2023. Hypoxia-inducible factor orchestrates adenosine metabolism to promote liver cancer development. Sci. Adv. 9:eade5111
    [Google Scholar]
  155. 155.
    Salman S, Meyers DJ, Wicks EE, Lee SN, Datan E et al. 2022. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy. J. Clin. Investig. 132:e156774
    [Google Scholar]
  156. 156.
    Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK et al. 2017. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 8:517
    [Google Scholar]
  157. 157.
    Waldman AD, Fritz JM, Lenardo MJ. 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20:65168
    [Google Scholar]
  158. 158.
    Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV et al. 2013. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14:117382
    [Google Scholar]
  159. 159.
    Triner D, Devenport SN, Ramakrishnan SK, Ma X, Frieler RA et al. 2019. Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology 156:146782
    [Google Scholar]
  160. 160.
    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H et al. 2011. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146:77284
    [Google Scholar]
  161. 161.
    Triner D, Shah YM. 2016. Hypoxia-inducible factors: a central link between inflammation and cancer. J. Clin. Investig. 126:368998
    [Google Scholar]
  162. 162.
    Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC et al. 2010. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Investig. 120:2699714
    [Google Scholar]
  163. 163.
    Malier M, Gharzeddine K, Laverriere MH, Marsili S, Thomas F et al. 2022. Correction: Hypoxia drives dihydropyrimidine dehydrogenase expression in macrophages and confers chemoresistance in colorectal cancer. Cancer Res. 82:1436
    [Google Scholar]
  164. 164.
    Kennel KB, Burmeister J, Radhakrishnan P, Giese NA, Giese T et al. 2022. The HIF-prolyl hydroxylases have distinct and nonredundant roles in colitis-associated cancer. JCI Insight 7:e153337
    [Google Scholar]
  165. 165.
    Wu Q, Zhou W, Yin S, Zhou Y, Chen T et al. 2019. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology 70:198214
    [Google Scholar]
  166. 166.
    Takikawa A, Usui I, Fujisaka S, Tsuneyama K, Okabe K et al. 2019. Macrophage-specific hypoxia-inducible factor-1α deletion suppresses the development of liver tumors in high-fat diet-fed obese and diabetic mice. J. Diabetes Investig. 10:141118
    [Google Scholar]
  167. 167.
    Thompson AA, Elks PM, Marriott HM, Eamsamarng S, Higgins KR et al. 2014. Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish. Blood 123:36676
    [Google Scholar]
  168. 168.
    Sormendi S, Deygas M, Sinha A, Bernard M, Kruger A et al. 2021. HIF2α is a direct regulator of neutrophil motility. Blood 137:341627
    [Google Scholar]
  169. 169.
    Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z et al. 2016. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 150:164658.e17
    [Google Scholar]
  170. 170.
    Ahn GO, Seita J, Hong BJ, Kim YE, Bok S et al. 2014. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. PNAS 111:2698703
    [Google Scholar]
  171. 171.
    Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M et al. 2020. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382:1894905
    [Google Scholar]
  172. 172.
    Noman MZ, Desantis G, Janji B, Hasmim M, Karray S et al. 2014. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211:78190
    [Google Scholar]
  173. 173.
    Tang YA, Chen YF, Bao Y, Mahara S, Yatim S et al. 2018. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. PNAS 115:E599099
    [Google Scholar]
  174. 174.
    Garcia Garcia CJ, Huang Y, Fuentes NR, Turner MC, Monberg ME et al. 2022. Stromal HIF2 regulates immune suppression in the pancreatic cancer microenvironment. Gastroenterology 162:201831
    [Google Scholar]
  175. 175.
    Carmona-Rodriguez L, Martinez-Rey D, Fernandez-Acenero MJ, Gonzalez-Martin A, Paz-Cabezas M et al. 2020. SOD3 induces a HIF-2α-dependent program in endothelial cells that provides a selective signal for tumor infiltration by T cells. J. Immunother. Cancer 8:e000432
    [Google Scholar]
  176. 176.
    Zhang J, Gu C, Song Q, Zhu M, Xu Y et al. 2020. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci. 10:127
    [Google Scholar]
  177. 177.
    Xu H, Zhao J, Li J, Zhu Z, Cui Z et al. 2022. Cancer associated fibroblast-derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis. Cell Death Dis. 13:478
    [Google Scholar]
  178. 178.
    Jain IH, Calvo SE, Markhard AL, Skinner OS, To TL et al. 2020. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181:71627.e11
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051122-094743
Loading
/content/journals/10.1146/annurev-pathmechdis-051122-094743
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error