1932

Abstract

Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051122-100856
2024-01-24
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051122-100856.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051122-100856&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, de Oliveira Araujo IB et al. 2022. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36:7172048
    [Google Scholar]
  2. 2.
    Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH et al. 2022. The international consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood 140:11122953
    [Google Scholar]
  3. 3.
    Dalla-Favera R. 2012. Lymphoid malignancies: many tumor types, many altered genes, many therapeutic challenges. J. Clin. Investig. 122:10339697
    [Google Scholar]
  4. 4.
    Esteller M. 2008. Epigenetics in cancer. N. Engl. J. Med. 358:11114859
    [Google Scholar]
  5. 5.
    Jones PA, Baylin SB. 2002. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3:641528
    [Google Scholar]
  6. 6.
    Holliday R. 2006. Epigenetics: a historical overview. Epigenetics 1:27680
    [Google Scholar]
  7. 7.
    Deichmann U. 2016. Epigenetics: the origins and evolution of a fashionable topic. Dev. Biol. 416:124954
    [Google Scholar]
  8. 8.
    Eden A, Gaudet F, Waghmare A, Jaenisch R. 2003. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:5618455
    [Google Scholar]
  9. 9.
    Luo C, Hajkova P, Ecker JR. 2018. Dynamic DNA methylation: in the right place at the right time. Science 361:6409133640
    [Google Scholar]
  10. 10.
    Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:748492
    [Google Scholar]
  11. 11.
    Mattei AL, Bailly N, Meissner A. 2022. DNA methylation: a historical perspective. Trends Genet. 38:7676707
    [Google Scholar]
  12. 12.
    Karlić R, Chung H-R, Lasserre J, Vlahovicek K, Vingron M. 2010. Histone modification levels are predictive for gene expression. PNAS 107:7292631
    [Google Scholar]
  13. 13.
    Roadmap Epigenomics Consort., Kundaje A, Meuleman W, Ernst J, Bilenky M et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:753931730
    [Google Scholar]
  14. 14.
    Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:4693705
    [Google Scholar]
  15. 15.
    Kimura H. 2013. Histone modifications for human epigenome analysis. J. Hum. Genet. 58:743945
    [Google Scholar]
  16. 16.
    Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L et al. 2015. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520:754624347
    [Google Scholar]
  17. 17.
    Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9:321516
    [Google Scholar]
  18. 18.
    Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD et al. 2011. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:73454349
    [Google Scholar]
  19. 19.
    Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N et al. 2018. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat. Med. 24:686880
    [Google Scholar]
  20. 20.
    Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14:6390403
    [Google Scholar]
  21. 21.
    Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:7166580
    [Google Scholar]
  22. 22.
    Jerkovic I, Cavalli G. 2021. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22:851128
    [Google Scholar]
  23. 23.
    Dehingia B, Milewska M, Janowski M, Pękowska A. 2022. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep. 23:9e55146
    [Google Scholar]
  24. 24.
    Li S, Tollefsbol TO. 2021. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 187:2843
    [Google Scholar]
  25. 25.
    Füllgrabe J, Gosal WS, Creed P, Liu S, Lumby CK et al. 2023. Simultaneous sequencing of genetic and epigenetic bases in DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01652-0
    [Crossref] [Google Scholar]
  26. 26.
    Yue X, Xie Z, Li M, Wang K, Li X et al. 2022. Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nat. Commun. 13:17939
    [Google Scholar]
  27. 27.
    Yang Y, Scott SA. 2017. DNA methylation profiling using long-read single molecule real-time bisulfite sequencing (SMRT-BS). Methods Mol. Biol. 1654:12534
    [Google Scholar]
  28. 28.
    Liu Q, Fang L, Yu G, Wang D, Xiao C-L, Wang K. 2019. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10:12449
    [Google Scholar]
  29. 29.
    Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S. 2020. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15:10326483
    [Google Scholar]
  30. 30.
    Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP et al. 2021. Chromatin accessibility profiling methods. Nat. Rev. Methods Primers 1:110
    [Google Scholar]
  31. 31.
    Klemm SL, Shipony Z, Greenleaf WJ. 2019. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20:420720
    [Google Scholar]
  32. 32.
    Akgol Oksuz B, Yang L, Abraham S, Venev SV, Krietenstein N et al. 2021. Systematic evaluation of chromosome conformation capture assays. Nat. Methods 18:9104655
    [Google Scholar]
  33. 33.
    Bouwman BAM, Crosetto N, Bienko M. 2022. The era of 3D and spatial genomics. Trends Genet. 38:10106275
    [Google Scholar]
  34. 34.
    Jerković I, Cavalli G. 2021. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22:851128
    [Google Scholar]
  35. 35.
    Kempfer R, Pombo A. 2020. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21:420726
    [Google Scholar]
  36. 36.
    Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H et al. 2014. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11:881720
    [Google Scholar]
  37. 37.
    Nichols RV, O'Connell BL, Mulqueen RM, Thomas J, Woodfin AR et al. 2022. High-throughput robust single-cell DNA methylation profiling with sciMETv2. Nat. Commun. 13:17627
    [Google Scholar]
  38. 38.
    Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. 2013. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23:12212635
    [Google Scholar]
  39. 39.
    Bianchi A, Scherer M, Zaurin R, Quililan K, Velten L, Beekman R. 2022. scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells. Genome Biol. 23:1229
    [Google Scholar]
  40. 40.
    Vandereyken K, Sifrim A, Thienpont B, Voet T. 2023. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24:8494515
    [Google Scholar]
  41. 41.
    Nam AS, Chaligne R, Landau DA. 2021. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22:1318
    [Google Scholar]
  42. 42.
    Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20:525772
    [Google Scholar]
  43. 43.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:676950311
    [Google Scholar]
  44. 44.
    Martin-Subero JI, Oakes CC. 2018. Charting the dynamic epigenome during B-cell development. Semin. Cancer Biol. 51:13948
    [Google Scholar]
  45. 45.
    Kulis M, Merkel A, Heath S, Queirós AC, Schuyler RP et al. 2015. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 47:774656
    [Google Scholar]
  46. 46.
    Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J et al. 2023. A DNA methylation atlas of normal human cell types. Nature 613:794335564
    [Google Scholar]
  47. 47.
    Zhu T, Liu J, Beck S, Pan S, Capper D et al. 2022. A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution. Nat. Methods 19:3296306
    [Google Scholar]
  48. 48.
    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ et al. 2012. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformat. 13:86
    [Google Scholar]
  49. 49.
    Duran-Ferrer M, Clot G, Nadeu F, Beekman R, Baumann T et al. 2020. The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome. Nat. Cancer 1:11106681
    [Google Scholar]
  50. 50.
    Rahmani E, Schweiger R, Rhead B, Criswell LA, Barcellos LF et al. 2019. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 10:13417
    [Google Scholar]
  51. 51.
    Jaffe AE, Irizarry RA. 2014. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15:2R31
    [Google Scholar]
  52. 52.
    Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ et al. 2018. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:2291304.e6
    [Google Scholar]
  53. 53.
    Shaknovich R, Geng H, Johnson NA, Tsikitas L, Cerchietti L et al. 2010. DNA methylation signatures define molecular subtypes of diffuse large B-cell lymphoma. Blood 116:20e8189
    [Google Scholar]
  54. 54.
    Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA et al. 2015. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat. Genet. 47:11131625
    [Google Scholar]
  55. 55.
    Arribas AJ, Rinaldi A, Chiodin G, Kwee I, Mensah AA et al. 2019. Genome-wide promoter methylation of hairy cell leukemia. Blood Adv. 3:338496
    [Google Scholar]
  56. 56.
    Navarro A, Beà S, Jares P, Campo E. 2020. Molecular pathogenesis of mantle cell lymphoma. Hematol. Oncol. Clin. North Am. 34:5795807
    [Google Scholar]
  57. 57.
    Queirós AC, Beekman R, Vilarrasa-Blasi R, Duran-Ferrer M, Clot G et al. 2016. Decoding the DNA methylome of mantle cell lymphoma in the light of the entire B cell lineage. Cancer Cell 30:580621
    [Google Scholar]
  58. 58.
    Palomero J, Vegliante MC, Eguileor A, Rodríguez ML, Balsas P et al. 2016. SOX11 defines two different subtypes of mantle cell lymphoma through transcriptional regulation of BCL6. Leukemia 30:7159699
    [Google Scholar]
  59. 59.
    Navarro A, Clot G, Royo C, Jares P, Hadzidimitriou A et al. 2012. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 72:20530716
    [Google Scholar]
  60. 60.
    Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G et al. 2017. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primers 3:16096
    [Google Scholar]
  61. 61.
    Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A et al. 2012. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44:11123642
    [Google Scholar]
  62. 62.
    Nadeu F, Royo R, Clot G, Duran-Ferrer M, Navarro A et al. 2021. IGLV3–21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood 137:21293546
    [Google Scholar]
  63. 63.
    Kulis M, Martin-Subero JI. 2023. Integrative epigenomics in chronic lymphocytic leukaemia: biological insights and clinical applications. Br. J. Haematol. 200:328090
    [Google Scholar]
  64. 64.
    Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M et al. 2016. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 48:325364
    [Google Scholar]
  65. 65.
    Giacopelli B, Zhao Q, Ruppert AS, Agyeman A, Weigel C et al. 2019. Developmental subtypes assessed by DNA methylation-iPLEX forecast the natural history of chronic lymphocytic leukemia. Blood 134:868898
    [Google Scholar]
  66. 66.
    Queirós AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M et al. 2015. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 29:3598605
    [Google Scholar]
  67. 67.
    Bhoi S, Ljungström V, Baliakas P, Mattsson M, Smedby KE et al. 2016. Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: the case of subset #2. Epigenetics 11:644955
    [Google Scholar]
  68. 68.
    Wojdacz TK, Amarasinghe HE, Kadalayil L, Beattie A, Forster J et al. 2019. Clinical significance of DNA methylation in chronic lymphocytic leukemia patients: results from 3 UK clinical trials. Blood Adv. 3:16247481
    [Google Scholar]
  69. 69.
    Duran-Ferrer M, Mansouri L, Nadeu F, Clot G, Bhoi S et al. 2022. A comprehensive DNA methylome analysis of stereotyped and non-stereotyped CLL reveals an epigenetic signature with strong clinical impact encompassing IGHV status, stereotypes and IGLV3–21R110. Blood 140:Suppl. 118002
    [Google Scholar]
  70. 70.
    Roos-Weil D, Giacopelli B, Armand M, Della-Valle V, Ghamlouch H et al. 2020. Identification of 2 DNA methylation subtypes of Waldenström macroglobulinemia with plasma and memory B-cell features. Blood 136:558595
    [Google Scholar]
  71. 71.
    Stadler MB, Murr R, Burger L, Ivanek R, Lienert F et al. 2011. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:737849095
    [Google Scholar]
  72. 72.
    Kreibich E, Kleinendorst R, Barzaghi G, Kaspar S, Krebs AR. 2023. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol. Cell 83:5787802.e9
    [Google Scholar]
  73. 73.
    Lee S-T, Muench MO, Fomin ME, Xiao J, Zhou M et al. 2015. Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures. Nucleic Acids Res. 43:52590602
    [Google Scholar]
  74. 74.
    Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC et al. 2013. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 14:9r105
    [Google Scholar]
  75. 75.
    Hetzel S, Mattei AL, Kretzmer H, Qu C, Chen X et al. 2022. Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nat. Cancer 3:676882
    [Google Scholar]
  76. 76.
    Vogt J, Wagener R, Montesinos-Rongen M, Ammerpohl O, Paulus W et al. 2019. Array-based profiling of the lymphoma cell DNA methylome does not unequivocally distinguish primary lymphomas of the central nervous system from non-CNS diffuse large B-cell lymphomas. Genes Chromosomes Cancer 58:16669
    [Google Scholar]
  77. 77.
    Richter J, Ammerpohl O, Martín-Subero JI, Montesinos-Rongen M, Bibikova M et al. 2009. Array-based DNA methylation profiling of primary lymphomas of the central nervous system. BMC Cancer 9:455
    [Google Scholar]
  78. 78.
    Teater M, Dominguez PM, Redmond D, Chen Z, Ennishi D et al. 2018. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat. Commun. 9:1222
    [Google Scholar]
  79. 79.
    Pan H, Jiang Y, Boi M, Tabbò F, Redmond D et al. 2015. Epigenomic evolution in diffuse large B-cell lymphomas. Nat. Commun. 6:6921
    [Google Scholar]
  80. 80.
    Chambwe N, Kormaksson M, Geng H, De S, Michor F et al. 2014. Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood 123:111699708
    [Google Scholar]
  81. 81.
    Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S et al. 2020. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 37:455168.e14
    [Google Scholar]
  82. 82.
    Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A et al. 2018. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24:567990
    [Google Scholar]
  83. 83.
    O'Riain C, O'Shea DM, Yang Y, Le Dieu R, Gribben JG et al. 2009. Array-based DNA methylation profiling in follicular lymphoma. Leukemia 23:10185866
    [Google Scholar]
  84. 84.
    Tsagiopoulou M, Papakonstantinou N, Moysiadis T, Mansouri L, Ljungström V et al. 2019. DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clin. Epigenet. 11:1177
    [Google Scholar]
  85. 85.
    Cahill N, Bergh A-C, Kanduri M, Göransson-Kultima H, Mansouri L et al. 2013. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 27:115058
    [Google Scholar]
  86. 86.
    Landau DA, Clement K, Ziller MJ, Boyle P, Fan J et al. 2014. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26:681325
    [Google Scholar]
  87. 87.
    Claus R, Lucas DM, Stilgenbauer S, Ruppert AS, Yu L et al. 2012. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30:20248391
    [Google Scholar]
  88. 88.
    Broséus J, Hergalant S, Vogt J, Tausch E, Kreuz M et al. 2023. Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis. Nat. Commun. 14:1309
    [Google Scholar]
  89. 89.
    Agirre X, Castellano G, Pascual M, Heath S, Kulis M et al. 2015. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res. 25:447887
    [Google Scholar]
  90. 90.
    Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD et al. 2011. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 117:255362
    [Google Scholar]
  91. 91.
    Choudhury SR, Ashby C, Tytarenko R, Bauer M, Wang Y et al. 2020. The functional epigenetic landscape of aberrant gene expression in molecular subgroups of newly diagnosed multiple myeloma. J. Hematol. Oncol. 13:1108
    [Google Scholar]
  92. 92.
    Kaiser MF, Johnson DC, Wu P, Walker BA, Brioli A et al. 2013. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 122:221926
    [Google Scholar]
  93. 93.
    Ammerpohl O, Haake A, Pellissery S, Giefing M, Richter J et al. 2012. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia 26:118588
    [Google Scholar]
  94. 94.
    Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J et al. 2015. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin. Epigenet. 7:111
    [Google Scholar]
  95. 95.
    Xia D, Leon AJ, Yan J, Silva A, Bakhtiari M et al. 2021. DNA methylation-based classification of small B-cell lymphomas: a proof-of-principle study. J. Mol. Diagn. 23:12177486
    [Google Scholar]
  96. 96.
    Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA et al. 2018. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563:773257983
    [Google Scholar]
  97. 97.
    Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N et al. 2018. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9:15068
    [Google Scholar]
  98. 98.
    Roschewski M, Rossi D, Kurtz DM, Alizadeh AA, Wilson WH. 2022. Circulating tumor DNA in lymphoma: principles and future directions. Blood Cancer Discov 3:1515
    [Google Scholar]
  99. 99.
    Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS et al. 2006. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:230113
    [Google Scholar]
  100. 100.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M et al. 2007. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39:223236
    [Google Scholar]
  101. 101.
    Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G et al. 2007. Epigenetic stem cell signature in cancer. Nat. Genet. 39:215758
    [Google Scholar]
  102. 102.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE et al. 2007. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39:223742
    [Google Scholar]
  103. 103.
    Martín-Subero JI, Kreuz M, Bibikova M, Bentink S, Ammerpohl O et al. 2009. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood 113:11248897
    [Google Scholar]
  104. 104.
    Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S et al. 2008. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. PNAS 105:351297984
    [Google Scholar]
  105. 105.
    Beerman I, Bock C, Garrison BS, Smith ZD, Gu H et al. 2013. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12:441325
    [Google Scholar]
  106. 106.
    Teschendorff AE. 2020. A comparison of epigenetic mitotic-like clocks for cancer risk prediction. Genome Med. 12:156
    [Google Scholar]
  107. 107.
    Yang Z, Wong A, Kuh D, Paul DS, Rakyan VK et al. 2016. Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17:1205
    [Google Scholar]
  108. 108.
    Youn A, Wang S. 2018. The MiAge calculator: a DNA methylation-based mitotic age calculator of human tissue types. Epigenetics 13:2192206
    [Google Scholar]
  109. 109.
    Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A et al. 2012. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat. Genet. 44:11120714
    [Google Scholar]
  110. 110.
    Aran D, Toperoff G, Rosenberg M, Hellman A. 2011. Replication timing-related and gene body-specific methylation of active human genes. Hum. Mol. Genet. 20:467080
    [Google Scholar]
  111. 111.
    Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM et al. 2018. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50:4591602
    [Google Scholar]
  112. 112.
    Endicott JL, Nolte PA, Shen H, Laird PW. 2022. Cell division drives DNA methylation loss in late-replicating domains in primary human cells. Nat. Commun. 13:16659
    [Google Scholar]
  113. 113.
    Knisbacher BA, Lin Z, Hahn CK, Nadeu F, Duran-Ferrer M et al. 2022. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat. Genet. 54:11166474
    [Google Scholar]
  114. 114.
    Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z et al. 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44:14046
    [Google Scholar]
  115. 115.
    Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B et al. 2022. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat. Med. 28:8166271
    [Google Scholar]
  116. 116.
    Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M et al. 2020. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood 136:12141932
    [Google Scholar]
  117. 117.
    Diedrich JD, Dong Q, Ferguson DC, Bergeron BP, Autry RJ et al. 2021. Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia 35:11307891
    [Google Scholar]
  118. 118.
    Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S et al. 2020. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat. Genet. 52:4388400
    [Google Scholar]
  119. 119.
    Beekman R, Amador V, Campo E. 2018. SOX11, a key oncogenic factor in mantle cell lymphoma. Curr. Opin. Hematol. 25:4299306
    [Google Scholar]
  120. 120.
    Vilarrasa-Blasi R, Verdaguer-Dot N, Belver L, Soler-Vila P, Beekman R et al. 2022. Insights into the mechanisms underlying aberrant SOX11 oncogene expression in mantle cell lymphoma. Leukemia 36:258387
    [Google Scholar]
  121. 121.
    Vilarrasa-Blasi R, Soler-Vila P, Verdaguer-Dot N, Russiñol N, Di Stefano M et al. 2021. Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat. Commun. 12:1651
    [Google Scholar]
  122. 122.
    Jang J-Y, Hwang I, Pan H, Yao J, Alinari L et al. 2022. A FOXO1-dependent transcription network is a targetable vulnerability of mantle cell lymphomas. J. Clin. Investig. 132:24e160767
    [Google Scholar]
  123. 123.
    Zhang J, Jima D, Moffitt AB, Liu Q, Czader M et al. 2014. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood 123:19298896
    [Google Scholar]
  124. 124.
    Albero R, Enjuanes A, Demajo S, Castellano G, Pinyol M et al. 2018. Cyclin D1 overexpression induces global transcriptional downregulation in lymphoid neoplasms. J. Clin. Investig. 128:9413247
    [Google Scholar]
  125. 125.
    Demajo S, Albero R, Clot G, Castellano G, Navarro A et al. 2021. A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma. Clin. Cancer Res. 27:121325
    [Google Scholar]
  126. 126.
    Lunning MA, Green MR. 2015. Mutation of chromatin modifiers; an emerging hallmark of germinal center B-cell lymphomas. Blood Cancer J. 5:10e361
    [Google Scholar]
  127. 127.
    Ott CJ, Federation AJ, Schwartz LS, Kasar S, Klitgaard JL et al. 2018. Enhancer architecture and essential core regulatory circuitry of chronic lymphocytic leukemia. Cancer Cell. 34:698295.e7
    [Google Scholar]
  128. 128.
    Mallm J-P, Iskar M, Ishaque N, Klett LC, Kugler SJ et al. 2019. Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks. Mol. Syst. Biol. 15:5e8339
    [Google Scholar]
  129. 129.
    Pastore A, Gaiti F, Lu SX, Brand RM, Kulm S et al. 2019. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nat. Commun. 10:11874
    [Google Scholar]
  130. 130.
    Navarro A, Clot G, Martínez-Trillos A, Pinyol M, Jares P et al. 2017. Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier. Haematologica 102:936063
    [Google Scholar]
  131. 131.
    Tsagiopoulou M, Chapaprieta V, Russiñol N, García-Torre B, Pechlivanis N et al. 2023. Chromatin activation profiling of stereotyped chronic lymphocytic leukemias reveals a subset 8-specific signature. Blood 141:24295560
    [Google Scholar]
  132. 132.
    Vilarrasa-Blasi R, Soler-Vila P, Verdaguer-Dot N, Russiñol N, Di Stefano M et al. 2021. Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat. Commun. 12:1651
    [Google Scholar]
  133. 133.
    Alvarez-Benayas J, Trasanidis N, Katsarou A, Ponnusamy K, Chaidos A et al. 2021. Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma. Nat. Commun. 12:15450
    [Google Scholar]
  134. 134.
    Ordoñez R, Kulis M, Russiñol N, Chapaprieta V, Carrasco-Leon A et al. 2020. Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Res. 30:9121727
    [Google Scholar]
  135. 135.
    Jin Y, Chen K, De Paepe A, Hellqvist E, Krstic AD et al. 2018. Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma. Blood 131:19213850
    [Google Scholar]
  136. 136.
    Wu P, Li T, Li R, Jia L, Zhu P et al. 2017. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat. Commun. 8:11937
    [Google Scholar]
  137. 137.
    Alaterre E, Ovejero S, Herviou L, de Boussac H, Papadopoulos G et al. 2022. Comprehensive characterization of the epigenetic landscape in multiple myeloma. Theranostics 12:4171529
    [Google Scholar]
  138. 138.
    Agarwal P, Alzrigat M, Párraga AA, Enroth S, Singh U et al. 2016. Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target. Oncotarget 7:6680923
    [Google Scholar]
  139. 139.
    Sermer D, Pasqualucci L, Wendel H-G, Melnick A, Younes A. 2019. Emerging epigenetic-modulating therapies in lymphoma. Nat. Rev. Clin. Oncol. 16:8494507
    [Google Scholar]
  140. 140.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:6099119095
    [Google Scholar]
  141. 141.
    Vijayakrishnan J, Qian M, Studd JB, Yang W, Kinnersley B et al. 2019. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat. Commun. 10:15348
    [Google Scholar]
  142. 142.
    Speedy HE, Beekman R, Chapaprieta V, Orlando G, Law PJ et al. 2019. Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics. Nat. Commun. 10:13615
    [Google Scholar]
  143. 143.
    Went M, Sud A, Försti A, Halvarsson B-M, Weinhold N et al. 2018. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 9:13707
    [Google Scholar]
  144. 144.
    Robbe P, Ridout KE, Vavoulis D V, Dréau H, Kinnersley B et al. 2022. Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat. Genet. 54:11167589
    [Google Scholar]
  145. 145.
    Bal E, Kumar R, Hadigol M, Holmes AB, Hilton LK et al. 2022. Super-enhancer hypermutation alters oncogene expression in B cell lymphoma. Nature 607:792080815
    [Google Scholar]
  146. 146.
    Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J et al. 2015. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:757451924
    [Google Scholar]
  147. 147.
    Luchtel RA, Dasari S, Oishi N, Pedersen MB, Hu G et al. 2018. Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:13138698
    [Google Scholar]
  148. 148.
    Tsagiopoulou M, Chapaprieta V, Duran-Ferrer M, Moysiadis T, Psomopoulos F et al. 2020. Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation. Haematologica 105:12286467
    [Google Scholar]
  149. 149.
    Mangolini M, Maiques-Diaz A, Charalampopoulou S, Gerhard-Hartmann E, Bloehdorn J et al. 2022. Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape. Nat. Commun. 13:16220
    [Google Scholar]
  150. 150.
    Enjuanes A, Albero R, Clot G, Navarro A, Beà S et al. 2013. Genome-wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. Int. J. Cancer 133:12285263
    [Google Scholar]
  151. 151.
    Oakes CC, Claus R, Gu L, Assenov Y, Hüllein J et al. 2014. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov. 4:334861
    [Google Scholar]
  152. 152.
    Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ et al. 2015. Clock-like mutational processes in human somatic cells. Nat. Genet. 47:1214027
    [Google Scholar]
  153. 153.
    Koschmann C, Nunez FJ, Mendez F, Brosnan-Cashman JA, Meeker AK et al. 2017. Mutated chromatin regulatory factors as tumor drivers in cancer. Cancer Res. 77:222733
    [Google Scholar]
  154. 154.
    Reyna MA, Haan D, Paczkowska M, Verbeke LPC, Vazquez M et al. 2020. Pathway and network analysis of more than 2500 whole cancer genomes. Nat. Commun. 11:1729
    [Google Scholar]
  155. 155.
    Jiang Y, Dominguez PM, Melnick AM. 2016. The many layers of epigenetic dysfunction in B-cell lymphomas. Curr. Opin. Hematol. 23:437784
    [Google Scholar]
  156. 156.
    Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS et al. 2013. The MLL recombinome of acute leukemias in 2013. Leukemia 27:11216576
    [Google Scholar]
  157. 157.
    Iacobucci I, Mullighan CG. 2017. Genetic basis of acute lymphoblastic leukemia. J. Clin. Oncol. 35:997583
    [Google Scholar]
  158. 158.
    Pararajalingam P, Coyle KM, Arthur SE, Thomas N, Alcaide M et al. 2020. Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing. Blood 136:557284
    [Google Scholar]
  159. 159.
    Jiang Y, Melnick A. 2015. The epigenetic basis of diffuse large B-cell lymphoma. Semin. Hematol. 52:28696
    [Google Scholar]
  160. 160.
    López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM et al. 2022. Burkitt lymphoma. Nat. Rev. Dis. Primers 8:178
    [Google Scholar]
  161. 161.
    Pawlyn C, Kaiser MF, Heuck C, Melchor L, Wardell CP et al. 2016. The spectrum and clinical impact of epigenetic modifier mutations in myeloma. Clin. Cancer Res. 22:23578394
    [Google Scholar]
  162. 162.
    Bennett RL, Bele A, Small EC, Will CM, Nabet B et al. 2019. A mutation in histone H2B represents a new class of oncogenic driver. Cancer Discov. 9:10143851
    [Google Scholar]
  163. 163.
    Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo JM et al. 2021. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589:7841299305
    [Google Scholar]
  164. 164.
    Dominguez PM, Teater M, Shaknovich R. 2017. The new frontier of epigenetic heterogeneity in B-cell neoplasms. Curr. Opin. Hematol. 24:44028
    [Google Scholar]
  165. 165.
    Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A et al. 2022. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat. Biotechnol. 40:572030
    [Google Scholar]
  166. 166.
    Oder B, Chatzidimitriou A, Langerak AW, Rosenquist R, Österholm C. 2023. Recent revelations and future directions using single-cell technologies in chronic lymphocytic leukemia. Front. Oncol. 13:1143811
    [Google Scholar]
  167. 167.
    Sturgess KHM, Wilson NK, Göttgens B. 2023. Introduction to a review series on single-cell genomics: getting ready for clinical impact in leukemia and myeloid neoplasms. Blood 141:432325
    [Google Scholar]
  168. 168.
    Dutta AK, Alberge J-B, Sklavenitis-Pistofidis R, Lightbody ED, Getz G, Ghobrial IM. 2022. Single-cell profiling of tumour evolution in multiple myeloma—opportunities for precision medicine. Nat. Rev. Clin. Oncol. 19:422336
    [Google Scholar]
  169. 169.
    Samur MK, Szalat R, Munshi NC. 2023. Single-cell profiling in multiple myeloma: insights, problems, and promises. Blood 142:431324
    [Google Scholar]
  170. 170.
    Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ et al. 2020. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38:674755
    [Google Scholar]
  171. 171.
    Ye X, Wang L, Nie M, Wang Y, Dong S et al. 2022. A single-cell atlas of diffuse large B cell lymphoma. Cell Rep. 39:3110713
    [Google Scholar]
  172. 172.
    Ysebaert L, Quillet-Mary A, Tosolini M, Pont F, Laurent C, Fournié J-J. 2021. Lymphoma heterogeneity unraveled by single-cell transcriptomics. Front. Immunol. 12:597651
    [Google Scholar]
  173. 173.
    Dutta AK, Alberge J-B, Sklavenitis-Pistofidis R, Lightbody ED, Getz G, Ghobrial IM. 2022. Single-cell profiling of tumour evolution in multiple myeloma—opportunities for precision medicine. Nat. Rev. Clin. Oncol. 19:422336
    [Google Scholar]
  174. 174.
    Nagler A, Wu CJ. 2023. The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia. Blood 141:436979
    [Google Scholar]
  175. 175.
    Iacobucci I, Witkowski MT, Mullighan CG. 2023. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 141:435668
    [Google Scholar]
  176. 176.
    Wang L, Fan J, Francis JM, Georghiou G, Hergert S et al. 2017. Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia. Genome Res. 27:8130011
    [Google Scholar]
  177. 177.
    Massoni-Badosa R, Soler-Vila P, Aguilar-Fernández S, Nieto JC, Elosua-Bayes M et al. 2022. An atlas of cells in the human tonsil. bioRxiv 2022.06.24.497299. https://doi.org/10.1101/2022.06.24.497299
    [Crossref]
  178. 178.
    Attaf N, Dong C, Gil L, Cervera-Marzal I, Gharsalli T et al. 2022. Functional plasticity and recurrent cell states of malignant B cells in follicular lymphoma. bioRxiv 2022.04.06.487285. https://doi.org/10.1101/2022.04.06.487285
    [Crossref]
  179. 179.
    Sun C, Chen Y-C, Martinez Zurita A, Baptista MJ, Pittaluga S et al. 2023. The immune microenvironment shapes transcriptional and genetic heterogeneity in chronic lymphocytic leukemia. Blood Adv. 7:114558
    [Google Scholar]
  180. 180.
    Tirier SM, Mallm J-P, Steiger S, Poos AM, Awwad MHS et al. 2021. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics. Nat. Commun. 12:16960
    [Google Scholar]
  181. 181.
    Scott DW, Gascoyne RD. 2014. The tumour microenvironment in B cell lymphomas. Nat. Rev. Cancer 14:851734
    [Google Scholar]
  182. 182.
    Gaiti F, Chaligne R, Gu H, Brand RM, Kothen-Hill S et al. 2019. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 569:775757680
    [Google Scholar]
  183. 183.
    Penter L, Gohil SH, Lareau C, Ludwig LS, Parry EM et al. 2021. longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history. Cancer Discov. 11:12304863
    [Google Scholar]
  184. 184.
    Zhang D, Deng Y, Kukanja P, Agirre E, Bartosovic M et al. 2023. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616:795511322
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051122-100856
Loading
/content/journals/10.1146/annurev-pathmechdis-051122-100856
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error